|
CGAL 6.0 - 2D and 3D Linear Geometry Kernel
|
AdaptableQuaternaryFunction CGAL::Weighted_point_2<Kernel> ComputePowerProduct_2 for the definition of orthogonality for power distances. PowerSideOfOrientedPowerCircle_2 Operations | |
A model of this concept must provide: | |
| CGAL::Bounded_side | operator() (const Kernel::Weighted_point_2 &p, const Kernel::Weighted_point_2 &q, const Kernel::Weighted_point_2 &r, const Kernel::Weighted_point_2 &t) |
| Let \( {z(p,q,r)}^{(w)}\) be the power circle of the weighted points \( (p,q,r)\). | |
| CGAL::Bounded_side | operator() (const Kernel::Weighted_point_2 &p, const Kernel::Weighted_point_2 &q, const Kernel::Weighted_point_2 &t) |
returns the sign of the power test of t with respect to the smallest circle orthogonal to p and q. | |
| CGAL::Bounded_side | operator() (const Kernel::Weighted_point_2 &p, const Kernel::Weighted_point_2 &t) |
returns the sign of the power test of t with respect to the smallest circle orthogonal to p. | |
| CGAL::Bounded_side Kernel::PowerSideOfBoundedPowerCircle_2::operator() | ( | const Kernel::Weighted_point_2 & | p, |
| const Kernel::Weighted_point_2 & | q, | ||
| const Kernel::Weighted_point_2 & | r, | ||
| const Kernel::Weighted_point_2 & | t | ||
| ) |
Let \( {z(p,q,r)}^{(w)}\) be the power circle of the weighted points \( (p,q,r)\).
This method returns:
ON_BOUNDARY if t is orthogonal to \( {z(p,q,r)}^{(w)}\),ON_UNBOUNDED_SIDE if t lies outside the bounded circle of center \( z(p,q,r)\) and radius \( \sqrt{ w_{z(p,q,r)}^2 + w_t^2 }\) (which is equivalent to \( \Pi({t}^{(w)},{z(p,q,r)}^{(w)}) > 0\)),ON_BOUNDED_SIDE if t lies inside this bounded circle.The order of the points p, q, and r does not matter.
p, q, and r are not collinear.If all the points have a weight equal to 0, then power_side_of_bounded_power_circle_2(p,q,r,t) == side_of_bounded_circle(p,q,r,t).
| CGAL::Bounded_side Kernel::PowerSideOfBoundedPowerCircle_2::operator() | ( | const Kernel::Weighted_point_2 & | p, |
| const Kernel::Weighted_point_2 & | q, | ||
| const Kernel::Weighted_point_2 & | t | ||
| ) |
returns the sign of the power test of t with respect to the smallest circle orthogonal to p and q.
p and q have different bare points.