|
| template<class NT > |
| NT | abs (const NT &x) |
| | The template function abs() returns the absolute value of a number.
|
| |
| template<class NT1 , class NT2 > |
| result_type | compare (const NT &x, const NT &y) |
| | The template function compare() compares the first argument with respect to the second, i.e. it returns CGAL::LARGER if \( x\) is larger than \( y\).
|
| |
| template<class NT1 , class NT2 > |
| result_type | div (const NT1 &x, const NT2 &y) |
| | The function div() computes the integral quotient of division with remainder.
|
| |
| template<class NT1 , class NT2 > |
| void | div_mod (const NT1 &x, const NT2 &y, result_type &q, result_type &r) |
| | computes the quotient \( q\) and remainder \( r\), such that \( x = q*y + r\) and \( r\) minimal with respect to the Euclidean Norm of the result_type.
|
| |
| template<class NT1 , class NT2 > |
| result_type | gcd (const NT1 &x, const NT2 &y) |
| | The function gcd() computes the greatest common divisor of two values.
|
| |
| template<class NT1 , class NT2 > |
| result_type | integral_division (const NT1 &x, const NT2 &y) |
| | The function integral_division() (a.k.a. exact division or division without remainder) maps ring elements \( (x,y)\) to ring element \( z\) such that \( x = yz\) if such a \( z\) exists (i.e. if \( x\) is divisible by \( y\)).
|
| |
| template<class NT > |
| NT | inverse (const NT &x) |
| | The function inverse() returns the inverse element with respect to multiplication.
|
| |
| result_type | is_negative (const NT &x) |
| | The template function is_negative() determines if a value is negative or not.
|
| |
| template<class NT > |
| result_type | is_one (const NT &x) |
| | The function is_one() determines if a value is equal to 1 or not.
|
| |
| result_type | is_positive (const NT &x) |
| | The template function is_positive() determines if a value is positive or not.
|
| |
| template<class NT > |
| result_type | is_square (const NT &x) |
| | An ring element \( x\) is said to be a square iff there exists a ring element \( y\) such that \( x= y*y\).
|
| |
| template<class NT > |
| result_type | is_square (const NT &x, NT &y) |
| | An ring element \( x\) is said to be a square iff there exists a ring element \( y\) such that \( x= y*y\).
|
| |
| template<class NT > |
| result_type | is_zero (const NT &x) |
| | The function is_zero() determines if a value is equal to 0 or not.
|
| |
| template<class NT > |
| NT | kth_root (int k, const NT &x) |
| | The function kth_root() returns the k-th root of a value.
|
| |
| template<class NT1 , class NT2 > |
| result_type | mod (const NT1 &x, const NT2 &y) |
| | The function mod() computes the remainder of division with remainder.
|
| |
| template<class InputIterator > |
| NT | root_of (int k, InputIterator begin, InputIterator end) |
| | returns the k-th real root of the univariate polynomial, which is defined by the iterator range, where begin refers to the constant term.
|
| |
| template<class NT > |
| result_type | sign (const NT &x) |
| | The template function sign() returns the sign of its argument.
|
| |
| template<class NT > |
| void | simplify (const NT &x) |
| | The function simplify() may simplify a given object.
|
| |
| template<class NT > |
| NT | sqrt (const NT &x) |
| | The function sqrt() returns the square root of a value.
|
| |
| template<class NT > |
| NT | square (const NT &x) |
| | The function square() returns the square of a number.
|
| |
| template<class NT > |
| double | to_double (const NT &x) |
| | The template function to_double() returns a double approximation of a number.
|
| |
| template<class NT > |
| std::pair< double, double > | to_interval (const NT &x) |
| | The template function to_interval() computes for a given real embeddable number \( x\) a double interval containing \( x\).
|
| |
| template<class NT > |
| NT | unit_part (const NT &x) |
| | The function unit_part() computes the unit part of a given ring element.
|
| |