|
CGAL 6.0 - Bounding Volumes
|
#include <CGAL/Min_ellipse_2_traits_2.h>
The class Min_ellipse_2_traits_2 is a traits class for CGAL::Min_ellipse_2<Traits> using the two-dimensional CGAL kernel.
The template parameter K must be a model for Kernel.
MinEllipse2Traits CGAL::Min_ellipse_2<Traits> MinEllipse2Traits Types | |
| typedef unspecified_type | Point |
typedef to K::Point_2. | |
| typedef unspecified_type | Ellipse |
| internal type. | |
Access Functions | |
The Ellipse type provides the following access methods not required by the concept | |
| bool | is_circle () |
| tests whether the ellipse is a circle. | |
| void | double_coefficients (double &r, double &s, double &t, double &u, double &v, double &w) |
| gives a double approximation of the ellipse's conic equation. | |
Creation | |
| Min_ellipse_2_traits_2 () | |
| default constructor. | |
| Min_ellipse_2_traits_2 (const Min_ellipse_2_traits_2< K > &) | |
| copy constructor. | |
| void CGAL::Min_ellipse_2_traits_2< K >::double_coefficients | ( | double & | r, |
| double & | s, | ||
| double & | t, | ||
| double & | u, | ||
| double & | v, | ||
| double & | w | ||
| ) |
gives a double approximation of the ellipse's conic equation.
If K is a Cartesian kernel, the ellipse is the set of all points \( (x,y)\) satisfying \( rx^2+sy^2+txy+ux+vy+w=0\). In the Homogeneous case, the ellipse is the set of points \( (hx,hy,hw)\) satisfying \( r(hx)^2+s(hy)^2+t(hx)(hy)+u(hx)(hw)+v(hy)(hw)+w(hw)^2=0\).