|
CGAL 6.0 - 3D Spherical Geometry Kernel
|
#include <CGAL/Circular_arc_point_3.h>
SphericalKernel::CircularArcPoint_3 Related Functions | |
(Note that these are not member functions.) | |
| bool | operator== (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
| Test for equality. | |
| bool | operator!= (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
| Test for nonequality. | |
| bool | operator< (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Returns true iff p is lexicographically smaller than q, i.e. either if p.x() < q.x() or if p.x() == q.x() and p.y() < q.y() or if p.x() == q.x() and p.y() == q.y() and p.z() < q.z(). | |
| bool | operator> (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Returns true iff p is lexicographically greater than q. | |
| bool | operator<= (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Returns true iff p is lexicographically smaller than or equal to q. | |
| bool | operator>= (const Circular_arc_point_3< SphericalKernel > &p, const Circular_arc_point_3< SphericalKernel > &q) |
Returns true iff p is lexicographically greater than or equal to q. | |
| istream & | operator>> (std::istream &is, Circular_arc_point_3 &p) |
| ostream & | operator<< (std::ostream &os, const Circular_arc_point_3 &p) |
Creation | |
| Circular_arc_point_3 (const Point_3< SphericalKernel > &q) | |
| Circular_arc_point_3 (const SphericalKernel::Root_for_spheres_2_3 &r) | |
Access Functions | |
| const SphericalKernel::Root_of_2 & | x () |
| \( x\)-coordinate of the point. | |
| const SphericalKernel::Root_of_2 & | y () |
| \( y\)-coordinate of the point. | |
| const SphericalKernel::Root_of_2 & | z () |
| \( z\)-coordinate of the point. | |
| Bbox_3 | bbox () const |
| Returns a bounding box around the point. | |
|
related |
Test for equality.
Two points are equal, iff their \( x\), \( y\) and \( z\) coordinates are equal.