|
CGAL 6.0 - Algebraic Foundations
|
AdaptableBinaryFunction providing an integral division.
Integral division (a.k.a. exact division or division without remainder) maps ring elements \( (x,y)\) to ring element \( z\) such that \( x = yz\) if such a \( z\) exists (i.e. if \( x\) is divisible by \( y\)). Otherwise the effect of invoking this operation is undefined. Since the ring represented is an integral domain, \( z\) is uniquely defined if it exists.
AdaptableBinaryFunction Types | |
| typedef unspecified_type | result_type |
Is AlgebraicStructureTraits::Type. | |
| typedef unspecified_type | first_argument |
Is AlgebraicStructureTraits::Type. | |
| typedef unspecified_type | second_argument |
Is AlgebraicStructureTraits::Type. | |
Operations | |
| result_type | operator() (first_argument_type x, second_argument_type y) |
| returns \( x/y\), this is an integral division. | |
| template<class NT1 , class NT2 > | |
| result_type | operator() (NT1 x, NT2 y) |
This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion type AlgebraicStructureTraits::Type. | |