GROMACS Documentation
Release 2026-rc

GROMACS development team

Dec 17, 2025

CONTENTS

1 Downloads 2
1.1 Sourcecode e 2
1.2 Regression tests it e e e e e e e e e e e e e e e e 2

2 Installation guide 3
2.1 Installation guide for exotic configurations oo 3

2.1.1 Special instructions for building GROMACS on less-common systems 3
2.2 Introduction to building GROMACS e 5
2.2.1 Quick and dirty installation L. e e 5
2.2.2 Quick and dirty cluster installation Lo 6
223 Typicalinstallation L e 6
224 Buildingolder versionsl oo 6
2.3 PrerequiSites e e e e e e 7
231 Platform 7
232 Compiler e e e e e e e e e e 7
2.3.3 Compiling with parallelization options 8
234 CMaKe i e e e 11
2.3.5 Fast Fourier Transform library 11
2.3.6 Other optional build components 13
24 Doing abuild of GROMACS e 14
24.1 ConfiguringwithCMake e 14
242 Compilingand linking e 25
243 Installing GROMACS 25
244 Getting access to GROMACS after installation 25
2.4.5 Testing GROMACS for correctness v v v v v v v i i e e e e et e e e o 26
24.6 Testing GROMACS for performance 27
247 Havingdifficulty? e 27
2.5 Special instructions for some platforms Lo oL 27
2.5.1 Buildingon Windows L e e 27
252 BuildingonCray e e e 28
253 NVIDIAGrace ittt e e e e e 28
2.6 Testedplatforms e e e e e e e e e 28
277 SUPPOTE . . . e e e 29
3 User guide 30
3.1 Known issues affecting users of GROMACS 30
3.1.1 “Cannot find a working standard library” error with ROCm Clang 30
3.1.2 Expanded ensemble does not checkpoint correctly 30
3.1.3 Compiling with GCC 12-14 on POWERS architectures 31
3.1.4 NbnxmTest crash with oneAPI12024.1 31
3.1.5 Severe performance regression with SVE and LLVM 20 31
32 Gettingstarted L. Lo e e e e e 31
321 FlowChart e 31
3.2.2 Setting up your nvironmento it e et e e e e e e e e e e e 33

33

34

35

3.6

3.7

3.8

39

3.10

3.11

3.2.3 Flowchart of typical simulation 33

324 Importantfileso e e e e e e e e e 33
325 Tutorial material L. L. 34
32.6 Backgroundreading. e 35
System preparation e e e e e e e e e e e e e 35
33.1 Stepstoconsider L. e e e e 35
332 TipsandtrickS e e e e e e e e e 36
Managing long simulationso e e e e e 36
34.1 Appendingtooutputfiles L 37
342 Backingupyourfiles 37
343 Extendinga.tprfile 37
344 Changing mdp options forarestarto 38
3.4.5 Restarts without checkpointfiles oo 38
3.4.6 Arecontinuations €Xact? L. e e e e 38
347 Reproducibility e 38
Answers to frequently asked questions (FAQs) 39
3.5.1 Questions regarding GROMACS installation 39
3.5.2 Questions concerning system preparation and preprocessing 39
3.5.3 Questions regarding simulation methodology 40
3.54 Parameterization and Force Fields 41
3.5.5 Analysis and Visualization 41
Force fields in GROMACS e 42
3.6.1 AMBER e 42
3,62 CHARMM e 42
3,63 GROMOS e 43
3.64 OPLS . . . e 43
Molecular dynamics parameters (.mdp options) 43
377.1 Generalinformation. 43
Useful mdrun features L 88
3.8.1 Re-running asimulation L. oL e 88
3.8.2 Running a simulation in reproducible modeo oL 89
3.8.3 Halting running simulations o 89
3.8.4 Running multi-simulations o o o 89
3.8.5 Controlling the length of the simulation 90
Getting good performance frommdrun L. L L e 90
39.1 Performance checklist e 91
3.9.2 Hardware background information L L 93
3.9.3 Work distribution by parallelization in GROMACS 94
39.4 Parallelizationschemes e 95
3.9.5 Running mdrun withinasinglenode 98
39.6 Running mdrunon more thanonenode 102
3.9.7 Avoiding communication for constraints L. oL 104
39.8 Finding outhow torun mdrunbetter oL 104
39.9 RunningmdrunwithGPUs e 106
3.9.10 Running the OpenCL versionofmdrun 110
3.9.11 Running SYCL versionof mdrun. 111
39.12 Running HIP versionof mdrun o oL 111
Common errors when using GROMACS 111
3.10.1 Common errors during USAgZE « .« v v v vt e e e e e e e e e e e 111
3.10.2 Errorsin pdb2gmX e e e e e e e e e e e e 112
3.10.3 Errorsin @rompp . . . o v v e 114
3.104 Errorsinmdruno oL e 117
Command-line reference L e 120
3.11.1 molecular dynamics simulation suite oL 120
3112 @mXanaeig e e e e e e e e e e e e e e 127
3013 gmxanalyze oL e e e e e e e e e e e 130
3014 gmxangle oL e e e e 133
3115 gmxawh . ..o 135

3.11.6

3.11.7

3.11.8

3.11.9

3.11.10
3.11.11
3.11.12
3.11.13
3.11.14
3.11.15
3.11.16
3.11.17
3.11.18
3.11.19
3.11.20
3.11.21
3.11.22
3.11.23
3.11.24
3.11.25
3.11.26
3.11.27
3.11.28
3.11.29
3.11.30
3.11.31
3.11.32
3.11.33
3.11.34
3.11.35
3.11.36
3.11.37
3.11.38
3.11.39
3.11.40
3.11.41
3.11.42
3.11.43
3.11.44
3.11.45
3.11.46
3.11.47
3.11.48
3.11.49
3.11.50
3.11.51
3.11.52
3.11.53
3.11.54
3.11.55
3.11.56
3.11.57
3.11.58
3.11.59
3.11.60
3.11.61
3.11.62
3.11.63

EMX bAr . .o e e e e 136

gmxbundle e 138
gmxcheck. o e 139
gmx chi e e 141
gmx clustero e e e e 144
gMX CIUSESIZE e e e e 148
gmX CONfIMS o o e e e e e 149
EMX CONVETT-IPT . . o ¢ v v v v v e e ettt e e e e e e e e e e e e e 151
GMX CONVETt-II] o vttt ettt e e e e e e e e e 152
GMX COVAT . . o v v vttt e e e e e e e e e e e e e e 153
GMX CUMTENE . . o v v v o v vt i e e e e et e e e e e e e e e e e e 155
emx density e e e e e e 157
emX densSmap e e e e e e e e e e e e e e 159
gmxdensorder e e e e 160
gmxdielectric L e 162
gmx dipoles 163
gmx diSIe e e 166
emX diStanCe e e e e e e e e e e e e 168
emX dOS e e e e 170
EMXASSP e e e 171
emxdump e e e e e e 174
gmxdyecoupl e 175
gmx editconf e 176
EMX ENECONV . . v v v vt v e 179
GMX ENEMAL . . . v v v vt b e 180
GMX CNETEY .+« o v v v v v et e e e e e e e e e e e e e e e 182
gmx extract-Cluster 186
egmx filter e 187
gmx freevolume L. e 189
gmX gangle e e e 190
gmx genconfl 192
EMX ZENION .« « vttt e e e e e e e e e e e e e e e e 193
GMX ZENTESIT .« . o v vttt e e e e e e e e e e e e e e e e 195
EMX EIOMPP « o v v o e 196
GMX GYTAC . . v v v v e 198
gmx gyrate-legacy L. e 200
gmxh2order.o e 201
gmx hbond 203
gmx hbond-legacy e e 205
emx helix e 208
gmx helixorient L e 210
gmxhelp 211
gmx hydorder L 211
gmx insert-molecules oL 213
gmx e . .. e e e e e e 214
gmxmake_edi e 215
gmxmake_ndX e e e e e 219
gmxmdmat e 219
gmxmdrun ... 221
emx mindiSt e e e e e e 226
gmxmk angndX L e 228
gmxmsd ..o e e 228
GMXNMEIZ ot vttt e e e e e e e e 230
EMX NMENS . . v v v v e 232
EMX NMI ¢ . v v v v e et e e e e e e e e e e e e e e e e e e e 233
EMX NMEITA] . o v v v v et i e 234
gmx nonbonded-benchmark 0oL oo 235
gmXOrdero e 237

3.12

3.13

30164 gmx pairdiSt L e e e e e e e e e e e e e e 239

30165 gmx pdb2ZmX . . . L . o e e e e e e e e e e e e e e e 241
31166 @MX PME_EITOT . . v v v v v o v e 244
3.11.67 gmx polystat L e e 245
3.11.68 gmx potential e 246
3.11.69 gmx principalo 248
3170 g@mMXTama . . . v ot e 249
30171 gmxrdf .« .o e e e 250
3.11.72 gmxreport-methods L 252
30173 gmXTmS . . . L Lo e e e e 252
30174 gmxrmsdist L e e e e e 255
30175 gmxrmst . .. e e e e e e e e e e 256
30176 gmxrotact L L e e e e e e 258
30177 gmxrotmat e e e e e e e e e 259
30178 gmxsaltbro e 260
3.11.79 gmx sans-legacy e e e e e e 261
30180 @MX SASA « v v v h e 263
30181 gmX saxs-1€gacy e e e e e e e e e e e e e 265
3.11.82 gmX SCAttering« v o i i e e e e e e e e e e e e e e e 266
30183 gmxselect e e e 268
30184 gmxsham L. L e e e e 270
30185 @MX SIZEPS « v v v v e 272
30186 gmX SOIvate o e e e e e e e e e e e e e e e 274
30187 g@mX SOTIENt v v it e 275
30188 gmxspatial oL e e e e e e 277
3.11.89 gmxspol . ..ol 278
31190 gmxtcaf L. e e e e 280
3191 @mXtraj . . v v o e e e e e e e e e e e e e e e e e e 281
31192 gmX traJectory . . . v v v v e 284
3193 gmxtrjecat oL e e e e e e e e e e e e 285
30194 gmXtjCconvo e e e e e e 287
31195 gmxtrjordero e e e e e e e e 290
3.11.96 gmMX tUNE_PIME o o v v vt e e e e e e e e e e e e e e e e e e 292
30197 gmx vanhove o ..o e e e e e e e e e e e e 297
30198 gmx velace L e e e e e e e 298
3.11.99 gmxwham oL 300
3.11.100gmx wheelo oL 304
BA1101gMX X2E0P « « o v v v e e e e e e e e e e e e e e e e 305
301.102gMX XPM2PS + v o v v e 306
3.11.103Command-line interface and conventions 308
3.11.104Commands by name e e 309
3.11.105Commands by topic 312
3.11.106Special topics oo e e e e e e e e 318
3.11.107Command changes between VErsions v v v v v v v v v v e 326
Terminology e e e e e e e e e e 331
3021 Pressure e e e e e e e e 331
3.12.2 Periodic boundary conditions L. oL 332
3.12.3 Thermostats e e e e e e e e e e 333
3.12.4 Energy COnservation i it i e e e e e e e e e 334
3.12.5 AVerage StruCtUI® . . . v v v v v e e i e 334
3,126 Blowingupo e e e e e e e e e e e e 335
3.12.7 Diagnosing an unstable system oL o o 335
3.12.8 Molecular dynamicsl 336
3.129 Forcefield e 337
Validationo 337
3.13.1 Experimental features oL e e e e e 338
3.13.2 Features with validationpending L 338
3.13.3 Feature lifecycle stages L e 339

3.14 Environment Variables e e e e 340

3.14.1 Output Control o e e e e e e e e e e e 340
3142 Debugg@ing e e e e e e e e e e 341
3.14.3 Performance and Run Control 341
3.144 OpenCLmanagementottt it it e 346
3.145 SYCL mManagemento v v v vt i it e e e e e e e e e e e 347
3.14.6 Analysisand Core Functions 0 i it 347
3.15 Floating point arithmetic e e e e e 347
3.16 Security when using GROMACS e 348
3.17 Policy for deprecating GROMACS functionality, 348
Short How-To guides 349
4.1 Beginners e e e e e e e e e e e 349
411 RESOUICES . . v v v v ot e e e e e e e e e e e e e e e e e e 349
42 AddingaResiduetoaForceField 349
421 Addinganewresidue e e e e 349
422 Modifyingaforcefield 350
43 Watersolvation L e e e e e 350
4.4 Nonwater SOIVENt L i e e e e e e e e e e e 350
4.4.1 Making anon-aqueous solventbox oL 350
4.5 Mixedsolvent e e e 351
4.6 Making Disulfide Bonds e e e e 351
4.7 Running membrane simulations in GROMACS 351
4.7.1 Running Membrane Simulations oL 351
4.7.2 Adding waters with genbox 352
473 External material e 352
4.8 Parameterization of novel molecules L oL 352
4.8.1 EXOtiC SPECIeS . . . v v v i i e e e e e e e e e e 353
49 Potential of Mean Force L e 353
4.10 Single-Point Energy e 354
4.11 CarbonNanotube e e 354
4.11.1 RobertJohnson’s Tips o v v i i i e e e e e e e e e e 354
4.11.2 Andrea Minoia’stutorial L 354
4.12 Visualization Software e 355
4.12.1 Topology bonds vs Renderedbonds, 356
4.13 Extracting Trajectory Information L o 356
4.14 External tools to perform trajectory analysis. Lo 356
4.15 PlottingData e e e e e e e e e e e e e e 356
4.15.1 Software e 357
4.16 Micelle Clustering o i i e 357
Reference Manual 359
5.1 Prefaceand Disclaimer L e 359
5.1.1 Citation information oL e e e e e e 360
5.1.2 GROMACS is Free Software v i v i i i e e e e e e e e e e 360
52 Introduction e e e e e 361
5.2.1 Computational Chemistry and Molecular Modeling 361
5.2.2 Molecular Dynamics Simulations L o o 362
5.2.3 Energy Minimization and Search Methods 364
53 Definitionsand Units L . e e e e e e e 366
53.1 0 Notation L. e e e e e e e 366
532 MDuUnitS e e e e e e e e 366
533 Reduced units e e e e e 367
534 Mixed or Double precision oL 368
54 Algorithms L e 369
5.4.1 Periodic boundary conditionso oo 369
542 The group CONCEPL . . . v v v v v e 372
543 Molecular Dynamics oo . e e e e e e e e e 373

5.5

5.6

5.7

5.8

544 Shell molecular dynamics. 396
5.4.5 Constraintalgorithms e e e 396
5.4.6 Simulated Annealing e e e e 399
5.4.7 Stochastic Dynamics e 400
54.8 Brownian Dynamics 400
5.4.9 Energy Minimization L. e e e e 401
5.4.10 Normal-Mode AnalysSis« v v v i i e e e e e e e e e 402
5.4.11 Freeenergy calculations o . i it e e e e 403
54.12 Replicaexchange L e 405
5.4.13 BEssential Dynamics sampling L o oL 406
5.4.14 Expanded Ensemble 407
54.15 Parallelization e e e 407
5.4.16 Domain decomposition« v . it e e e e e e e e e e e e e e e 407
Interaction function and force fields L L o 413
5.5.1 Non-bonded interactions e e 413
5.5.2 BondedinteraCtions i i e e e e 418
553 Restraints e e e e e 430
554 Polarization e e e e 439
5.5.5 Freeenergy interaCtionS. v v v v i it e e e e e e e e e e e 440
556 Methods oo e e e e e 447
5.5.7 Virtual interaction Sit€s L. ... e e e e e 448
5.5.8 Long Range Electrostatics i 452
5.5.9 Long Range Van der Waals interactions o v v v v v v v e 455
55.10 Forcefield o o e 458
Topologies e e e e e e e e e 462
5.6.1 Particletype e 463
5.6.2 Parameterfiles L 465
5.6.3 Molecule definition e 467
5.6.4 Constraintalgorithms e e 469
5.6.5 pdb2gmxinputfiles e e e 470
5.6.6 Fileformats e e e e e 477
5.6.7 Force field organizationo o e 490
Fileformats e e 492
5.7.1 Summary of file formats e 492
5772 Fileformatdetails e 494
Special TOPICS v o e e e e e e e e e e e 507
5.8.1 Freeenergy implementation 507
5.8.2 Potential of meanforce 508
5.8.3 Non-equilibrium pulling e e e 509
5.8.4 Collective variables: thepullcode 509
5.8.5 Adaptive biasingwith AWHo oL 514
5.8.6 Enforced Rotation. e 524
5.8.7 Electricfields e 533
5.8.8 Computational Electrophysiology 535
5.8.9 Calculating a PMF using the free-energycode 538
5.8.10 Removing fastest degrees of freedom L 538
5.8.11 Viscosity calculation L e 540
5.8.12 Shear simulations 542
5.8.13 Tabulated interaction functions oL o 543
5.8.14 Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface 544
5.8.15 MiMiC Hybrid Quantum Mechanical/Molecular Mechanical simulations 547
5.8.16 Using VMD plug-ins for trajectory file /O 551
5.8.17 Interactive Molecular Dynamics 551
5.8.18 Embedding proteins into the membranes 552
5.8.19 Applying forces from three-dimensional densities 553
5.8.20 Collective Variable simulations with the Colvars module 556
5821 UsingPLUMED 557
5.8.22 Neural Network Potentials 558

Vi

5.8.23 Fast Multipole Method (FMM) ittt e et e 560

5.9 Runparameters and Programs Lo e e e 561
5.9.1 Online documentationt i e e e e 561
592 Filetypes e e e e e e e e e e 562
5.93 RunParameters e 562
500 Analysis oo e e e e e 563
5.10.1 UsSing Groups . . . v v v v v e 563
5.10.2 Looking at your trajectory v v v i e e e e e e e e e e e e e e e 566
5.10.3 General properties oo e e e e e e e e 566
5.10.4 Radial distribution functions L Lo e 566
5.10.5 Correlation functions L e e e e 568
5.10.6 Curve fittingin GROMACS 569
5.10.7 Mean Square Displacement e e e 571
5.10.8 Bonds/distances, angles and dihedrals 0 oL 571
5.10.9 Radius of gyration and distances oL o oL 573
5.10.10 Root mean square deviations in structureo 574
5.10.11 Covariance analysSis o o i it e e e e e 575
5.10.12 Dihedral principal component analysis oL 576
5.10.13 Hydrogenbonds o i i e e e e e e e 576
5.10.14 Protein-related items e 578
5.10.15 Interface-related items L. e 580
5.11 Some implementation details L 581
5.11.1 Single Sum Virial in GROMACS 581
S.A1.2 Optimizations v v v v v e 584
5.12 Averages and fluctuations oL e 585
5.12.1 Formulae for averaging oL e 585
5.12.2 Implementationo e e e e e e e 586
5.13 Bibliography e e e e e e e e e e e 589
gmxapi Python package 598
6.1 Full installation inStructions 0ttt e e e e e e 598
6.1.1 OVerview e e 599
6.1.2 Background L. e e e 600
6.1.3 Installing the Pythonpackage 602
6.1.4 Accessing gmxapi documentationol 607
6.1.5 Testing e e e 608
6.1.6 Troubleshooting e e e e 608
6.2 Using the Python package e e 611
6.2.1 Noteson parallelismand MPI 611
6.2.2 Running simple simulations oL o 613
6.2.3 Running ensemble simulations oL Lo 613
6.2.4 Input arguments and “ensemble” syntax L. o e 613
6.2.5 Accessingcommand line tools L. L e 614
6.2.6 Preparing simulations L e e e e 614
6.2.7 Using arbitrary Python functions 615
6.2.8 Subgraphs 615
6.2.9 LOoOpINg e e e 616
6.2.10 LoggINg o e e e e e e e e e e e e e e e 616
6.2.11 More 617
6.3 gmxapi Python module reference L o 617
6.3.1 Interfaceconcepts L e 618
6.3.2 gmxapibasicpackage 619
6.3.3 Simulationmodule 622
6.3.4 Utlitieso e 624
6.3.5 Status messagesand Logging oL o e 626
6.3.6 Exceptionsmodule e 627
6.3.7 gmx.wersionmodule Lo 628
6.3.8 Core APL e e 629

vii

7.1

8 Developer Guide

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

7 (Non-)Bonded LIBrary (NB-LIB) API
Guide to Writing MD Programs i e e e e e e e
7.1.1 Global Definitions e
7.1.2 Define Particle Data
7.1.3 Defining Coordinates, Velocities and Force Buffers
7.1.4 Writingthe MD Program
Contribute to GROMACS e
8.1.1 Checklist o o e e e
8.1.2 Preparing code for submission e e e
8.1.3 Alternatives L e e e e
8.1.4 Do youhave more questions? oL
8.1.5 Removing functionality
Codebase OVEIVIEW v v vt i e e e e e e e e e e
8.2.1 Source code organization i e e e e e e e e e e e e e
8.2.2 Documentation Organization e i e e e e e e e e e e e e e e e
Build system overview L. Lo e e e
8.3.1 Buildtypes e e e e e
8.3.2 CMakecache variables L
8.3.3 External libraries
8.3.4 Special targets e e e e e e e e e e e e
8.3.5 Passing information to sourcecode L. ool
Change Management it e e e e e e e e e e
8.4.1 Gettingstarted e e e e e
842 Labels
843 CodeReview
844 More gittipsS . . . v v e e e e e e e e e e e e e e
Relocatable binaries L e
8.5.1 Finding shared libraries e
8.5.2 Findingdatafiles
853 KNOWNISSUES v v i ittt e e e e e e e e e
Documentation enerationo i e e e e e e e e e e e e e e e
8.6.1 Building the GROMACS documentation
8.6.2 Neededbuildtools e
Style guidelines L e e e e
8.7.1 Guidelines for code formatting
8.7.2 Guidelines for #include directives oL o
8.7.3 Naming conventions i e e
8.7.4 Allowed language features
8.7.5 Guidelines for creating meaningful issue reports
8.7.6 Guidelines for formatting of gitcommits L.
8.7.7 Errorhandling. e e e e e
Development-time tools e e e e e e e
8.8.1 Using Doxygen e e e e e
8.8.2 Automation and Infrastructure Lo
8.8.3 Source tree checker scriptso e e
8.8.4 Automatic source code formatting L.
8.8.5 Unittesting i i e e e e e e e e e e e e
8.8.6 Physical validation
Known issues relevant for developers L L e
8.9.1 Issues with GPU timer withOpenCL
89.2 GPUemulationdoesnotwork e
8.9.3 OpenCL on NVIDIA Volta and laterbroken
8.9.4 PME decomposition automated task assignment broken L.

9 Doxygen documentation

633
633
633
634
634
635

640
640
641
642
642
642
642
643
643
645
647
647
648
653
653
654
654
655
656
656
658
660
661
661
662
663
663
664
665
665
666
667
669
673
675
675
678
678
691
702
705
710
712
715
715
715
715
716

717

viii

10 C++ API
10.1 Public C++ API . ..
10.1.1 Overview . .

10.1.2 Client build system support L.
10.1.3 gmxapi CMake package e
10.1.4 gromacs (and gromacs$GROMACS_SUFFIX packages)

11 Release notes
11.1 GROMACS 2026 series
11.1.1 Patch releases
11.1.2 Major release
11.2 GROMACS 2025 series
11.2.1 Patch releases
11.2.2 Major release

11.3 Older (unmaintained) GROMACS series i i i it e e e e e e e e e e

11.4 GROMACS 2024 series
11.4.1 Patch releases
11.4.2 Major release

11.5 GROMACS 2023 series
11.5.1 Patch releases
11.5.2 Major release

11.6 GROMACS 2022 series
11.6.1 Patch releases
11.6.2 Major release

11.7 GROMACS 2021 series
11.7.1 Patch releases
11.7.2 Major release

11.8 GROMACS 2020 series
11.8.1 Patch releases
11.8.2 Major release

11.9 GROMACS 2019 series
11.9.1 Patch releases
11.9.2 Major release

11.10 GROMACS 2018 series
11.10.1 Patch releases
11.10.2 Major release

11.11 GROMACS 2016 series
11.11.1 Patch releases
11.11.2 Major release

Python Module Index

718
718
718
718
719
720

722
722
722
722
727
727
736
743
743
743
757
764
764
777
784
784
797
809
809
820
829
829
842
849
849
860
867
867
883
898
898
915

933

GROMACS Documentation, Release 2026-rc

The release notes can be found online at http://manual.gromacs.org/current/release-notes/index.html

CONTENTS 1

http://manual.gromacs.org/current/release-notes/index.html

CHAPTER
ONE

DOWNLOADS

Please reference this documentation as https://doi.org/10.5281/zenodo.17944199.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.17944095.

1.1 Source code

* As ftp ftp://ftp.gromacs.org/gromacs/gromacs-2026-rc.tar.gz
* As https https://ftp.gromacs.org/gromacs/gromacs-2026-rc.tar.gz
¢ (md5sum 390624d8c6daf9ale97ef6557581285)

Other source code versions may be found at the web site.

1.2 Regression tests

* https://ftp.gromacs.org/regressiontests/regressiontests-2026-rc.tar.gz

* (mdSsum 08714044b8fdcd45f0103fdb73afc9f7)

https://doi.org/10.5281/zenodo.17944199
https://doi.org/10.5281/zenodo.17944095
ftp://ftp.gromacs.org/gromacs/gromacs-2026-rc.tar.gz
https://ftp.gromacs.org/gromacs/gromacs-2026-rc.tar.gz
https://manual.gromacs.org/
https://ftp.gromacs.org/regressiontests/regressiontests-2026-rc.tar.gz

CHAPTER
TWO

INSTALLATION GUIDE

2.1 Installation guide for exotic configurations

2.1.1 Special instructions for building GROMACS on less-common systems
These instructions pertain to building GROMACS 2026-rc. This document is complementary to the up-to-date
installation instructions instructions.

The configurations listed here are expected to work, but are not recommended for typical users.

SYCL GPU acceleration for AMD and NVIDIA GPUs using Intel oneAPI DPC++

AMD and NVIDIA GPUs can also be used with Intel oneAPI BaseKit and Codeplay oneAPI plugins.

For most users, we recommend using CUDA (page 17) for NVIDIA GPUs and AdaptiveCpp (page 19) for AMD
GPUs instead.

AMD GPUs

After installing Intel oneAPI toolkit 2024.0 or newer, a compatible ROCm version, and the Codeplay plugin,
set up the environment by running source /opt/intel/oneapi/setvars.sh orloading an appropriate
module load on an HPC system.

Then, configure GROMACS using the following command (replace g£xXYZ with the target architecture):

cmake .. —-DCMAKE_C_COMPILER=icx —-DCMAKE_CXX_COMPILER=icpx \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_CLUSTER_SIZE=8 -DGMX_GPU_FFT_LIBRARY=vkfft \
—DSYCL_CXX_FLAGS_EXTRA='—-fsycl-targets=amd_gpu_gfxXYZ'

NVIDIA GPUs

After installing Intel oneAPI toolkit 2024.0 or newer, a compatible CUDA version, and the Codeplay plugin,
set up the environment by running source /opt/intel/oneapi/setvars.sh orloading an appropriate
module load on an HPC system.

Then, configure GROMACS using the following command:

cmake .. -DCMAKE_C_COMPILER=icx —-DCMAKE_CXX_COMPILER=icpx \
-DGMX_GPU=SYCL —-DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_CLUSTER_SIZE=8 -DGMX_GPU_FFT_LIBRARY=vkfft \
-DSYCL_CXX_FLAGS_EXTRA=-fsycl-targets=nvptx64-nvidia-cuda

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html
https://developer.codeplay.com/products/oneapi/amd/home/
https://developer.codeplay.com/products/oneapi/nvidia/home/

GROMACS Documentation, Release 2026-rc

For more recent NVIDIA GPUs, compiling for a specific compute capability can be beneficial for per-
formance. This is possible by setting the —fsycl-targets parameter of SYCL_CXX_FLAGS_EXTRA.
For example for an Ampere architecture GPU such as the NVIDIA A100, set -DSYCL_CXX_FLAGS_—
EXTRA=-fsycl-targets=nvidia_gpu_sm_80. Possible values are given in the DPC++ user manual.

SYCL GPU acceleration for NVIDIA GPUs using AdaptiveCpp

For most users, we recommend using CUDA (page 17) for NVIDIA GPUs.

Build and install AdaptiveCpp with CUDA backend (we recommend using the mainline Clang, not the ROCm-
bundled one).

Then, use the following command to build GROMACS (make sure to use the same compiler and set target GPU
architecture instead of sm_XY):

cmake .. —-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
—-DGMX_GPU=SYCL -DGMX_SYCL=ACPP -DACPP_TARGETS='cuda:sm_ XY'

Static linking

Dynamic linking of the GROMACS executables will lead to a smaller disk footprint when installed, and so is the
default on platforms where we believe it has been tested repeatedly and found to work. In general, this includes
Linux, Windows, Mac OS X and BSD systems. Static binaries take more space, but on some hardware and/or
under some conditions they are recommended or even necessary, most commonly when you are running large
parallel simulation using MPI libraries (e.g. Cray).

* To link GROMACS binaries statically against the internal GROMACS libraries, set -DBUILD_SHARED_—
LIBS=0FF.

e To link statically against external (non-system) libraries as well, set —-DGMX_PREFER_STATIC_-
LIBS=ON. Note, that in general cmake picks up whatever is available, so this option only instructs cmake
to prefer static libraries when both static and shared are available. If no static version of an external library
is available, even when the aforementioned option is ON, the shared library will be used. Also note that the
resulting binaries will still be dynamically linked against system libraries on platforms where that is the de-
fault. To use static system libraries, additional compiler/linker flags are necessary, e.g. —static-1libgcc
—-static-libstdc++.

* To attempt to link a fully static binary set -DGMX_BUILD_SHARED_EXE=OFF. This will prevent CMake
from explicitly setting any dynamic linking flags. This option also sets -DBUILD_SHARED_LIBS=0FF
and -DGMX_PREFER_STATIC_LIBS=ON by default, but the above caveats apply. For compilers
which don’t default to static linking, the required flags have to be specified. On Linux, this is usually
CFLAGS=-static CXXFLAGS=-static.

Building on Solaris

The built-in GROMACS processor detection does not work on Solaris, so it is strongly recommended that you
build GROMACS with —-DGMX_HWLOC=on and ensure that the CMAKE_PREF IX_PATH includes the path where
the hwloc headers and libraries can be found. At least version 1.11.8 of hwloc is recommended.

2.1. Installation guide for exotic configurations 4

https://intel.github.io/llvm-docs/UsersManual.html
https://github.com/AdaptiveCpp/AdaptiveCpp

GROMACS Documentation, Release 2026-rc

RISC-V with VEC unit

GROMACS runs on RISC-V. The non-bonded kernel can be ran on the VEC vector unit, when available. To
enable this, add -DGMX_ENABLE_NBNXM_CPU_VECTORIZATION=on to the CMake flags. A clang compiler
is required with version >=19.

If you want to check which loops have been vectorized, add -Rpass=loop-vectorize
—-Rpass-missed=loop-vectorize —-Rpass-—-analysis=loop-vectorize to the CMAKE_-
CXX_FLAGS.

When calling gmx mdrun, set the GMX_NBNXN_PLAINC_1X1 environment variable to choose the correct
kernel.

Please note the early state and instability of the compilers at the time of writing. If you experience errors, try
adding —-fno-vectorize, after —~O3 when present, to CMAKE_CXX_FLAGS to disable vectorization of the
code that’s not explicitly vectorized.

2.2 Introduction to building GROMACS

These instructions pertain to building GROMACS 2026-rc. You might also want to check the up-to-date installa-
tion instructions.

2.2.1 Quick and dirty installation

1. Get the latest version of your C and C++ compilers.

Check that you have CMake version 3.28 or later.

Get and unpack the latest version of the GROMACS tarball.
Make a separate build directory and change to it.

Run cmake with the path to the source as an argument

Run make, make check,and make install

NS A » N

Source GMXRC to get access to GROMACS
Or, as a sequence of commands to execute:

tar xfz gromacs-2026-rc.tar.gz

cd gromacs—-2026-rc

mkdir build

cd build

cmake .. —DGMX_BUILD_OWN_FFTW=ON -DREGRESSIONTEST_DOWNLOAD=0ON
make

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

This will download and build first the prerequisite FFT library followed by GROMACS. If you already have
FFTW installed, you can remove that argument to cmake. Overall, this build of GROMACS will be correct and
reasonably fast on the machine upon which cmake ran. On another machine, it may not run, or may not run fast.
If you want to get the maximum value for your hardware with GROMACS, you will have to read further. Sadly,
the interactions of hardware, libraries, and compilers are only going to continue to get more complex.

2.2. Introduction to building GROMACS 5

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html

GROMACS Documentation, Release 2026-rc

2.2.2 Quick and dirty cluster installation

On a cluster where users are expected to be running across multiple nodes using MPI, make one installation
similar to the above, and another using -DGMX_MPI=on. The latter will install binaries and libraries named
using a default suffix of _mpi ie gmx_mpi. Hence it is safe and common practice to install this into the same
location where the non-MPI build is installed.

2.2.3 Typical installation
As above, and with further details below, but you should consider using the following CMake options (page 15)
with the appropriate value instead of xxx :

* -DCMAKE_C_COMPILER=xxx equal to the name of the C99 compiler (page 7) you wish to use (or the
environment variable CC)

e —-DCMAKE_CXX_COMPILER=xxx equal to the name of the C++17 compiler (page 7) you wish to use (or
the environment variable CXX)

e —DGMX_MP I=on to build using MPI support (page 10)

e —DGMX_GPU=CUDA to build with NVIDIA CUDA support enabled.

* —-DGMX_GPU=0penCL to build with OpenCL support enabled.

e —DGMX_GPU=SYCL to build with SYCL support enabled (using Intel oneAPI DPC++ by default).

e —DGMX_SYCL=ACPP to build with SYCL support using AdaptiveCpp (hipSYCL), requires ~DGMX_—
GPU=SYCL.

* —DGMX_SIMD=xxx to specify the level of SIMD support (page 15) of the node on which GROMACS will
run

* —DGMX_DOUBLE=0n to build GROMACS in double precision (slower, and not normally useful)

e -DCMAKE_PREFIX_PATH=xxx toadd anon-standard location for CMake to search for libraries, headers
or programs (page 17)

¢ —DCMAKE_INSTALL_PREFIX=xxx to install GROMACS to a non-standard location (page 15) (default
/usr/local/gromacs)

e —DBUILD_SHARED_LIBS=o0off to turn off the building of shared libraries to help with static linking
(page 4)

e -DGMX_FFT_LIBRARY=xxx to select whether to use fftw3, mk1 or fftpack libraries for FFT sup-
port (page 11)

e -DCMAKE_BUILD_TYPE=Debug to build GROMACS in debug mode

2.2.4 Building older versions

Installation instructions for old GROMACS versions can be found at the GROMACS documentation page.

2.2. Introduction to building GROMACS 6

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.khronos.org/sycl/
https://github.com/AdaptiveCpp/AdaptiveCpp
http://manual.gromacs.org/documentation

GROMACS Documentation, Release 2026-rc

2.3 Prerequisites

2.3.1 Platform

GROMACS can be compiled for many operating systems and architectures. These include any distribution of
Linux, macOS or Windows, and architectures including 64-bit x86 (AMD64/x86-64), several PowerPC including
POWERY9, ARM v8, and RISC-V.

2.3.2 Compiler

GROMACS can be compiled on any platform with ANSI C99 and C++17 compilers, and their respective standard
C/C++ libraries. Good performance on an OS and architecture requires choosing a good compiler. We recommend
gcc, because it is free, widely available and frequently provides the best performance.

You should strive to use the most recent version of your compiler. Since we require full C++17 support the
minimum compiler versions supported by the GROMACS team are

e GNU (gcc/libstdc++) 11
¢ LLVM (clang/libc++) 14
¢ Microsoft (MSVC) 2019

Other compilers may work (Cray, Pathscale, older clang) but do not offer competitive performance. We recom-
mend against PGI because the performance with C++ is very bad.

The Intel classic compiler (icc/icpc) is no longer supported in GROMACS. Use Intel’s newer clang-based compiler
from oneAPI, or gcc.

The xlc compiler is not supported and version 16.1 does not compile on POWER architectures for GROMACS-
2026-rc. We recommend to use the GCC compiler, version 9.x to 11.x. Note: there are known issues (page 30)
with GCC 12 and newer.

You may also need the most recent version of other compiler toolchain components beside the compiler itself (e.g.
assembler or linker); these are often shipped by your OS distribution’s binutils package.

C++17 support requires adequate support in both the compiler and the C++ library. The gcc and MSVC compilers
include their own standard libraries and require no further configuration. If your vendor’s compiler also manages
the standard library library via compiler flags, these will be honored. For configuration of other compilers, read
on.

On Linux, the clang compilers typically use for their C++ library the libstdc++ which comes with g++. For
GROMACS, we require the compiler to support libstc++ version 11 or higher. To select a particular libstdc++
library for a compiler whose default standard library does not work, provide the path to g++ with ~-DGMX_ —
GPLUSPLUS_PATH=/path/to/g++. Note that if you then build a further project that depends on GROMACS
you will need to arrange to use the same compiler and libstdc++.

To build with clang and llvm’s libcxx standard library, use ~-DCMAKE_CXX_FLAGS=-stdlib=libc++.

If you are running on Mac OS X, Apple has unfortunately explicitly disabled OpenMP support in their Clang-based
compiler, and running without OpenMP support means you would need to use thread-MPI for any parallelism -
which is the reason the GROMACS configuration script now stops rather than just issues a warning you might
miss. Instead of turning off OpenMP, you can try to download the unsupported libomp distributed by the R project
or compile your own version - but this will likely have to be updated any time you upgrade the major Mac OS
version. Alternatively, you can download a version of gcc; just make sure you actually use your downloaded gcc
version, since Apple by default links /ust/bin/gcc to their own compiler.

For all non-x86 platforms, your best option is typically to use gcc or the vendor’s default or recommended com-
piler, and check for specialized information below.

For updated versions of gcc to add to your Linux OS, see

» Ubuntu: Ubuntu toolchain ppa page

2.3. Prerequisites 7

https://mac.r-project.org/openmp/
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test

GROMACS Documentation, Release 2026-rc

* RHEL/CentOS: EPEL page or the RedHat Developer Toolset

2.3.3 Compiling with parallelization options

For maximum performance you will need to examine how you will use GROMACS and what hardware you plan
to run on. Often OpenMP parallelism is an advantage for GROMACS, but support for this is generally built into
your compiler and detected automatically.

GPU support
GROMACS supports a variety of GPU acceleration options. For end-users, here are the recommended options
based on your hardware:

* AMD GPUs: SYCL (with AdaptiveCpp)

* Apple M-series: OpenCL

¢ Intel GPUs: SYCL (with Intel oneAPI DPC++)

¢ NVIDIA GPUs: CUDA

CUDA

CUDA is the recommended backend for NVIDIA GPUs.
Supported hardware:
* NVIDIA GPUs (all supported by the CUDA toolkit)
Requirements:
* CUDA toolkit version 12.1 or newer
¢ GPU with compute capability 5.0 or higher
Best practices:
¢ Use the latest CUDA version and NVIDIA driver compatible with your hardware
* Match your gce version with nvee’s host compiler (prefer the latest gcc/clang version supported by nvce)

More information can be found in the CUDA GPU acceleration (page 17) section.

OpenCL

OpenCL is deprecated, but is currently the only backend supporting Apple M-series GPUs.

Supported hardware:
¢ AMD GCN-based GPUs (RDNA-series GPUs, such as RX 5500 or RX 6900, are not supported)
* Apple M-series GPUs
* Intel GPUs (special compilation options required; Intel DataCenter GPU Max are not supported)

NVIDIA GPUs (only prior to Volta architecture; newer GPUs, such as V100 or GTX 10xx-series, are not
supported)

Requirements:
* The minimum OpenCL version unknown.

More information can be found in the OpenCL GPU acceleration (page 18) section.

2.3. Prerequisites 8

https://fedoraproject.org/wiki/EPEL
http://en.wikipedia.org/wiki/OpenMP

GROMACS Documentation, Release 2026-rc

SYCL

SYCL is the recommended backend for Intel and AMD GPUs. For Intel GPUs, we recommend using the In-
tel oneAPI DPC++ compiler, while for AMD GPUs we recommend using AdaptiveCpp compiler with ROCm
runtime.

Supported hardware:

* AMD GPUs: GFX9 (Vega, Raven), CDNA-series, RDNA-series GPUs (using either oneAPI or Adap-
tiveCpp)

* Intel GPUs: All current integrated/discrete GPUs (using oneAPI)
* NVIDIA GPUs: All GPUs (using either one API or AdaptiveCpp)
Requirements:
* oneAPI DPC++ compiler: 2024.0 or newer (Codeplay plugin required for NVIDIA/AMD Support), or
* AdaptiveCpp: 24.02 or newer.
Limitations:
¢ Intel GPUs and SSCP/generic compilation flow not supported with AdaptiveCpp.
* ROCm or CUDA toolkits are required for AMD and NVIDIA GPUs respectively.

More information can be found in the SYCL GPU acceleration Intel (page 19) and SYCL GPU acceleration AMD
(page 19) sections.

HIP

Supported hardware:

* AMD GPUs: GFX9, CDNA 1/2, RDNA 1/2/3 GPUs
Requirements:

* ROCm runtime 5.2 or newer
Limitations:

* Available from GROMACS 2025

* GROMACS 2025 supports only main non-bonded kernels

Experimental branch: * Experimental feature branch supporting all compute kernels: HIP feature branch * Sup-
ported by AMD and aimed to get merged in the next major release * Updated together with 2025 releases to be
based on latest fixes * For support, contact acmnpv here

More information can be found in the AMD-HIP (page 20) section.

Important Notes

* Only one GPU backend can be configured per build
* CPU code always runs alongside GPU acceleration

¢ Choose latest drivers while watching for performance regressions on older hardware

2.3. Prerequisites 9

https://gitlab.com/gromacs/gromacs/-/tree/4947-hip-feature-enablement
mailto:paul.bauer.q@gmail.com

GROMACS Documentation, Release 2026-rc

MPI support

GROMACS can run in parallel on multiple cores of a single workstation using its built-in thread-MPI. No user
action is required in order to enable this.

If you wish to run in parallel on multiple machines across a network, you will need to have an MPI library
installed that supports the MPI 3.0 standard. That’s true for any MPI library version released since about 2009,
but the GROMACS team recommends the latest version (for best performance) of either your vendor’s library,
OpenMPI or MPICH.

To compile with MPI set your compiler to the normal (non-MPI) compiler and add ~-DGMX_MP I=on to the cmake
options. It is possible to set the compiler to the MPI compiler wrapper but it is neither necessary nor recommended.

GPU-aware MPI support

In simulations using multiple GPUs, an MPI implementation with GPU support allows communication to be per-
formed directly between the distinct GPU memory spaces without staging through CPU memory, often resulting
in higher bandwidth and lower latency communication. The only current support for this in GROMACS is with
a CUDA build targeting Nvidia GPUs using “CUDA-aware” MPI libraries. For more details, see Introduction to
CUDA-aware MPI.

To use CUDA-aware MPI for direct GPU communication we recommend using the latest OpenMPI version
(>=4.1.0) with the latest UCX version (>=1.10), since most GROMACS internal testing on CUDA-aware sup-
port has been performed using these versions. OpenMPI with CUDA-aware support can be built following the
procedure in these OpenMPI build instructions.

For GPU-aware MPI support of Intel GPUs, use Intel MPI no earlier than version 2018.8. Such a version is
found in the oneAPI SDKs starting from version 2023.0. At runtime, the LevelZero SYCL backend must be used
(setting environment variable ONEAPI_DEVICE_SELECTOR=level_zero:gpu will typically suffice) and
GPU-aware support in the MPI runtime selected.

For GPU-aware MPI support on AMD GPUs, several MPI implementations with UCX support can work, we
recommend the latest OpenMPI version (>=4.1.4) with the latest UCX (>=1.13) since most of our testing was
done using these version. Other MPI flavors such as Cray MPICH are also GPU-aware and compatible with
ROCm.

With GMX_MPI=0N, GROMACS attempts to automatically detect GPU support in the underlying MPI library
at compile time, and enables direct GPU communication when this is detected. However, there are some cases
when GROMACS may fail to detect existing GPU-aware MPI support, in which case it can be manually enabled
by setting environment variable GMX_FORCE_GPU_AWARE_MPI=1 at runtime (although such cases still lack
substantial testing, so we urge the user to carefully check correctness of results against those using default build
options, and report any issues).

NVSHMEM Support for GPU kernel-initiated communication

In simulations using multiple GPUs, NVSHMEM provides a programming interface that allows GPU-initiated di-
rect communication between distinct GPU memory spaces. This approach leverages NVSHMEM’s global address
space, often resulting in higher bandwidth and lower latency communication.

Support for this feature in GROMACS is currently enabled by building with NVSHMEM
support (GMX_NVSHMEM=ON) and specifying the NVSHMEM root directory (NVSHMEM -
ROOT=<Path-to-NVSHMEM-Lib-Root-dir>). This setup targets NVIDIA GPUs and utilizes the
NVSHMEM library for efficient inter-GPU data transfers. It should be noted that the NVSHMEM build is not
compatible with cuFFTMp, an issue that may be resolved in a future release.

This is an experimental feature. The current implementation performs well for small system sizes (up to 300,000
particles). Performance improvements are planned for future releases, where we expect the NVSHMEM-based
implementation to be faster across all input sizes compared to MPI.

2.3. Prerequisites 10

http://www.open-mpi.org
http://www.mpich.org
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://www.open-mpi.org/faq/?category=buildcuda
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/gpu-support.html
https://developer.nvidia.com/nvshmem

GROMACS Documentation, Release 2026-rc

2.3.4 CMake

GROMACS builds with the CMake build system, requiring at least version 3.28. You can check whether CMake
is installed, and what version it is, with cmake —--version. If you need to install CMake, then first check
whether your platform’s package management system provides a suitable version, or visit the CMake installation
page for pre-compiled binaries, source code and installation instructions. The GROMACS team recommends you
install the most recent version of CMake you can.

2.3.5 Fast Fourier Transform library

Many simulations in GROMACS make extensive use of fast Fourier transforms, and a software library to perform
these is always required. We recommend FFTW (version 3 or higher only) or Intel MKL. The choice of library can
be set with cmake —-DGMX_FFT_LIBRARY=<name>, where <name> is one of £ftw3, mkl, or fftpack.
FFTPACK is bundled with GROMACS as a fallback, and is acceptable if simulation performance is not a priority.
When choosing MKL, GROMACS will also use MKL for BLAS and LAPACK (see linear algebra libraries
(page 22)). Generally, there is no advantage in using MKL with GROMACS, and FFTW is often faster. With
PME GPU offload support using CUDA, a GPU-based FFT library is required. The CUDA-based GPU FFT
library cuFFT is part of the CUDA toolkit (required for all CUDA builds) and therefore no additional software
component is needed when building with CUDA GPU acceleration.

Using FFTW

FFTW is likely to be available for your platform via its package management system, but there can be compatibility
and significant performance issues associated with these packages. In particular, GROMACS simulations are
normally run in “mixed” floating-point precision, which is suited for the use of single precision in FFTW. The
default FFTW package is normally in double precision, and good compiler options to use for FFTW when linked
to GROMACS may not have been used. Accordingly, the GROMACS team recommends either

* that you permit the GROMACS installation to download and build FFTW from source automatically for
you (use cmake -DGMX_BUILD_OWN_FFTW=ON), or

* that you build FFTW from the source code.

If you build FFTW from source yourself, get the most recent version and follow the FFTW installation guide.
Choose the precision for FFTW (i.e. single/float vs. double) to match whether you will later use mixed or double
precision for GROMACS. There is no need to compile FFTW with threading or MPI support, but it does no harm.
On x86 hardware, compile with all of ——enable-sse2, ——enable-avx, and ——enable—-avx?2 flags. On
Intel processors supporting 512-wide AVX, add ——enable-avx512 too. FFTW will create a fat library with
codelets for all different instruction sets, and pick the fastest supported one at runtime. On ARM architectures
with SIMD support use ——enable-neon flag; on IBM Power8 and later, use ——enable-vsx flag. If you are
using a Cray, there is a special modified (commercial) version of FFTs using the FFTW interface which can be
slightly faster.

Relying on ~-DGMX_BUILD_OWN_FFTW=0N works well in typical situations, but does not work on Windows,
when using ninja build system, when cross-compiling, with custom toolchain configurations, etc. In such cases,
please build FFTW manually.

Using MKL

To target either Intel CPUs or GPUs, use OneAPI MKL (>=2021.3) by setting up the environment,
e.g., through source /opt/intel/oneapi/setvars.sh or source /opt/intel/oneapi/mkl/
latest/env/vars. sh or manually setting environment variable MKLROOT=/full/path/to/mkl. Then
run CMake with setting -DGMX_FFT_LIBRARY=mk1 and/or -DGMX_GPU_FFT_LIBRARY=mk]1.

2.3. Prerequisites 11

http://www.cmake.org/install/
http://www.cmake.org/install/
http://www.fftw.org
https://software.intel.com/en-us/intel-mkl
http://www.fftw.org
http://www.fftw.org/doc/Installation-and-Customization.html#Installation-and-Customization

GROMACS Documentation, Release 2026-rc

Using oneMath Interface Library

The oneMath interface library (earlier called oneMKL interface library, not to be confused with Intel oneMKL)
enables the SYCL backend for GROMACS with cuFFT, rocFFT, or closed-source oneMath using Intel DPC++ and
Codeplay’s plugins for NVIDIA and AMD GPUs. To use, Intel DPC++ must be installed along with Codeplay’s
plugins for NVIDIA and AMD GPU s as required, and CUDA and/or ROCm as required. The environment should
be initialized as with the MKL instructions above.

To use the oneMath interface library, download, build and install oneMath as directed in the oneMath documenta-
tion, making sure that suitable DFT backends are enabled. Then, when building GROMACS, set -DGMX_GPU_ -
FFT_LIBRARY=ONEMATH

Using double-batched FFT library

Generally MKL will provide better performance on Intel GPUs, however this alternative open-source library from
Intel is useful for very large FFT sizes in GROMACS.

cmake -DGMX_GPU_FFT_LIBRARY=BBFFT \
—-DCMAKE_PREFIX PATH=SPATH TO_BBFFT_INSTALL

Note: in GROMACS 2023, the option was called DBFFT.

Using ARM Performance Libraries

The ARM Performance Libraries provides FFT transforms implementation for ARM architectures. Preliminary
support is provided for ARMPL in GROMACS through its FFTW-compatible API. Assuming that the ARM HPC
toolchain environment including the ARMPL paths are set up (e.g. through loading the appropriate modules like
module load Module-Prefix/arm-hpc-compiler—X.Y/armpl/X.Y)use the following cmake op-
tions:

cmake -DGMX_FFT_LIBRARY=fftw3 \
—-DFFTWF_LIBRARY="S{ARMPI_DIR}/lib/libarmpl_lp64.so" \
—-DFFTWF_INCLUDE_DIR=S{ARMPL_DIR}/include

Using cuFFTMp

Decomposition of PME work to multiple GPUs is supported with NVIDIA GPUs when using a CUDA build.
This requires building GROMACS with the NVIDIA cuFFTMp (cuFFT Multi-process) library, shipped with
the NVIDIA HPC SDK, which provides distributed FFTs including across multiple compute nodes. To enable
cuFFTMp support use the following cmake options:

cmake -DGMX_USE_CUFFTMP=0ON \
-DcuFFTMp_ROOT=<path to NVIDIA HPC SDK math_libs folder>

Please make sure cuFFTMp’s hardware and software requirements are met before trying to use GPU PME de-
composition feature. In particular, cuFFTMp internally uses NVSHMEM, and it is vital that the NVSHMEM
and cuFFTMp versions in use are compatible. Some versions of the NVIDIA HPC SDK include two versions
of NVSHMEM, where the cuFFTMp compatible variant can be found at Linux_x86_64/<SDK_version>/
comm_libs/<CUDA_version>/nvshmem_cufftmp_compat. If that directory does not exist in the SDK,
then there only exists a single (compatible) version at Linux_x86_64/<SDK_version>/comm_libs/
<CUDA_version>/nvshmem. The version can be selected by, prior to both compilation and running, updating
the LD_LIBRARY_PATH environment variable as follows:

export LD_LIBRARY_PATH=<path to compatible NVSHMEM folder>/lib:$LD_LIBRARY_
~PATH

It is advisable to refer to the NVSHMEM FAQ page for any issues faced at runtime.

2.3. Prerequisites 12

https://uxlfoundation.github.io/oneMath/building_the_project_with_dpcpp.html
https://uxlfoundation.github.io/oneMath/building_the_project_with_dpcpp.html
https://github.com/uxlfoundation/oneMath#supported-configurations
https://github.com/intel/double-batched-fft-library
https://github.com/intel/double-batched-fft-library
https://docs.nvidia.com/hpc-sdk/cufftmp
https://docs.nvidia.com/hpc-sdk/cufftmp/usage/requirements.html
https://developer.nvidia.com/nvshmem
https://docs.nvidia.com/hpc-sdk/nvshmem/api/faq.html#general-faqs

GROMACS Documentation, Release 2026-rc

Using heFFTe

Decomposition of PME work to multiple GPUs is supported with PME offloaded to any vendor’s GPU when
building GROMACS linked to the heFFTe library. HeFFTe uses GPU-aware MPI to provide distributed FFTs
including across multiple compute nodes. It requires a CUDA build to target NVIDIA GPUs and a SYCL build to
target Intel or AMD GPUs. To enable heFFTe support, use the following cmake options:

cmake -DGMX_USE_HEFFTE=ON \
-DHeffte_ROOT=<path to heFFTe folder>

You will need an installation of heFFTe configured to use the same GPU-aware MPI library that will be used by
GROMACS, and with support that matches the intended GROMACS build. It is best to use the same C++ compiler
and standard library also. When targeting Intel GPUs, add ~-DHeffte_ENABLE_ONEAPI=ON -DHeffte_-
ONEMKL_ROOT=<path to oneMKL folder>. When targeting AMD GPUs, add ~-DHeffte_ENABLE_-
ROCM=ON -DHeffte_ROCM_ROOT=<path to ROCm folder>.

Using VKFFT

VKFFT is a multi-backend GPU-accelerated multidimensional Fast Fourier Transform library which aims to pro-
vide an open-source alternative to vendor libraries.

GROMACS includes VKFFT support with two goals: portability across GPU platforms and performance improve-
ments. VKFFT can be used with OpenCL and SYCL backends:

» For SYCL builds, VKFFT provides a portable backend which currently can be used on AMD and NVIDIA
GPUs with AdaptiveCpp and Intel oneAPI DPC++; it generally outperforms rocFFT hence it is recom-
mended as default on AMD. Note that VKFFT is not supported with PME decomposition (which requires
HeFFTe) since HeFFTe does not have a VKFFT backend.

* For OpenCL builds, VKFFT provides an alternative to CIFFT. It is the default on macOS and when building
with Visual Studio. On other platforms it is not extensively tested, but it likely outperforms CIFFT and can
be enabled during cmake configuration.

e For AMD-HIP (page 20), VKFFT is the default FFT backend, as it supports both consumer and data center
hardware.

To enable VKFFT support, use the following CMake option:

[cmake —-DGMX_GPU_FFT_LIBRARY=VKFFT }

GROMACS bundles VKFFT with its source code, but an external VKFFT can also be used (e.g. to benefit from
improvements in VKFFT releases more recent than the bundled version) in the following manner:

cmake -DGMX_GPU_FFT_LIBRARY=VKFFT \
—DGMX_EXTERNAL_VKFFT=ON -DVKFFT_INCLUDE_DIR=<path to VkKFFT directory>

2.3.6 Other optional build components

* Run-time detection of hardware capabilities can be improved by linking with hwloc. By default this is
turned off since it might not be supported everywhere, but if you have hwloc installed it should work by just
setting ~-DGMX_HWLOC=0ON

* Hardware-optimized BLAS and LAPACK libraries are useful for a few of the GROMACS utilities focused
on normal modes and matrix manipulation, but they do not provide any benefits for normal simulations.
Configuring these is discussed at linear algebra libraries (page 22).

* An external TNG library for trajectory-file handling can be used by setting ~-DGMX_EXTERNAL_ -
TNG=yes, but TNG 1.7.10 is bundled in the GROMACS source already.

2.3. Prerequisites 13

https://icl.utk.edu/fft/
https://github.com/DTolm/VkFFT
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html

GROMACS Documentation, Release 2026-rc

* The Imfit library for Levenberg-Marquardt curve fitting is used in GROMACS. Only Imfit 7.0 is supported.
A reduced version of that library is bundled in the GROMACS distribution, and the default build uses
it. That default may be explicitly enabled with ~-DGMX_USE_LMFIT=internal. To use an external
Imfit library, set -DGMX_USE_LMFIT=external, and adjust CMAKE_PREFIX_PATH as needed. Imfit
support can be disabled with -DGMX_USE_LMFIT=none.

* zlib is used by TNG for compressing some kinds of trajectory data.

* Building the GROMACS documentation is optional, and requires and other software. Refer to https:
//manual.gromacs.org/current/dev-manual/documentation-generation.html or the docs/dev-manual/
documentation—-generation.rst file in the sources.

* The GROMACS utility programs often write data files in formats suitable for the Grace plotting tool, but it
is straightforward to use these files in other plotting programs, too.

* Set -DGMX_PYTHON_PACKAGE=0ON when configuring GROMACS with CMake to enable additional
CMake targets for the gmxapi Python package and sample_restraint package from the main GROMACS
CMake build. This supports additional testing and documentation generation.

2.4 Doing a build of GROMACS

This section will cover a general build of GROMACS with CMake (page 11), but it is not an exhaustive discussion
of how to use CMake. There are many resources available on the web, which we suggest you search for when
you encounter problems not covered here. The material below applies specifically to builds on Unix-like systems,
including Linux, and Mac OS X. For other platforms, see the specialist instructions below.

2.4.1 Configuring with CMake

CMake will run many tests on your system and do its best to work out how to build GROMACS for you. If your
build machine is the same as your target machine, then you can be sure that the defaults and detection will be
pretty good. However, if you want to control aspects of the build, or you are compiling on a cluster head node for
back-end nodes with a different architecture, there are a few things you should consider specifying.

The best way to use CMake to configure GROMACS is to do an “out-of-source” build, by making another directory
from which you will run CMake. This can be outside the source directory, or a subdirectory of it. It also means
you can never corrupt your source code by trying to build it! So, the only required argument on the CMake
command line is the name of the directory containing the CMakeLists.txt file of the code you want to build.
For example, download the source tarball and use

tar xzf gromacs-2026-rc.tgz
cd gromacs-2026-rc

mkdir build-gromacs

cd build-gromacs

cmake

You will see cmake report a sequence of results of tests and detections done by the GROMACS build system.
These are written to the cmake cache, kept in CMakeCache. txt. You can edit this file by hand, but this is not
recommended because you could make a mistake. You should not attempt to move or copy this file to do another
build, because file paths are hard-coded within it. If you mess things up, just delete this file and start again with
cmake.

If there is a serious problem detected at this stage, then you will see a fatal error and some suggestions for how
to overcome it. If you are not sure how to deal with that, please start by searching on the web (most computer
problems already have known solutions!) and then consult the user discussion forum. There are also informational
warnings that you might like to take on board or not. Piping the output of cmake through less or tee can be
useful, too.

Once cmake returns, you can see all the settings that were chosen and information about them by using e.g. the
curses interface

2.4. Doing a build of GROMACS 14

https://manual.gromacs.org/current/dev-manual/documentation-generation.html
https://manual.gromacs.org/current/dev-manual/documentation-generation.html
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026-rc

[ccmake .. }

You can actually use ccmake (available on most Unix platforms) directly in the first step, but then most of the
status messages will merely blink in the lower part of the terminal rather than be written to standard output. Most
platforms including Linux, Windows, and Mac OS X even have native graphical user interfaces for cmake, and it
can create project files for almost any build environment you want (including Visual Studio or Xcode). Check out
running CMake for general advice on what you are seeing and how to navigate and change things. The settings
you might normally want to change are already presented. You may make changes, then re-configure (using c),
so that it gets a chance to make changes that depend on yours and perform more checking. It may take several
configuration passes to reach the desired configuration, in particular if you need to resolve errors.

When you have reached the desired configuration with ccmake, the build system can be generated by pressing
g. This requires that the previous configuration pass did not reveal any additional settings (if it did, you need to
configure once more with c). With cmake, the build system is generated after each pass that does not produce
errors.

You cannot attempt to change compilers after the initial run of cmake. If you need to change, clean up, and start
again.

Where to install GROMACS

GROMACS is installed in the directory to which CMAKE_INSTALL_PREFIX points. It may not be the source
directory or the build directory. You require write permissions to this directory. Thus, without super-user privi-
leges, CMAKE_INSTALL_PREFIX will have to be within your home directory. Even if you do have super-user
privileges, you should use them only for the installation phase, and never for configuring, building, or running
GROMACS!

Using CMake command-line options

Once you become comfortable with setting and changing options, you may know in advance how you will con-
figure GROMACS. If so, you can speed things up by invoking cmake and passing the various options at once on
the command line. This can be done by setting cache variable at the cmake invocation using -DOPTION=VALUE.
Note that some environment variables are also taken into account, in particular variables like CC and CXX.

For example, the following command line

cmake .. —-DGMX_GPU=CUDA -DGMX_MPI=ON \
—-DCMAKE_INSTALL_PREFIX=/home/marydoe/programs

can be used to build with CUDA GPUs, MPI and install in a custom location. You can even save that in a shell
script to make it even easier next time. You can also do this kind of thing with ccmake, but you should avoid
this, because the options set with —D will not be able to be changed interactively in that run of ccmake.

SIMD support

GROMACS has extensive support for detecting and using the SIMD capabilities of many modern HPC CPU
architectures. If you are building GROMACS on the same hardware you will run it on, then you don’t need to read
more about this, unless you are getting configuration warnings you do not understand. By default, the GROMACS
build system will detect the SIMD instruction set supported by the CPU architecture (on which the configuring is
done), and thus pick the best available SIMD parallelization supported by GROMACS. The build system will also
check that the compiler and linker used also support the selected SIMD instruction set and issue a fatal error if
they do not.

Valid values are listed below, and the applicable value with the largest number in the list is generally the one
you should choose. In most cases, choosing an inappropriate higher number will lead to compiling a binary that
will not run. However, on a number of processor architectures choosing the highest supported value can lead to
performance loss, e.g. on Intel Skylake-X/SP and AMD Zen (first generation).

2.4. Doing a build of GROMACS 15

http://www.cmake.org/runningcmake/

GROMACS Documentation, Release 2026-rc

1. None For use only on an architecture either lacking SIMD, or to which GROMACS has not yet been ported
and none of the options below are applicable.

2. SSE2 This SIMD instruction set was introduced in Intel processors in 2001, and AMD in 2003. Essentially
all x86 machines in existence have this, so it might be a good choice if you need to support dinosaur x86
computers too.

3. SSE4.1 Presentin all Intel core processors since 2007, but notably not in AMD Magny-Cours. Still, almost
all recent processors support this, so this can also be considered a good baseline if you are content with slow
simulations and prefer portability between reasonably modern processors.

4. AVX_128_FMA AMD Bulldozer, Piledriver (and later Family 15h) processors have this but it is NOT
supported on any AMD processors since Zenl.

5. AVX_256 Intel processors since Sandy Bridge (2011). While this code will work on the AMD Bulldozer
and Piledriver processors, it is significantly less efficient than the AVX_128_FMA choice above - do not be
fooled to assume that 256 is better than 128 in this case.

6. AVX2_128 AMD Zen/Zen2 and Hygon Dhyana microarchitecture processors; it will enable AVX?2 with 3-
way fused multiply-add instructions. While these microarchitectures do support 256-bit AVX2 instructions,
hence AVX2_256 is also supported, 128-bit will generally be faster, in particular when the non-bonded
tasks run on the CPU - hence the default Avx2_128. With GPU offload, however, AVX2_256 can be
faster on Zen processors.

7. AVX2_256 Present on Intel Haswell (and later) processors (2013) and AMD Zen3 and later (2020); it will
also enable 3-way fused multiply-add instructions.

8. AVX_512 Skylake-X desktop and Skylake-SP Xeon processors (2017) and AMD Zen4 (2022); on Intel it
will generally be fastest on the higher-end desktop and server processors with two 512-bit fused multiply-
add units (e.g. Core 19 and Xeon Gold). However, certain desktop and server models (e.g. Xeon Bronze
and Silver) come with only one AVX512 FMA unit and therefore on these processors AVX2_256 is faster
(compile- and runtime checks try to inform about such cases). On AMD it is beneficial to use starting with
Zen4. Additionally, with GPU accelerated runs AVX2_256 can also be faster on high-end Skylake CPUs
with both 512-bit FMA units enabled.

9. IBM_VSX Power7, Power8, Power9 and later have this.

10. ARM_NEON_ASIMD 64-bit ARMvS and later. For maximum performance on NVIDIA Grace (ARMv9),
we strongly suggest at least GNU >= 13, LLVM >= 16.

11. ARM_SVE 64-bit ARMvVS and later with the Scalable Vector Extensions (SVE). The SVE vector length
is fixed at CMake configure time. The default vector length is automatically detected, and this can be
changed via the GMX_SIMD_ARM_SVE_LENGTH CMake variable. If compiling for a different target ar-
chitecture than the compilation machine, GMX__SIMD_ARM_SVE_LENGTH should be set to the hardware
vector length implemented by the target machine. There is no expected performance benefit from setting
a smaller value than the implemented vector length, and setting a larger length can lead to unexpected
crashes. Minimum required compiler versions are GNU >= 10, LLVM >=13, or ARM >= 21.1. For maxi-
mum performance we strongly suggest the latest gcc compilers, or at least LLVM 14 or ARM 22.0. Lower
performance has been observed with LLVM 13 and Arm compiler 21.1.

The CMake configure system will check that the compiler you have chosen can target the architecture you have
chosen. mdrun will check further at runtime, so if in doubt, choose the lowest number you think might work, and
see what mdrun says. The configure system also works around many known issues in many versions of common
HPC compilers.

A further GMX_SIMD=Reference option exists, which is a special SIMD-like implementation written in plain
C that developers can use when developing support in GROMACS for new SIMD architectures. It is not designed
for use in production simulations, but if you are using an architecture with SIMD support to which GROMACS
has not yet been ported, you may wish to try this option instead of the default GMX_SIMD=None, as it can often
out-perform this when the auto-vectorization in your compiler does a good job. And post on the GROMACS user
discussion forum, because GROMACS can probably be ported to new SIMD architectures in a few days.

2.4. Doing a build of GROMACS 16

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026-rc

CMake advanced options

The options that are displayed in the default view of ccmake are ones that we think a reasonable number of
users might want to consider changing. There are a lot more options available, which you can see by toggling the
advanced mode in ccmake on and off with t. Even there, most of the variables that you might want to change
have a CMAKE_ or GMX__ prefix. There are also some options that will be visible or not according to whether their
preconditions are satisfied.

Helping CMake find the right libraries, headers, or programs

If libraries are installed in non-default locations, their location can be specified using the following variables:
* CMAKE_INCLUDE_PATH for header files
e CMAKE_LIBRARY_PATH for libraries
e CMAKE_PREFIX_PATH for header, libraries and binaries (e.g. /usr/local).

The respective include, 1ib, or bin is appended to the path. For each of these variables, a list of paths can be
specified (on Unix, separated with “:”’). These can be set as environment variables like:

[CM:\KEiPREFIXiPATH=/opt/fftw:/opt/cuda cmake .. }

(assuming bash shell). Alternatively, these variables are also cmake options, so they can be set like -DCMAKE_ —
PREFIX_PATH=/opt/fftw:/opt/cuda.

The CC and CXX environment variables are also useful for indicating to cmake which compilers to use. Similarly,
CFLAGS/CXXFLAGS can be used to pass compiler options, but note that these will be appended to those set
by GROMACS for your build platform and build type. You can customize some of this with advanced CMake
options, such as CMAKE_C_FLAGS and its relatives.

See also the page on CMake environment variables.

CUDA GPU acceleration

If you have the CUDA Toolkit installed, you can use cmake with:

[cmake .. —DGMX_GPU=CUDA -DCUDAToolkit ROOT=/usr/local/cuda }

(or whichever path has your installation). In some cases, you might need to specify manually which of your C++
compilers should be used, e.g. with the advanced option CMAKE_CUDA_HOST_COMPILER.

By default, code will be generated for the most common CUDA architectures. However, to reduce build time
and binary size we do not generate code for every single possible architecture, which in rare cases (say, Tegra
systems) can result in the default build not being able to use some GPUs. If this happens, or if you want to remove
some architectures to reduce binary size and build time, you can alter the target CUDA architectures. This can
be done with the CMAKE_CUDA_ARCHITECTURES CMake variable, which takes a semicolon delimited string
with the two or three digit suffixes of CUDA architectures names, for instance “60;75;86”. For details, see the
“CUDA_ARCHITECTURES” section of the CMake documentation.

The GPU acceleration has been tested on AMD64/x86-64 platforms with Linux and Windows operating systems,
but Linux is the best-tested and supported of these. Linux running on POWER 8/9 and ARM CPUs also works
well.

Experimental support is available for compiling CUDA code, both for host and device, using clang. A CUDA
toolkit is still required but it is used only for GPU device code generation and to link against the CUDA runtime
library. The clang CUDA support simplifies compilation and provides benefits for development (e.g. allows the
use code sanitizers in CUDA host-code). Additionally, using clang for both CPU and GPU compilation can be
beneficial to avoid compatibility issues between the GNU toolchain and the CUDA toolkit. clang for CUDA
can be triggered using the GMX_CLANG_CUDA=0ON CMake option. Note that this is mainly a developer-oriented
feature but its performance is generally close to that of code compiled with nvce.

2.4. Doing a build of GROMACS 17

https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/Useful-Variables
https://developer.nvidia.com/cuda-zone
https://cmake.org/cmake/help/v3.28/prop_tgt/CUDA_ARCHITECTURES.html

GROMACS Documentation, Release 2026-rc

OpenCL GPU acceleration

The primary targets of the GROMACS OpenCL support is accelerating simulations on AMD and Intel hardware.
For AMD, we target both discrete GPUs and APUs (integrated CPU+GPU chips), and for Intel we target the
integrated GPUs found on modern workstation and mobile hardware. The GROMACS OpenCL on NVIDIA
GPUs works, but performance and other limitations make it less practical (for details see the user guide).

To build GROMACS with OpenCL support enabled, two components are required: the OpenCL headers and the
wrapper library that acts as a client driver loader (so-called ICD loader). The additional, runtime-only dependency
is the vendor-specific GPU driver for the device targeted. This also contains the OpenCL compiler. As the GPU
compute kernels are compiled on-demand at run time, this vendor-specific compiler and driver is not needed for
building GROMACS. The former, compile-time dependencies are standard components, hence stock versions can
be obtained from most Linux distribution repositories (e.g. opencl-headers and ocl-icd-libopencll
on Debian/Ubuntu). Only the compatibility with the required OpenCL version unknown needs to be ensured.
Alternatively, the headers and library can also be obtained from vendor SDKs, which must be installed in a path
found in CMAKE_PREFIX_PATH

To trigger an OpenCL build the following CMake flags must be set

[cmake .. —DGMX_GPU=0OpenCL

To build with support for Intel integrated GPUs, it is required to add ~-DGMX_GPU_NB_CLUSTER_SIZE=4 to
the cmake command line, so that the GPU kernels match the characteristics of the hardware. The Neo driver is
recommended.

On Mac OS, an AMD GPU can be used only with OS version 10.10.4 and higher; earlier OS versions are known
to run incorrectly.

By default, on Linux, any clFFT library on the system will be used with GROMACS, but if none is found then the
code will fall back on a version bundled with GROMACS. To require GROMACS to link with an external library,
use

cmake .. —-DGMX_GPU=0OpenCL -DclFFT_ROOT_DIR=/path/to/your/clFFT \
—DGMX_EXTERNAL_CLFFT=TRUE

On Windows with MSVC and on macOS, VKFFT is used instead of clFFT, but this can provide performance
benefits on other platforms as well.

SYCL GPU acceleration
SYCL is a modern portable heterogeneous acceleration API, with multiple implementations targeting different
hardware platforms (similar to OpenCL).
GROMACS can be used with different SYCL compilers/runtimes to target the following hardware:
* Intel GPUs using Intel oneAPI DPC++ (both OpenCL and LevelZero backends),
* AMD GPUs with AdaptiveCpp (previously known as hipSYCL),
There is also experimental support for:
¢ AMD GPUs with oneAPI with Codeplay AMD plugin,
* NVIDIA GPUs with either AdaptiveCpp or oneAPI with Codeplay NVIDIA plugin.

In table form:

GPU vendor AdaptiveCpp Intel oneAPI DPC++

Intel not supported supported
AMD supported experimental (requires Codeplay plugin)
NVIDIA experimental experimental (requires Codeplay plugin)

2.4. Doing a build of GROMACS 18

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/intel/compute-runtime/releases
https://github.com/DTolm/VkFFT
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp
https://developer.codeplay.com/products/oneapi/amd/home/
https://github.com/AdaptiveCpp/AdaptiveCpp
https://developer.codeplay.com/products/oneapi/nvidia/home/
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://developer.codeplay.com/products/oneapi/amd/home/
https://developer.codeplay.com/products/oneapi/nvidia/home/

GROMACS Documentation, Release 2026-rc

Here, “experimental support” means that the combination has received limited testing and is expected to work
(with possible limitations), but is not recommended for production use. Please refer to a separate section in the
installation guide (page 3) to use them.

The SYCL support in GROMACS is intended to replace OpenCL as an acceleration mechanism for AMD and
Intel hardware.

For NVIDIA GPUs, we strongly advise using CUDA. Apple M1/M2 GPUs are not supported with SYCL but can
be used with OpenCL.

Codeplay ComputeCpp is not supported. Open-source Intel LLVM can be used in the same way as Intel oneAPI
DPC++.

Note: SYCL support in GROMACS and the underlying compilers and runtimes are less mature than either
OpenCL or CUDA. Please, pay extra attention to simulation correctness when you are using it.

SYCL GPU acceleration for Intel GPUs

You should install the recent Intel oneAPI DPC++ compiler toolkit. For GROMACS 2025, version 2025.0 is
recommended, and 2024.0 is the earliest supported. Using open-source Intel LLVM is possible, but not extensively
tested. We also recommend installing the most recent Neo driver.

With the toolkit installed and added to the environment (usually by running source /opt/intel/oneapi/
setvars.sh or using an appropriate module load on an HPC system), the following CMake flags must be
set:

cmake .. —-DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
—-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP

When compiling for Intel Data Center GPU Max (also knows as Ponte Vecchio / PVC), Intel Xe2 GPUs (Lu-
nar Lake, Arc Battlemage) and newer, we recommend passing additional flags for compatibility and improved
performance:

cmake .. -DCMAKE_C_COMPILER=icx —-DCMAKE_CXX_COMPILER=icpx \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP \
—DGMX_GPU_NB_NUM_CLUSTER_PER_CELL_X=1 -DGMX_GPU_NB_CLUSTER_SIZE=8

You might also consider using double-batched FFT library (page 12).

SYCL GPU acceleration for AMD GPUs

Using AdaptiveCpp 24.02.0 and ROCm 5.7-6.2 is recommended. The earliest supported version is AdaptiveCpp
24.02.

We strongly recommend using the clang compiler bundled with ROCm for building both AdaptiveCpp and GRO-
MACS. Mainline Clang releases can also work.

The following CMake command can be used when configuring AdaptiveCpp to ensure that the proper Clang is
used (assuming ROCM_PATH is set correctly, e.g. to /opt /rocm in the case of default installation):

cmake .. -DCMAKE_C_COMPILER=S5{ROCM_PATH//1llvm/bin/clang \
—-DCMAKE_CXX_COMPILER=S{ROCM PATH}/1llvm/bin/clang++ \
-DLLVM_DIR=S{ROCM PATH}/1llvm/lib/cmake/1lvm/ \
—-DACPP_COMPILER_FEATURE_PROFILE=minimal

After compiling and installing AdaptiveCpp, the following settings can be used for building GROMACS itself (set
ACPP_TARGETS to the target hardware):

2.4. Doing a build of GROMACS 19

https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/intel/llvm
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/intel/llvm
https://github.com/intel/compute-runtime/releases
https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v24.02.0

GROMACS Documentation, Release 2026-rc

cmake .. —-DCMAKE_C_COMPILER=S/ROCM _PATH//llvm/bin/clang \
—DCMAKE_CXX_COMPILER=S{ROCM_PATH /llvm/bin/clang++ \
—-DGMX_GPU=SYCL -DGMX_SYCL=ACPP -DACPP_TARGETS='hip:gfxXYZ'

Multiple target architectures can be specified, e.g., -DACPP_TARGETS="hip:gfx908, gfx90a'. Having
both RDNA (gfx1xyz)and GCN/CDNA (gfx9xx) devices in the same build is possible but will incur a minor
performance penalty compared to building for GCN/CDNA devices only. If you have multiple AMD GPUs of
different generations in the same system (e.g., integrated APU and a discrete GPU) the ROCm runtime requires
code to be available for each device at runtime, so you need to specify every device in ACPP_TARGETS when
compiling to avoid ROCm crashes at initialization.

By default, VKFFT is used to perform FFT on GPU. You can switch to rocFFT by passing -DGMX_GPU_FFT_—
LIBRARY=rocFFT CMake flag. Please note that rocFFT is not officially supported and tends not to work on
most consumer GPUs.

AMD GPUs can also be targeted via Intel oneAPI DPC++; please refer to a separate section (page 3) for the build
instructions.

SYCL GPU compilation options

The following flags can be passed to CMake in order to tune GROMACS:

—DGMX_GPU_NB_CLUSTER_SIZE
changes the data layout of non-bonded kernels. When compiling with Intel oneAPIT DPC++, the default
value is 4, which is optimal for most Intel GPUs except Data Center MAX (Ponte Vecchio), for which 8
is better. When compiling with AdaptiveCpp, the default value is 8, which is the only supported value for
AMD and NVIDIA devices.

—-DGMX_GPU_NB_NUM CLUSTER PER CELL_X,-DGMX GPU_NB_NUM CLUSTER PER CELL_Y,

—DGMX_GPU_NB_NUM_CLUSTER PER CELL_Z
Sets the number of clusters along X, Y, or Z in a pair-search grid cell, default 2. When targeting Intel Ponte

Vecchio GPUs, set -DGMX_GPU_NB_NUM_CLUSTER_PER_CELIL_X=1 and leave the other values as the
default.

—-DGMX_GPU_NB_DISABLE_CLUSTER PAIR_SPLIT
Disables cluster pair splitting in the GPU non-bonded kernels. This is only supported in SYCL, and it is
compatible with and improves performance on GPUs with 64-wide execution like AMD GCN and CDNA
family. This option is automatically enabled in all builds that target GCN or CDNA GPUs (but not RDNA).

AMD HIP GPU acceleration

HIP is the AMD interoperability layer for the ROCm toolkit used to target AMD devices.
In GROMACS 2026 there is full support for using HIP as the GPU backend on AMD devices.

Build instructions

In order to use HIP as the device backend, you need to have the ROCm toolkit installed, including the rocPrim
libraries. The minimum version required by GROMACS is ROCm 5.2, but we recommend a recent version to take
advantage of library improvements.

You can then configure the build like this

cmake .. —-DCMAKE_HIP_COMPILER=S{ROCM PATH/}/bin/amdclang++ \
-DCMAKE_PREFIX_PATH=5{ROCM PATH} \
-DGMX_GPU=HIP

2.4. Doing a build of GROMACS 20

https://github.com/DTolm/VkFFT
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp
https://rocm.docs.amd.com/en/latest/index.html
https://rocm.docs.amd.com/en/latest/index.html
https://rocm.docs.amd.com/projects/rocPRIM/en/latest/index.html

GROMACS Documentation, Release 2026-rc

By default GROMACS will generate code for a range of different CDNA devices. In case you want to narrow the
scope of the code generation, or want to target RDNA or GCN devices, you can specify the architectures using
this flag

—-DGMX_HIP_TARGET_ARCH=gfxXYZ, gfxABCD

When detecting a 64-wide execution architecture and no 32-wide versions, GROMACS will automatically config-
ure with

—-DGMX_GPU_NB_DISABLE_CLUSTER_PAIR SPLIT=ON

to improve performance on those devices. In case any 32-wide architectures are present, the maximum execution
width will be restricted to be 32-wide, even on devices that support 64-wide execution.

When GROMACS is built with explicit 64-wide execution (and conflicting support for 32-wide devices), any
32-wide devices detected will be not be used.

It is possible to select the GPU FFT backend using the
-DGMX_GPU_FFT_LIBRARY=rocFFT/VKFFT

variable. Please be aware that rocFFT only works on devices that are officially supported by ROCm. If an
incompatible device is detected, GROMACS will not use the it when linked against rocFFT, even though the rest
of the code is compiled to support it. In this case, select VKFF T as the GPU FFT library.

H5MD trajectory output file format

H5MD is a specification for output data from molecular dynamics simulations built on the HDFS format. In
GROMACS 2026 this is added as an experimental feature.

Build instructions

To enable support for HSMD output GROMACS you need to have an installed copy of the HDFS5 library. The
minimum supported version is 1.10.7. If the library is installed you can build with HSMD support by

[cmake .. —DGMX_USE_HDF5=0N J

Some distributed versions of the HDF5 library may be incorrectly configured, leading to CMake not detecting its
path or version. In such cases, adding ~-DHDF5_C_COMPILER_EXECUTABLE="'" (ie. passing an empty string)
may solve the issue.

Static linking

Please refer to a dedicated section (page 4).

gmxapi C++ API

For dynamic linking builds and on non-Windows platforms, an extra library and headers are installed by setting
~DGMXAPI=0N (default). Build targets gmxapi-cppdocs and gmxapi-cppdocs—dev produce documen-
tation in docs/api-user and docs/api-dev, respectively. For more project information and use cases,
refer to the tracked Issue 2585, associated GitHub gmxapi projects, or DOI 10.1093/bioinformatics/bty484.

gmzxapi is not yet tested on Windows or with static linking, but these use cases are targeted for future versions.

2.4. Doing a build of GROMACS 21

https://rocm.docs.amd.com/en/latest/index.html
https://h5md.nongnu.org
https://www.hdfgroup.org/solutions/hdf5
https://gitlab.com/gromacs/gromacs/-/issues/2585
https://github.com/kassonlab/gmxapi
https://doi.org/10.1093/bioinformatics/bty484

GROMACS Documentation, Release 2026-rc

Portability of a GROMACS build

A GROMACS build will normally not be portable, not even across hardware with the same base instruction set, like
x86. Non-portable hardware-specific optimizations are selected at configure-time, such as the SIMD instruction
set used in the compute kernels. This selection will be done by the build system based on the capabilities of the
build host machine or otherwise specified to cmake during configuration.

Often it is possible to ensure portability by choosing the least common denominator of SIMD support, e.g. SSE2
for x86. In rare cases of very old x86 machines, ensure that you use cmake —-DGMX_USE_RDTSCP=off if
any of the target CPU architectures does not support the RDTSCP instruction. However, we discourage attempts
to use a single GROMACS installation when the execution environment is heterogeneous, such as a mix of AVX
and earlier hardware, because this will lead to programs (especially mdrun) that run slowly on the new hardware.
Building two full installations and locally managing how to call the correct one (e.g. using a module system) is
the recommended approach. Alternatively, one can use different suffixes to install several versions of GROMACS
in the same location. To achieve this, one can first build a full installation with the least-common-denominator
SIMD instruction set, e.g. ~-DGMX_ SIMD=SSE2, in order for simple commands like gmx grompp to work on all
machines, then build specialized gmx binaries for each architecture present in the heterogeneous environment. By
using custom binary and library suffixes (with CMake variables -DGMX_BINARY_SUFFIX=xxx and ~-DGMX_ -
LIBS_SUFFIX=xxx), these can be installed to the same location.

Portability of binaries across GPUs is generally better, targeting multiple generations of GPUs from the same
vendor is in most cases possible with a single GROMACS build. CUDA builds will by default be able to run
on any NVIDIA GPU supported by the CUDA toolkit used since the GROMACS build system generates code
for these at build-time. With SYCL multiple target architectures of the same GPU vendor can be selected when
using AdaptiveCpp (i.e. only AMD or only NVIDIA). The SSCP/generic compilation mode of AdaptiveCpp is
currently not supported. With OpenCL, due to just-in-time compilation of GPU code for the device in use, this is
not a concern.

Linear algebra libraries

As mentioned above, sometimes vendor BLAS and LAPACK libraries can provide performance enhancements for
GROMACS when doing normal-mode analysis or covariance analysis. For simplicity, the text below will refer
only to BLAS, but the same options are available for LAPACK. By default, CMake will search for BLAS, use it if
it is found, and otherwise fall back on a version of BLAS internal to GROMACS. The cmake option ~-DGMX_ —
EXTERNAL_BLAS=on will be set accordingly. The internal versions are fine for normal use. If you need to
specify a non-standard path to search, use ~-DCMAKE_PREFIX_PATH=/path/to/search. If you need to
specify a library with a non-standard name (e.g. ESSL on Power machines or ARMPL on ARM machines), then
set -DGMX_BLAS_USER=/path/to/reach/lib/libwhatever.a.

If you are using Intel MKL for FFT, then the BLAS and LAPACK it provides are used automatically. This could
be over-ridden with GMX_BLAS_USER, etc.

On Apple platforms where the Accelerate Framework is available, these will be automatically used for BLAS and
LAPACK. This could be over-ridden with GMX_BLAS_ USER, etc.

Building with MiMiC QM/MM support

MiMiC QM/MM interface integration will require linking against MiMiC communication library, that estab-
lishes the communication channel between GROMACS and CPMD. The MiMiC Communication library can be
downloaded here. Compile and install it. Check that the installation folder of the MiMiC library is added to
CMAKE_PREFIX_PATH if it is installed in non-standard location. Building QM/MM-capable version requires
double-precision version of GROMACS compiled with MPI support:

¢ —-DGMX_DOUBLE=ON —-DGMX_MPI=ON -DGMX_MIMIC=ON

2.4. Doing a build of GROMACS 22

https://developer.nvidia.com/cuda-zone
https://www.khronos.org/sycl/
https://github.com/AdaptiveCpp/AdaptiveCpp
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.khronos.org/opencl/
https://software.intel.com/en-us/intel-mkl
https://gitlab.com/MiMiC-projects/CommLib

GROMACS Documentation, Release 2026-rc

Building with CP2K QM/MM support
CP2K QM/MM interface integration will require linking against libcp2k library, that incorporates CP2K function-
ality into GROMACS.

1. Download, compile and install CP2K (version 8.1 or higher is required). CP2K latest distribution can be
downloaded here. For CP2K specific instructions, please follow. You can also check instructions on the
official CP2K web-page.

2. Make 1ibcp2k. a library by executing the following command:

[make ARCH=<your arch file> VERSION=<your version like psmp> libcp2k J

The library archive (e.g. libcp2k.a) should appear in the <cp2k dir>/1lib/<arch>/
<version>/ directory.

3. Configure GROMACS with cmake, adding the following flags:

Build should be static: —-DBUILD_SHARED_LIBS=0FF -DGMXAPI=OFF -DGMX_INSTALI_-
NBLIB_API=OFF

Double precision in general is better than single for QM/MM (however both options are viable): ~-DGMX_ -
DOUBLE=0ON

FFT, BLAS and LAPACK libraries should be the same between CP2K and GROMACS. Use the following
flags to do so:

¢ —DGMX_FFT_LIBRARY=<your library like fftw3> -DFFTWF_LIBRARY=<path
to library> -DFFTWF_INCLUDE_DIR=<path to directory with headers>

e —DGMX_BLAS_USER=<path to your BLAS>
¢ —-DGMX_LAPACK_USER=<path to your LAPACK>
4. Compilation of QM/MM interface is controled by the following flags:

—-DGMX_CP2K=0ON
Activates QM/MM interface compilation

-DCP2K_DIR="<path to cp2k>/lib/local/psmp
Directory with libcp2k.a library

—-DCP2K_LINKER_FLAGS="<combination of LDFLAGS and LIBS>" (optional for CP2K

9.1 or newer)
Other libraries used by CP2K. Typically that should be combination of LDFLAGS and LIBS from

the ARCH file used for CP2K compilation. Sometimes ARCH file could have several lines defining
LDFLAGS and LIBS or even split one line into several using “\”. In that case all of them should be
concatenated into one long string without any extra slashes or quotes. For CP2K versions 9.1 or newer,
CP2K_LINKER_FLAGS is not required but still might be used in very specific situations.

Building with Colvars support

GROMACS bundles the Colvars library in its source distribution. The library and its interface with GROMACS are
enabled by default when building GROMACS. This behavior may also be enabled explicitly with -DGMX_USE_ —
COLVARS=internal. Alternatively, Colvars support may be disabled with ~-DGMX_USE_COLVARS=none.
How to use Colvars in a GROMACS simulation is described in the User Guide, as well as in the Colvars docu-
mentation.

2.4. Doing a build of GROMACS 23

https://github.com/cp2k/cp2k/releases/
https://github.com/cp2k/cp2k/blob/master/INSTALL.md
https://www.cp2k.org/howto
https://colvars.github.io/
https://colvars.github.io/gromacs-2026/colvars-refman-gromacs.html
https://colvars.github.io/gromacs-2026/colvars-refman-gromacs.html

GROMACS Documentation, Release 2026-rc

Building with PLUMED support

GROMACS bundles the interface from version 2.10 of the PLUMED library in its source distribution. The in-
terface is compatible with any PLUMED version. The interface is enabled by default with GROMACS unless
GROMACS is built on Windows. You can explicitly enable the interface with ~-DGMX_USE_PLUMED=0N or
deactivate it with ~-DGMX_USE_PLUMED=0FF. By default the option is set to AUTO, during the configuration
CMake will try to activate PLUMED and in case it does not succeed it will output a “soft” warning. If the user
forces the option ON, when PLUMED cannot be activated the configuration will fail with an error message. The
User Guide contains the instructions on how to use PLUMED in a GROMACS simulation.

Building with Neural Network potential support

To build GROMACS with support for Neural Network potentials, it has to be compiled with a suitable machine
learning library. At the moment, only models trained in Pytorch are supported. To be able to load them in
GROMACS, it has to be built with the Pytorch C++ API or Libtorch, which can be downloaded from the Pytorch
website. The website offers versions including pre-CXX11 and CXX11 ABI versions on Linux. You must use the
same ABI version as you use when building the rest of GROMACS, which does not support or test the pre-CXX11
ABI. So get (or build) the CXX11 ABI version of Libtorch. For the same reason, it is also not possible to use the
Libtorch version that ships with a conda installation of Pytorch, because it is built with the pre-CXX11 ABI by
default. The NNP interface is enabled by default when a Libtorch installation is found in the CMAKE_PREFIX_ -
PATH, or Torch_DIR s setto a TorchConfig.cmake or torch-config.cmake usually found under
share/cmake/Torch/ in the libtorch installation directory. It may also be explicitly enabled with ~-DGMX_ —
NNPOT=TORCH or disabled with —-DGMX_NNPOT=0FF.

In addition, GROMACS provides support to specify custom Pytorch extensions at build time that may be used by
the NNP model. The path to the extension library may be specified via the TORCH_EXTENSION_PATH variable.
Note that CMake will search for a file called 1ibtorch_extension. so in the specified directory.

Changing the names of GROMACS binaries and libraries

It is sometimes convenient to have different versions of the same GROMACS programs installed. The most
common use cases have been single and double precision, and with and without MPI. This mechanism can also be
used to install side-by-side multiple versions of mdrun optimized for different CPU architectures, as mentioned
previously.

By default, GROMACS will suffix programs and libraries for such builds with _d for double precision and/or
_mpi for MPI (and nothing otherwise). This can be controlled manually with GMX_DEFAULT_SUFFIX (ON/
OFF), GMX_BINARY_SUFFIX (takes a string) and GMX_LIBS_SUFFIX (also takes a string). For instance, to
set a custom suffix for programs and libraries, one might specify:

cmake .. —-DGMX_DEFAULT_SUFFIX=OFF -DGMX_BINARY_SUFFIX=_mod \
-DGMX_LIBS_SUFFIX=_mod

Thus the names of all programs and libraries will be appended with _mod.

Changing installation tree structure

By default, a few different directories under CMAKE_INSTALL_PREFIX are used when when GROMACS is in-
stalled. Some of these can be changed, which is mainly useful for packaging GROMACS for various distributions.
The directories are listed below, with additional notes about some of them. Unless otherwise noted, the directories
can be renamed by editing the installation paths in the main CMakeLists.txt.

bin/
The standard location for executables and some scripts. Some of the scripts hardcode the absolute installa-
tion prefix, which needs to be changed if the scripts are relocated. The name of the directory can be changed
using CMAKE_INSTALL_BINDIR CMake variable.

2.4. Doing a build of GROMACS 24

https://www.plumed.org/
https://pytorch.org/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://pytorch.org/tutorials/advanced/cpp_extension.html

GROMACS Documentation, Release 2026-rc

include/gromacs/
The standard location for installed headers.

1lib/
The standard location for libraries. The default depends on the system, and is determined by CMake. The
name of the directory can be changed using CMAKE_INSTALL_LIBDIR CMake variable.

lib/pkgconfig/
Information about the installed 1ibgromacs library for pkg—config is installed here. The 1ib/ part
adapts to the installation location of the libraries. The installed files contain the installation prefix as absolute
paths.

share/cmake/
CMake package configuration files are installed here.

share/gromacs/
Various data files and some documentation go here. The first part can be changed using CMAKE_—
INSTALL_DATADIR, and the second by using GMX_INSTALIL_DATASUBDIR Using these CMake vari-
ables is the preferred way of changing the installation path for share/gromacs/top/, since the path to
this directory is built into 1 ibgromacs as well as some scripts, both as a relative and as an absolute path
(the latter as a fallback if everything else fails).

share/man/
Installed man pages go here.

2.4.2 Compiling and linking

Once you have configured with cmake, you can build GROMACS with make. It is expected that this will always
complete successfully, and give few or no warnings. The CMake-time tests GROMACS makes on the settings
you choose are pretty extensive, but there are probably a few cases we have not thought of yet. Search the web
first for solutions to problems, but if you need help, ask on the user discussion forum, being sure to provide as
much information as possible about what you did, the system you are building on, and what went wrong. This
may mean scrolling back a long way through the output of make to find the first error message!

If you have a multi-core or multi-CPU machine with N processors, then using

[make -j N

will generally speed things up by quite a bit. Other build generator systems supported by cmake (e.g. ninja)
also work well.

2.4.3 Installing GROMACS
Finally, make install will install GROMACS in the directory given in CMAKE_INSTALL_PREFIX. If this

is a system directory, then you will need permission to write there, and you should use super-user privileges only
for make install and not the whole procedure.

2.4.4 Getting access to GROMACS after installation

GROMACS installs the script GMXRC in the bin subdirectory of the installation directory (e.g. /usr/local/
gromacs/bin/GMXRC), which you should source from your shell:

[source /your/installation/prefix/here/bin/GMXRC

It will detect what kind of shell you are running and set up your environment for using GROMACS. You may wish
to arrange for your login scripts to do this automatically; please search the web for instructions on how to do this
for your shell.

Many of the GROMACS programs rely on data installed in the share /gromacs subdirectory of the installation
directory. By default, the programs will use the environment variables set in the GMXRC script, and if this is not

2.4. Doing a build of GROMACS 25

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026-rc

available they will try to guess the path based on their own location. This usually works well unless you change
the names of directories inside the install tree. If you still need to do that, you might want to recompile with the
new install location properly set, or edit the GMXRC script.

GROMACS also installs a CMake cache file to help with building client software (using the -C option when con-
figuring the client software with CMake.) For an installation at /your/installation/prefix/here, hints
files will be installed at /your/installation/prefix/share/cmake/gromacs${GMX_LIBS_-
SUFFIX}/gromacs—hints${GMX_LIBS_SUFFIX}.cmake where ${GMX_LIBS_SUFFIX} is as doc-
umented above (page 24).

2.4.5 Testing GROMACS for correctness

Since 2011, the GROMACS development uses an automated system where every new code change is subject to
regression testing on a number of platforms and software combinations. While this improves reliability quite a lot,
not everything is tested, and since we increasingly rely on cutting edge compiler features there is non-negligible
risk that the default compiler on your system could have bugs. We have tried our best to test and refuse to use
known bad versions in cmake, but we strongly recommend that you run through the tests yourself. It only takes
a few minutes, after which you can trust your build.

The simplest way to run the checks is to build GROMACS with ~-DREGRESSIONTEST_DOWNLOAD, and
run make check. GROMACS will automatically download and run the tests for you. Alternatively,
you can download and unpack the GROMACS regression test suite https://ftp.gromacs.org/regressiontests/
regressiontests-2026-rc.tar.gz tarball yourself and use the advanced cmake option REGRESSIONTEST_PATH
to specify the path to the unpacked tarball, which will then be used for testing. If the above does not work, then
please read on.

The regression tests are also available from the download section. Once you have downloaded them, unpack the
tarball, source GMXRC as described above, and run . /gmxtest.pl all inside the regression tests folder. You
can find more options (e.g. adding double when using double precision, or ~only expanded to run just the
tests whose names match “expanded”) if you just execute the script without options.

Hopefully, you will get a report that all tests have passed. If there are individual failed tests it could be a sign of
a compiler bug, or that a tolerance is just a tiny bit too tight. Check the output files the script directs you to, and
try a different or newer compiler if the errors appear to be real. If you cannot get it to pass the regression tests,
you might try dropping a line to the GROMACS user discussion forum, but then you should include a detailed
description of your hardware, and the output of gmx mdrun -version (which contains valuable diagnostic
information in the header).

Non-standard suffix

If your gmx program has been suffixed in a non-standard way, then the . /gmxtest.pl —-suffix option will
let you specify that suffix to the test machinery. You can use ./gmxtest.pl —-double to test the double-
precision version. You can use ./gmxtest.pl —-crosscompiling to stop the test harness attempting to
check that the programs can be run. You can use . /gmxtest.pl -mpirun srun if your command to run an
MPI program is called srun.

Running MPI-enabled tests

The make check target also runs integration-style tests that may run with MPI if GMX_MPI=ON was
set. To make these work with various possible MPI libraries, you may need to set the CMake vari-
ables MPIEXEC, MPIEXEC_NUMPROC_FLAG, MPIEXEC_PREFLAGS and MPIEXEC_POSTFLAGS so that
mdrun-mpi-test_mpi would run on multiple ranks via the shell command

MPIEXEC MPIEXEC_NUMPROC_FLAG NUMPROC MPIEXEC_PREFLAGS} \
mdrun-mpi-test_mpi MPIEXEC_POSTFLAGS} —-otherflags

A typical example for SLURM is

2.4. Doing a build of GROMACS 26

https://cmake.org/cmake/help/latest/manual/cmake.1.html#options
https://ftp.gromacs.org/regressiontests/regressiontests-2026-rc.tar.gz
https://ftp.gromacs.org/regressiontests/regressiontests-2026-rc.tar.gz
../download.html
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026-rc

cmake .. -DGMX_MPI=on -DMPIEXEC=srun -DMPIEXEC_NUMPROC_FLAG=-n \
-DMPIEXEC_PREFLAGS= —-DMPIEXEC_POSTFLAGS=

2.4.6 Testing GROMACS for performance

We are still working on a set of benchmark systems for testing the performance of GROMACS. Until that is
ready, we recommend that you try a few different parallelization options, and experiment with tools such as gmx
tune_pme.

2.4.7 Having difficulty?

You are not alone - this can be a complex task! If you encounter a problem with installing GROMACS, then there
are a number of locations where you can find assistance. It is recommended that you follow these steps to find the
solution:

1. Read the installation instructions again, taking note that you have followed each and every step correctly.

2. Search the GROMACS webpage and user discussion forum for information on the error. Adding
site:https://gromacs.bioexcel.eu/c/gromacs—user—-forum/5 to a Google search may
help filter better results. It is also a good idea to check the gmx-users mailing list archive at https://
mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-users

3. Search the internet using a search engine such as Google.

4. Ask for assistance on the GROMACS user discussion forum. Be sure to give a full description of what you
have done and why you think it did not work. Give details about the system on which you are installing.
Copy and paste your command line and as much of the output as you think might be relevant - certainly
from the first indication of a problem. In particular, please try to include at least the header from the mdrun
logfile, and preferably the entire file. People who might volunteer to help you do not have time to ask you
interactive detailed follow-up questions, so you will get an answer faster if you provide as much information
as you think could possibly help. High quality bug reports tend to receive rapid high quality answers.

2.5 Special instructions for some platforms

Some less common configurations are described in a separate manual section (page 3).

2.5.1 Building on Windows

Building on Windows using native compilers is rather similar to building on Unix, so please start by reading the
above. Then, download and unpack the GROMACS source archive. Make a folder in which to do the out-of-
source build of GROMACS. For example, make it within the folder unpacked from the source archive, and call it
build-gromacs.

For CMake, you can either use the graphical user interface provided on Windows, or you can use a command line
shell with instructions similar to the UNIX ones above. If you open a shell from within your IDE (e.g. Microsoft
Visual Studio), it will configure the environment for you, but you might need to tweak this in order to get either
a 32-bit or 64-bit build environment. The latter provides the fastest executable. If you use a normal Windows
command shell, then you will need to either set up the environment to find your compilers and libraries yourself,
or run the vcvarsall.bat batch script provided by MSVC (just like sourcing a bash script under Unix).

With the graphical user interface, you will be asked about what compilers to use at the initial configuration stage,
and if you use the command line they can be set in a similar way as under UNIX.

Unfortunately, -DGMX_BUILD_OWN_FFTW=0N (see Using FFTW (page 11)) does not work on Windows, be-
cause there is no supported way to build FFTW on Windows. You can either build FFTW some other way (e.g.
MinGW), or use the built-in fftpack (which may be slow), or using MKL (page 11).

2.5. Special instructions for some platforms 27

http://www.gromacs.org
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-users
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026-rc

For the build, you can either load the generated solutions file into e.g. Visual Studio, or use the command line
with cmake —-build so the right tools get used.

2.5.2 Building on Cray

GROMACS builds mostly out of the box on modern Cray machines, but you may need to specify the use of static
binaries with ~-DGMX_BUILD_SHARED_EXE=off, and you may need to set the F77 environmental variable to
ftn when compiling FFTW. The ARM ThunderX2 Cray XC50 machines differ only in that the recommended
compiler is the ARM HPC Compiler (armclang).

2.5.3 NVIDIA Grace

For best performance on Grace, use GCC >= 13.1 or LLVM >= 17, and set the -DCMAKE_-

CXX_FLAGS=-mcpu=neoverse-v2 -DCMAKE_C_FLAGS=-mcpu=neoverse-v2 flags when configur-
ing GROMACS.

With short-range non-bonded interactions calculations on the CPU (-nb cpu or when building without GPU
support), performance can be improved by also setting the ~-DGMX_ STMD=ARM_NEON_ASIMD CMake option.

At minimum any compiler being used for Grace should implement neoverse-v2, such as GNU >= 12.3 and LLVM
>=16. There is a significant improvement in Arm performance between gcc-13 and gec-12 so GNU >= 13.1 is
strongly recommended. The -mcpu=neoverse-v2 flag ensures that the compiler is not defaulting to the older
ArmvS8-A target.

On both GNU and LLVM, the GROMACS CPU version of the short-range non bonded interactions implemented
with NEON SIMD instructions significantly outperforms the SVE version. This can be selected by setting GMX_ —
SIMD=ARM_NEON_ASIMD at compilation. There can be a small performance benefit to using SVE for CPU work
outside this kernel, therefore when the short-range non bonded interactions run on the GPU it is recommended to
stay with GMX__SIMD=ARM_SVE which is the default option when available.

2.6 Tested platforms

While it is our best belief that GROMACS will build and run pretty much everywhere, it is important that we tell
you where we really know it works because we have tested it. Every commit in our git source code repository is
currently tested with a range of configuration options on x86 with gcc versions 11-14, clang versions including 14,
18, and 19, CUDA versions 12.1, 12.5.1, and 12.6, nvcxx version 24.7 HIP version 5.7.1 and 6.2.2 AdaptiveCPP
24.02 and 24.10 with ROCm 5.7.1 and 6.2 (respectively), and oneAPI version 2024.0 and 2024.2 (including
CUDA 12.0.1 and ROCm 6.1.3 backends).

For this testing, we use Ubuntu 22.04 and 24.04 operating systems. Other compiler, library, and OS versions are
tested less frequently. For details, you can have a look at the continuous integration server used by the GitLab
project, which uses GitLab runner on a local k8s x86 cluster with NVIDIA, AMD, and Intel GPU support.

We test irregularly on ARM v8, Fujitsu A64FX, Cray, Power9, and other environments, and with other compilers
and compiler versions, too.

2.6. Tested platforms 28

https://gitlab.com/gromacs/gromacs/
https://gitlab.com/gromacs/gromacs/

GROMACS Documentation, Release 2026-rc

2.7 Support

Please refer to the manual for documentation, downloads, and release notes for any GROMACS release.
Visit the user forums for discussions and advice.

Report bugs at https://gitlab.com/gromacs/gromacs/-/issues

2.7. Support 29

http://manual.gromacs.org/
http://forums.gromacs.org/
https://gitlab.com/gromacs/gromacs/-/issues

CHAPTER
THREE

USER GUIDE

This guide provides
 material introducing GROMACS
* practical advice for making effective use of GROMACS.

For getting, building and installing GROMACS, see the Installation guide (page 3). For background on algorithms
and implementations, see the reference manual part (page 359) of the documentation. If you have questions not
answered by these resources, please visit the GROMACS user discussion forum and search for a potential answer
or ask a question from the community.

Please reference this documentation as https://doi.org/10.5281/zenodo.17944199.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.17944095.

3.1 Known issues affecting users of GROMACS

Here is a non-exhaustive list of issues that are we are aware of that are affecting regular users of GROMACS.

3.1.1 “Cannot find a working standard library” error with ROCm Clang
Some Clang installations don’t contain a compatible C++ standard library. In such cases, you might have to install
g++ and help CMake find it by setting -DGMX_GPLUSGPLUS_PATH=/path/to/bin/g++.

On Ubuntu 22.04, installing GCC 12 standard library (with sudo apt install libstdc++-12-dev)
usually works well even without setting ~-DGMX_ GPLUSGPLUS_PATH.

Issue 4679

3.1.2 Expanded ensemble does not checkpoint correctly

In the legacy simulator, because of shortcomings in the implementation, successful expanded-ensemble MC steps
that occurred on checkpoint steps were not recorded in the checkpoint. If that checkpoint was used for a restart,
then it would not necessarily behave correctly and reproducibly afterwards. So checkpointing of expanded-
ensemble simulations is disabled for the legacy simulator.

Checkpointing of expanded ensemble in the modular simulator works correctly.

To work around the issue, either avoid —~update gpu (so that it uses the modular simulator path which does not
have the bug), or use an older version of GROMACS (which does do the buggy checkpointing), or refrain from
restarting from checkpoints in the affected case.

Issue 4629

30

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://doi.org/10.5281/zenodo.17944199
https://doi.org/10.5281/zenodo.17944095
https://gitlab.com/gromacs/gromacs/-/issues/4679
https://gitlab.com/gromacs/gromacs/-/issues/4629

GROMACS Documentation, Release 2026-rc

3.1.3 Compiling with GCC 12-14 on POWERS architectures

There are multiple failing unit tests after compilation with some versions of GCC 12-14 on POWERDO architectures.
The problem is fixed in GCC 12.5, GCC 13.4, and GCC 14.2, respectively. GCC 11 and earlier, as well as GCC
15, are not affected.

Issue 4823

3.1.4 NbnxmTest crash with oneAPI 2024.1

When building with oneAPI 2024.1, the NbnxmTest test can segfault in some cases. Using oneAPI 2024.2 or
newer should resolve the issue.

Issue 5247

3.1.5 Severe performance regression with SVE and LLVM 20

There is a major performance regression on AArch64 CPUs when using SVE SIMD and building with LLVM 20.
The problem can be worked around by using LLVM 19 or setting ~-DGMX_ SIMD=ARM_ NEON_ASIMD.

The issue is expected to be fixed in LLVM 21.

Issue 5390

3.2 Getting started

3.2.1 Flow Chart

This is a flow chart of a typical GROMACS MD run of a protein in a box of water. Several steps of energy
minimization may be necessary, these consist of cycles: gmx grompp (page 196) -> gmx mdrun (page 221).

3.2. Getting started 31

https://gitlab.com/gromacs/gromacs/-/issues/4823
https://gitlab.com/gromacs/gromacs/-/issues/5247
https://gitlab.com/gromacs/gromacs/-/issues/5390

GROMACS Documentation, Release 2026-rc

Generate a GROMACS topology
gmx pdb2gmx

conf.gro

Enlarge the box

gmx editconf topol.top

conf.gro

\ 4
Solvate protein
gmx solvate

é)nf. gr’(>!opol.top

Generate mdrun input file
gmx grompp

opol.tpr

Run the simulation (EM or MD)
gmx mdrun <

ﬁj.xtc / traj.%ner.edr

Analysis Analysis
gmx ... gmx energy

eiwit.pdb

grompp.mdp

Continuation
state.cpt

In this chapter we assume the reader is familiar with Molecular Dynamics and familiar with Unix, including the
use of a text editor such as jot, emacs or vi. We furthermore assume the GROMACS software is installed

properly on your system. When you see a line like

[ls =1

you are supposed to type the contents of that line on your computer terminal.

3.2. Getting started

32

GROMACS Documentation, Release 2026-rc

3.2.2 Setting up your environment

In order to check whether you have access to GROMACS, please start by entering the command:

[gmx -version }

This command should print out information about the version of GROMACS installed. If this, in contrast, returns
the phrase

[gmx: command not found. J

then you have to find where your version of GROMACS is installed. In the default case, the binaries are located
in /usr/local/gromacs/bin, however, you can ask your local system administrator for more information,
and then follow the advice for Getting access to GROMACS after installation (page 25).

3.2.3 Flowchart of typical simulation

A typical simulation workflow with GROMACS is illustrated here (page 31).

3.2.4 Important files

Here is an overview of the most important GROMACS file types that you will encounter.

Molecular Topology file (. top)
The molecular topology file is generated by the program gmx pdb2gmx (page 241). gmx pdb2gmx (page 241)

translates a pdb (page 499) structure file of any peptide or protein to a molecular topology file. This topology file
contains a complete description of all the interactions in your peptide or protein.

Topology #include file mechanism

When constructing a system topology in a fop (page 501) file for presentation to grompp, GROMACS uses a
built-in version of the so-called C preprocessor, cpp (in GROMACS 3, it really was cpp). cpp interprets lines like:

[#include "ions.itp" J

by looking for the indicated file in the current directory, the GROMACS share/top directory as indicated by
the GMXLIB environment variable, and any directory indicated by a —I flag in the value of the include run
parameter (page 44) in the mdp (page 497) file. It either finds this file or reports a warning. (Note that when
you supply a directory name, you should use Unix-style forward slashes ‘/’, not Windows-style backslashes ' for
separators.) When found, it then uses the contents exactly as if you had cut and pasted the included file into the
main file yourself. Note that you should not go and do this copy-and-paste yourself, since the main purposes of
the include file mechanism are to re-use previous work, make future changes easier, and prevent typos.

Further, cpp interprets code such as:

#ifdef POSRES WATER

; Position restraint for each water oxygen

[position_restraints]

8 i funct fex fcy fcz
1 1 1000 1000 1000

#endif

by testing whether the preprocessor variable POSRES_WATER was defined somewhere (i.e. “if defined”). This
could be done with #define POSRES_WATER earlier in the rop (page 501) file (or its # include files), with
a -D flag in the include run parameter as above, or on the command line to cpp. The function of the —D flag is

3.2. Getting started 33

GROMACS Documentation, Release 2026-rc

borrowed from the similar usage in cpp. The string that follows —D must match exactly; using -DPOSRES will
not trigger #ifdef POSREor #ifdef DPOSRES. This mechanism allows you to change your mdp (page 497)
file to choose whether or not you want position restraints on your solvent, rather than your fop (page 501) file.
Note that preprocessor variables are not the same as shell environment variables.

Molecular Structure file (. gro, .pdb)

When gmx pdb2gmx (page 241) is executed to generate a molecular topology, it also translates the structure file
(pdb (page 499) file) to a GROMOS structure file (gro (page 495) file). The main difference between a pdb
(page 499) file and a gromos file is their format and that a gro (page 495) file can also hold velocities. However,
if you do not need the velocities, you can also use a pdb (page 499) file in all programs. To generate a box of
solvent molecules around the peptide, the program gmx solvate (page 274) is used. First the program gmx editconf
(page 176) should be used to define a box of appropriate size around the molecule. gmx solvate (page 274) solvates
a solute molecule (the peptide) into any solvent (in this case, water). The output of gmx solvate (page 274) is a
gromos structure file of the peptide solvated in water. gmx solvate (page 274) also changes the molecular topology
file (generated by gmx pdb2gmx (page 241)) to add solvent to the topology.

Molecular Dynamics parameter file (.mdp)

The Molecular Dynamics Parameter (mdp (page 497)) file contains all information about the Molecular Dynamics
simulation itself e.g. time-step, number of steps, temperature, pressure etc. The easiest way of handling such a
file is by adapting a sample mdp file (page 497) file.

Index file (. ndx)

Sometimes you may need an index file to specify actions on groups of atoms (e.g. temperature coupling, acceler-
ations, freezing). Usually the default index groups will be sufficient, so for this demo we will not consider the use
of index files.

Run input file (. tpr)

The next step is to combine the molecular structure (gro (page 495) file), topology (fop (page 501) file) MD-
parameters (mdp (page 497) file) and (optionally) the index file (ndx (page 498)) to generate a run input file (rpr
(page 503) extension). This file contains all information needed to start a simulation with GROMACS. The gmx
grompp (page 196) program processes all input files and generates the run input 7pr (page 503) file.

Trajectory file (.trr, .tng, or .xtc)

Once the run input file is available, we can start the simulation. The program which starts the simulation is called
gmx mdrun (page 221). The only input file of gmx mdrun (page 221) that you usually need in order to start a run
is the run input file (zpr (page 503) file). The typical output files of gmx mdrun (page 221) are the trajectory file
(trr (page 503) file), a logfile (log (page 496) file), and perhaps a checkpoint file (cpt (page 494) file).

3.2.5 Tutorial material

There are several tutorials available that cover aspects of using GROMACS. There are also third-party-tutorials.
Further information can also be found in the How fo (page 349) section.

3.2. Getting started 34

https://tutorials.gromacs.org/
http://www.mdtutorials.com/gmx/

GROMACS Documentation, Release 2026-rc

3.2.6 Background reading

Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J. (1981) Intermolecular Forces, chapter
Interaction models for water in relation to protein hydration, pp 331-342. Dordrecht: D. Reidel Publishing
Company Dordrecht

Kabsch, W., Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-
bonded and geometrical features. Biopolymers 22, 2577-2637.

Mierke, D.F., Kessler, H. (1991). Molecular dynamics with dimethyl sulfoxide as a solvent. Conformation
of a cyclic hexapeptide. J. Am. Chem. Soc. 113, 9446.

Stryer, L. (1988). Biochemistry vol. 1, p. 211. New York: Freeman, 3 edition.

3.3 System preparation

There are many ways to prepare a simulation system to run with GROMACS. These often vary with the kind
of scientific question being considered, or the model physics involved. A protein-ligand atomistic free-energy
simulation might need a multi-state topology, while a coarse-grained simulation might need to manage defaults
that suit systems with higher density.

3.3.1 Steps to consider

The following general guidance should help with planning successful simulations. Some stages are optional for
some kinds of simulations.

1.

Clearly identify the property or phenomena of interest to be studied by performing the simulation. Do not
continue further until you are clear on this! Do not run your simulation and then seek to work out how to
use it to test your hypothesis, because it may be unsuitable, or the required information was not saved.

. Select the appropriate tools to be able to perform the simulation and observe the property or phenomena of

interest. It is important to read and familiarize yourself with publications by other researchers on similar
systems. Choices of tools include:

* software with which to perform the simulation (consideration of force field may influence this deci-
sion)

* the force field, which describes how the particles within the system interact with each other. Select
one that is appropriate for the system being studied and the property or phenomena of interest. This is
a very important and non-trivial step!

* how you will analyze your simulation data to make your observations.

. Obtain or generate the initial coordinate file for each molecule to be placed within the system. Many differ-

ent software packages are able to build molecular structures and assemble them into suitable configurations.

. Generate the raw starting structure for the system by placing the molecules within the coordinate file as

appropriate. Molecules may be specifically placed or arranged randomly. Several non-GROMACS tools are
useful here; within GROMACS gmx solvate (page 274), gmx insert-molecules (page 213) and gmx genconf
(page 192) solve frequent problems.

. Obtain or generate the topology file for the system, using (for example) gmx pdb2gmx (page 241), gmx x2top

(page 305), SwissParam (for CHARMM forcefield), CHARMM-GUI , Automated Topology Builder (for
GROMOS96 53A6) or your favourite text editor in concert with Chapter 5 (page 413) of the GROMACS
Reference Manual. For the AMBER force fields, antechamber or acpype might be appropriate.

. Describe a simulation box (e.g. using gmx editconf (page 176)) whose size is appropriate for the eventual

density you would like, fill it with solvent (e.g. using gmx solvate (page 274)), and add any counter-ions
needed to neutralize the system (e.g. using gmx grompp (page 196) and gmx insert-molecules (page 213)).
In these steps you may need to edit your topology file to stay current with your coordinate file.

3.3.

System preparation 35

http://swissparam.ch/
https://www.charmm-gui.org/
https://atb.uq.edu.au/
https://ambermd.org/antechamber/antechamber.html
https://github.com/alanwilter/acpype

GROMACS Documentation, Release 2026-rc

7. Run an energy minimization on the system (using gmx grompp (page 196) and gmx mdrun (page 221)). This
is required to sort out any bad starting structures caused during generation of the system, which may cause
the production simulation to crash. It may be necessary also to minimize your solute structure in vacuo
before introducing solvent molecules (or your lipid bilayer or whatever else). You should consider using
flexible water models and not using bond constraints or frozen groups. The use of position restraints and/or
distance restraints should be evaluated carefully.

8. Select the appropriate simulation parameters for the equilibration simulation (defined in mdp (page 497)
file). You need to choose simulation parameters that are consistent with how force field was derived. You
may need to simulate at NVT with position restraints on your solvent and/or solute to get the temperature
almost right, then relax to NPT to fix the density (with the recommendation to use the c-rescale barostat),
then move further (if needed) to reach your production simulation ensemble (e.g. NVT, NVE). If you
have problems here with the system blowing up (page 335), consider using the suggestions on that page,
e.g. position restraints on solutes, or not using bond constraints, or using smaller integration timesteps, or
several gentler heating stage(s).

9. Run the equilibration simulation for sufficient time so that the system relaxes sufficiently in the target
ensemble to allow the production run to be commenced (using gmx grompp (page 196) and gmx mdrun
(page 221), then gmx energy (page 182) and Visualization Software (page 355)).

10. Select the appropriate simulation parameters for the production simulation (defined in mdp (page 497) file).
In particular, be careful not to re-generate the velocities. You still need to be consistent with how the force
field was derived and how to measure the property or phenomena of interest.

3.3.2 Tips and tricks

Database files

The share/top directory of a GROMACS installation contains numerous plain-text helper files with the . dat
file extension. Some of the command-line tools (see Command-line reference (page 120)) refer to these, and each
tool documents which files it uses, and how they are used.

If you need to modify these files (e.g. to introduce new atom types with VDW radii into vdwradii.dat),
you can copy the file from your installation directory into your working directory, and the GROMACS tools will
automatically load the copy from your working directory rather than the standard one. To suppress all the standard
definitions, use an empty file in the working directory.

3.4 Managing long simulations

Molecular simulations often extend beyond the lifetime of a single UNIX command-line process. It is useful to
be able to stop and restart the simulation in a way that is equivalent to a single run. When gmx mdrun (page 221)
is halted, it writes a checkpoint file that can restart the simulation exactly as if there was no interruption. To do
this, the checkpoint retains a full-precision version of the positions and velocities, along with state information
necessary to restart algorithms e.g. that implement coupling to external thermal reservoirs. A restart can be
attempted using e.g. a gro (page 495) file with velocities, but since the gro (page 495) file has significantly less
precision, and none of the coupling algorithms will have their state carried over, such a restart is less continuous
than a normal MD step.

Such a checkpoint file is also written periodically by gmx mdrun (page 221) during the run. The interval is given
by the —cpt flag to gmx mdrun (page 221). When gmx mdrun (page 221) attempts to write each successive
checkpoint file, it first renames the old file with the suffix _prewv, so that even if something goes wrong while
writing the new checkpoint file, only recent progress can be lost.

gmx mdrun (page 221) can be halted in several ways:
* the number of simulation nsteps (page 45) can expire
* the user issues a termination signal (e.g. with Ctrl-C on the terminal)

¢ the job scheduler issues a termination signal when time expires

3.4. Managing long simulations 36

GROMACS Documentation, Release 2026-rc

* when gmx mdrun (page 221) detects that the length specified with —-maxh has elapsed (this option is useful
to help cooperate with a job scheduler, but can be problematic if jobs can be suspended)

* some kind of catastrophic failure, such as loss of power, or a disk filling up, or a network failing

To use the checkpoint file for a restart, use a command line such as

[gmx mdrun —-cpi state

which directs mdrun to use the checkpoint file (which is named state. cpt by default). You can choose to give
the output checkpoint file a different name with the —cpo flag, but if so then you must provide that name as input
to —cpi when you later use that file. You can query the contents of checkpoint files with gmx check (page 139)
and gmx dump (page 174).

3.4.1 Appending to output files

By default, gmx mdrun (page 221) will append to the old output files. If the previous part ended in a regular way,
then the performance data at the end of the log file will will be removed, some new information about the run
context written, and the simulation will proceed. Otherwise, mdrun will truncate all the output files back to the
time of the last written checkpoint file, and continue from there, as if the simulation stopped at that checkpoint in
a regular way.

You can choose not to append the output files by using the ~-noappend flag, which forces mdrun to write each
output to a separate file, whose name includes a “.partXXXX" string to describe which simulation part is contained
in this file. This numbering starts from zero and increases monotonically as simulations are restarted, but does
not reflect the number of simulation steps in each part. The simulation-part (page 46) option can be used
to set this number manually in gmx grompp (page 196), which can be useful if data has been lost, e.g. through
filesystem failure or user error.

Appending will not work if any output files have been modified or removed after mdrun wrote them, because the
checkpoint file maintains a checksum of each file that it will verify before it writes to them again. In such cases,
you must either restore the file, name them as the checkpoint file expects, or continue with —-noappend. If your
original run used —de f fnm, and you want appending, then your continuations must also use —~de f fnm.

3.4.2 Backing up your files

You should arrange to back up your simulation files frequently. Network file systems on clusters can be configured
in more or less conservative ways, and this can lead gmx mdrun (page 221) to be told that a checkpoint file has
been written to disk when actually it is still in memory somewhere and vulnerable to a power failure or disk that
fills or fails in the meantime. The UNIX tool rsync can be a useful way to periodically copy your simulation
output to a remote storage location, which works safely even while the simulation is underway. Keeping a copy of
the final checkpoint file from each part of a job submitted to a cluster can be useful if a file system is unreliable.

3.4.3 Extending a .tpr file

If the simulation described by 7pr (page 503) file has completed and should be extended, use the gmx convert-tpr
(page 151) tool to extend the run, e.g.

gmx convert-tpr -s previous.tpr -extend timetoextendby -o next.tpr
gmx mdrun -s next.tpr -cpi state.cpt

The time can also be extended using the —until and —nsteps options. Note that the original mdp (page 497)
file may have generated velocities, but that is a one-time operation within gmx grompp (page 196) that is never
performed again by any other tool.

3.4. Managing long simulations 37

GROMACS Documentation, Release 2026-rc

3.4.4 Changing mdp options for a restart

If you wish to make changes to your simulations settings other than length, then you should do so in the mdp
(page 497) file or topology, and then call

gmx grompp —f possibly-changed.mdp -p possibly-changed.top -c original.gro
——t state.cpt -o new.tpr
gmx mdrun -s new.tpr -cpi state.cpt

to instruct gmx grompp (page 196) to copy the full-precision coordinates and velocities in the checkpoint file into
the new 7pr (page 503) file. You should consider your choices for t init (page 45), init—step (page 45),
nsteps (page 45) and simulation-part (page 46). You should generally not regenerate velocities with
gen-vel (page 59), and generally select cont inuat ion (page 60) so that constraints are not re-applied before
the first integration step.

3.4.5 Restarts without checkpoint files

It used to be possible to continue simulations without the checkpoint files. As this approach could be unreliable
or lead to unphysical results, only restarts from checkpoints are permitted now.

3.4.6 Are continuations exact?

If you had a computer with unlimited precision, or if you integrated the time-discretized equations of motion by
hand, exact continuation would lead to identical results. But since practical computers have limited precision and
MD is chaotic, trajectories will diverge very rapidly even if one bit is different. Such trajectories will all be equally
valid, but eventually very different. Continuation using a checkpoint file, using the same code compiled with the
same compiler and running on the same computer architecture using the same number of processors without GPUs
(see next section) would lead to binary identical results. However, by default the actual work load will be balanced
across the hardware according to the observed execution times. Such trajectories are in principle not reproducible,
and in particular a run that took place in more than one part will not be identical with an equivalent run in one part
- but neither of them is better in any sense.

3.4.7 Reproducibility

The following factors affect the reproducibility of a simulation, and thus its output:

Precision (mixed / double) with double giving “better” reproducibility.

Number of cores, due to different order in which forces are accumulated. For instance (a+b)+c is not
necessarily binary identical to a+(b+c) in floating-point arithmetic.

Type of processors. Even within the same processor family there can be slight differences.

Optimization level when compiling.

Optimizations at run time: e.g. the FFTW library that is typically used for fast Fourier transforms determines
at startup which version of their algorithms is fastest, and uses that for the remainder of the calculations.
Since the speed estimate is not deterministic, the results may vary from run to run.

Random numbers used for instance as a seed for generating velocities (in GROMACS at the preprocessing
stage).

Uninitialized variables in the code (but there should not be any)

Dynamic linking to different versions of shared libraries (e.g. for FFTs)

Dynamic load balancing, since particles are redistributed to processors based on elapsed wallclock time,
which will lead to (a+b)+c != a+(b+c) issues as above

Number of PME-only ranks (for parallel PME simulations)

3.4. Managing long simulations 38

GROMACS Documentation, Release 2026-rc

* MPI reductions typically do not guarantee the order of the operations, and so the absence of associativity
for floating-point arithmetic means the result of a reduction depends on the order actually chosen

* On GPUs, the reduction of e.g. non-bonded forces has a non-deterministic summation order, so any fast
implementation is non-reproducible by design.

The important question is whether it is a problem if simulations are not completely reproducible. The answer is
yes and no. Reproducibility is a cornerstone of science in general, and hence it is important. The Central Limit
Theorem tells us that in the case of infinitely long simulations, all observables converge to their equilibrium values.
Molecular simulations in GROMACS adhere to this theorem, and hence, for instance, the energy of your system
will converge to a finite value, the diffusion constant of your water molecules will converge to a finite value, and
so on. That means all the important observables, which are the values you would like to get out of your simulation,
are reproducible. Each individual trajectory is not reproducible, however.

However, there are a few cases where it would be useful if trajectories were reproducible, too. These include
developers doing debugging, and searching for a rare event in a trajectory when, if it occurs, you want to have
manually saved your checkpoint file so you can restart the simulation under different conditions, e.g. writing
output much more frequently.

In order to obtain this reproducible trajectory, it is important to look over the list above and eliminate the factors
that could affect it. Further, using

[gmx mdrun —-reprod

1

will eliminate all sources of non-reproducibility that it can, i.e. same executable + same hardware + same shared
libraries + same run input file + same command line parameters will lead to reproducible results.

3.5 Answers to frequently asked questions (FAQs)

3.5.1 Questions regarding GROMACS installation

1. Do I need to compile all utilities with MPI?

With one rarely-used exception (pme_error (page 244)), only mdrun (page 221) is able to use the MPI
(page 10) parallelism. So you only need to use the ~-DGMX_MP I=on flag when configuring (page 14) for a
build intended to run the main simulation engine mdrun (page 221). Generally that is desirable when running
on a multi-node cluster, and necessary when using multi-simulation algorithms. Usually also installing a
build of GROMACS configured without MPI is convenient for users.

2. Should my version be compiled using double precision?

In general, GROMACS only needs to be build in its default mixed-precision mode. For more details, see the
discussion in Chapter 2 of the reference manual. Sometimes, usage may also depend on your target system,
and should be decided upon according to the individual instructions (page 27).

3.5.2 Questions concerning system preparation and preprocessing

1. Where can I find a solvent coordinate file (page 492) for use with solvate (page 274)?

Suitable equilibrated boxes of solvent structure files (page 492) can be found in the SGMXDIR/share/
gromacs/top directory. That location will be searched by default by solvate (page 274), for example by
using —cs spc216.gro as an argument. Other solvent boxes can be prepared by the user as described
on the manual page for solvate (page 274) and elsewhere. Note that suitable topology files will be needed
for the solvent boxes to be useful in grompp (page 196). These are available for some force fields, and may
be found in the respective subfolder of SGMXDIR/share/gromacs/top.

2. How to prevent solvate (page 274) from placing waters in undesired places?

Water placement is generally well behaved when solvating proteins, but can be difficult when setting up
membrane or micelle simulations. In those cases, waters may be placed in between the alkyl chains of the

3.5. Answers to frequently asked questions (FAQs) 39

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem

GROMACS Documentation, Release 2026-rc

lipids, leading to problems later during the simulation (page 335). You can either remove those waters by
hand (and do the accounting for molecule types in the ropology (page 501) file), or set up a local copy of the
vdwradii.dat file from the $GMXLIB directory, specific for your project and located in your working
directory. In it, you can increase the vdW radius of the atoms, to suppress such interstitial insertions.
Recommended e.g. at a common tutorial is the use of 0.375 instead of 0.15.

1. How do I provide multiple definitions of bonds / dihedrals in a topology?

You can add additional bonded terms beyond those that are normally defined for a residue (e.g. when
defining a special ligand) by including additional copies of the respective lines under the [bonds 1],
[pairs], [angles] and [dihedrals] sections in the [moleculetype] section for
your molecule, found either in the itp (page 496) file or the ropology (page 501) file. This will add those
extra terms to the potential energy evaluation, but will not remove the previous ones. So be careful with
duplicate entries. Also keep in mind that this does not apply to duplicated entries for [bondtypes 1, [
angletypes],or [dihedraltypes 1, in force-field definition files, where duplicates overwrite
the previous values.

2. Do Ireally need a gro (page 495) file?

The gro (page 495) file is used in GROMACS as a unified structure file (page 492) format that can be read by
all utilities. The large majority of GROMACS routines can also use other file types such as pdb (page 499),
with the limitations that no velocities are available in this case (page 34). If you need a text-based format
with more digits of precision, the g96 (page 495) format is suitable and supported.

3. Do I always need to run pdb2gmx (page 241) when I already produced an izp (page 496) file elsewhere?

You don’t need to prepare additional files if you already have all ifp (page 496) and rop (page 501) files
prepared through other tools.

Examples for those can be found in the System Preparation section of this user guide (page 35).
4. How can I build in missing atoms?

GROMACS has no support for building coordinates of missing non-hydrogen atoms. If your system is
missing some part, you will have to add the missing pieces using external programs to avoid the missing
atom (page 113) error. This can be done using programs such as Chimera in combination with Modeller,
Swiss PDB Viewer, Maestro. Do not run a simulation that had missing atoms unless you know exactly why
it will be stable.

5. Why is the total charge of my system not an integer like it should be?

In floating point (page 347) math, real numbers can not be displayed to arbitrary precision (for more on
this, see e.g. Wikipedia). This means that very small differences to the final integer value will persist, and
GROMACS will not lie to you and round those values up or down. If your charge differs from the integer
value by a larger amount, e.g. at least 0.01, this usually means that something went wrong during your
system preparation

3.5.3 Questions regarding simulation methodology

1. Should I couple a handful of ions to their own temperature-coupling bath?

No. You need to consider the minimal size of your temperature coupling groups, as explained in Thermostats
(page 333) and more specifically in What not to do (page 333), as well as the implementation of your chosen
thermostat as described in the reference manual.

2. Why do my grompp restarts always start from time zero?
You can choose different values for t init (page 45) and init-step (page 45).
3. Why can’t I do conjugate gradient minimization with constraints?

Minimization with the conjugate gradient scheme can not be performed with constraints as described in the
reference manual, and some additional information on Wikipedia.

3.5. Answers to frequently asked questions (FAQs) 40

http://www.mdtutorials.com/gmx/lysozyme/03_solvate.html
https://www.cgl.ucsf.edu/chimera/
https://salilab.org/modeller/
https://spdbv.unil.ch/
https://www.schrodinger.com/maestro
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Conjugate_gradient_method

GROMACS Documentation, Release 2026-rc

4. How do I hold atoms in place in my energy minimization or simulation?

Groups may be frozen in place using freeze groups (see the reference manual). It is more common to
use a set of position restraints, to place penalties on movement of the atoms. Files that control this kind of
behaviour can be created using genrestr (page 195).

5. How do I extend a completed a simulation to longer times?

Please see the section on Managing long simulations (page 36). You can either prepare a new mdp
(page 497) file, or extend the simulation time in the original 7pr (page 503) file using convert-tpr (page 151).

6. How should I compute a single-point energy?

This is best achieved with the —rerun option to mdrun (page 221). See the Re-running a simulation
(page 88) section.

3.5.4 Parameterization and Force Fields

1. T want to simulate a molecule (protein, DNA, etc.) which complexes with various transition metal ions,
iron-sulfur clusters, or other exotic species. Parameters for these exotic species aren’t available in force
field X. What should I do?

First, you should consider how well MD (page 336) will actually describe your system (e.g. see some of
the recent literature). Many species are infeasible to model without either atomic polarizability, or QM
treatments. Then you need to prepare your own set of parameters and add a new residue to your force field
(page 337) of choice. Then you will have to validate that your system behaves in a physical way, before
continuing your simulation studies. You could also try to build a more simplified model that does not rely
on the complicated additions, as long as it still represents the correct real object in the laboratory.

2. Should I take parameters from one force field and apply them inside another that is missing them?

NO. Molecules parametrized for a given force field (page 337) will not behave in a physical manner when
interacting with other molecules that have been parametrized according to different standards. If your
required molecule is not included in the force field you need to use, you will have to parametrize it yourself
according to the methodology of this force field.

3.5.5 Analysis and Visualization

1. Why am I seeing bonds being created when I watch the trajectory?

Most visualization softwares determine the bond status of atoms depending on a set of predefined distances.
So the bonding pattern created by them might not be the one defined in your fopology (page 501) file.
What matters is the information encoded in there. If the software has read a 7pr (page 503) file, then the
information is in reliable agreement with the topology you supplied to grompp (page 196).

2. When visualizing a trajectory from a simulation using PBC, why are there holes or my peptide leaving the
simulation box?

Those holes and molecules moving around are just a result of molecules ranging over the box boundaries
and wrapping around (page 332), and are not a reason for concern. You can fix the visualization using
trjconv (page 287) to prepare the structure for analysis.

3. Why is my total simulation time not an integer like it should be?

As the simulation time is calculated using floating point arithmetic (page 347), rounding errors can occur
but are not of concern.

3.5. Answers to frequently asked questions (FAQs) 41

https://dx.doi.org/10.1021%2Facs.chemrev.6b00440

GROMACS Documentation, Release 2026-rc

3.6 Force fields in GROMACS

3.6.1 AMBER

AMBER (Assisted Model Building and Energy Refinement) refers both to a set of molecular mechanical force
fields (page 337) for the simulation of biomolecules and a package of molecular simulation programs.

GROMACS supports the following AMBER force fields natively:

« AMBERY%4

« AMBERY96

* AMBER9Y9

« AMBER99SB

* AMBER99SB-ILDN

* AMBERO3

« AMBER14SB

« AMBER19SB

« AMBERGS
If you intend to use AMBER19SB in GROMACS, please use the OPC or OPC3 model for water molecules.
Information concerning the force field can be found using the following information:

* AMBER Force Fields - background about the AMBER force fields

* AMBER Programs - information about the AMBER suite of programs for molecular simulation

e ANTECHAMBER/GAFF - Generalized Amber Force Field (GAFF) which is supposed to provide param-
eters suitable for small molecules that are compatible with the AMBER protein/nucleic acid force fields.
It is available either together with AMBER, or through the antechamber package, which is also distributed
separately. There are scripts available for converting AMBER systems (set up, for example, with GAFF) to
GROMACS (amb2gmx.pl, or ACPYPE), but they do require AmberTools installation to work.

3.6.2 CHARMM

CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a both a set of force fields and a software
package for molecular dynamics (page 336) simulations and analysis. Includes united atom (CHARMMI19) and
all atom (CHARMM?22, CHARMM?27, CHARMM36) force fields (page 337). The CHARMM?27 force field has
been ported to GROMACS and is officially supported. CHARMM36 force field files can be obtained from the
MacKerell lab website, which regularly produces up-to-date CHARMM force field files in GROMACS format.

For using CHARMM36 in GROMACS, please use the following settings in the mdp (page 497) file:

constraints = h-bonds

cutoff-scheme = Verlet
vdwtype = cutoff
vdw-modifier = force-switch
rlist = 1.2

rvdw = 1.2

rvdw—-switch = 1.0
coulombtype = PME

rcoulomb = 1.2

DispCorr = no

Note that dispersion correction should be applied in the case of lipid monolayers, but not bilayers.

3.6. Force fields in GROMACS 42

http://ambermd.org/
https://ambermd.org/AmberModels.php
https://ambermd.org/AmberTools.php
http://ambermd.org/antechamber/antechamber.html
https://github.com/choderalab/mmtools/blob/master/converters/amb2gmx.pl
https://github.com/alanwilter/acpype
https://ambermd.org/AmberTools.php
http://www.charmm.org/
http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs

GROMACS Documentation, Release 2026-rc

Please also note that the switching distance is a matter of some debate in lipid bilayer simulations, and it is depen-
dent to some extent on the nature of the lipid. Some studies have found that an 0.8-1.0 nm switch is appropriate,
others argue 0.8-1.2 nm is best, and yet others stand by 1.0-1.2 nm. The user is cautioned to thoroughly investigate
the force field literature for their chosen lipid(s) before beginning a simulation!

3.6.3 GROMOS

A\ Warning

The GROMOS force fields have been parametrized with a physically incorrect multiple-time-stepping scheme
for a twin-range cut-off. When used with a single-range cut-off (or a correct Trotter multiple-time-stepping
scheme), physical properties, such as the density, might differ from the intended values. Since there are
researchers actively working on validating GROMOS with modern integrators we have not yet removed the
GROMOS force fields, but you should be aware of these issues and check if molecules in your system are
affected before proceeding. Further information is available in GitLab Issue 2884 , and a longer explanation of
our decision to remove physically incorrect algorithms can be found at DOI:10.26434/chemrxiv.11474583.v1

GROMOS is is a general-purpose molecular dynamics computer simulation package for the study of biomolecular
systems. It also incorporates its own force field covering proteins, nucleotides, sugars etc. and can be applied to
chemical and physical systems ranging from glasses and liquid crystals, to polymers and crystals and solutions of
biomolecules.

GROMACS supports the GROMOS force fields, with all parameters provided in the distribution for 43al, 43a2,
45a3, 53a5, 53a6 and 54a7. The GROMOS force fields are united atom force fields (page 337), i.e. without explicit
aliphatic (non-polar) hydrogens.

* GROMOS 53a6 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).
* GROMOS 53a5 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).

* GROMOS 43alp - 43al modified to contain SEP (phosphoserine), TPO (phosphothreonine), and PTR
(phosphotyrosine) (all PO42- forms), and SEPH, TPOH, PTRH (PO4H- forms).

3.6.4 OPLS

OPLS (Optimized Potential for Liquid Simulations) is a set of force fields developed by Prof. William L. Jorgensen
for condensed phase simulations, with the latest version being OPLS-AA/M.

The standard implementations for those force fields are the BOSS and MCPRO programs developed by the Jor-
gensen group

As there is no central web-page to point to, the user is advised to consult the original literature for the united atom
(OPLS-UA) and all atom (OPLS-AA) force fields, as well as the Jorgensen group page

3.7 Molecular dynamics parameters (.mdp options)

3.7.1 General information
Default values are given in parentheses, or listed first among choices. The first option in the list is always the
default option. Units are given in square brackets. The difference between a dash and an underscore is ignored.

A sample mdp file (page 497) is available. This should be appropriate to start a normal simulation. Edit it to suit
your specific needs and desires.

3.7. Molecular dynamics parameters (.mdp options) 43

https://gitlab.com/gromacs/gromacs/-/issues/2884
https://doi.org/10.26434/chemrxiv.11474583.v1
https://www.igc.ethz.ch/gromos.html
http://zarbi.chem.yale.edu/oplsaam.html
http://zarbi.chem.yale.edu/software.html
http://zarbi.chem.yale.edu/software.html
https://doi.org/10.1021%2Fja00214a001
https://doi.org/10.1021%2Fja00214a001
https://doi.org/10.1021%2Fja9621760
http://zarbi.chem.yale.edu/

GROMACS Documentation, Release 2026-rc

Preprocessing

include

directories to include in your topology. Format: —I/home/john/mylib -I../otherlib

define

defines to pass to the preprocessor, default is no defines. You can use any defines to control options in your
customized topology files. Options that act on existing rop (page 501) file mechanisms include

-DFLEXIBLE will use flexible water instead of rigid water into your topology, this can be useful
for normal mode analysis.

—-DPOSRES will trigger the inclusion of posre . i tp into your topology, used for implementing
position restraints.

Run control

integrator

(Despite the name, this list includes algorithms that are not actually integrators over time.
integrator=steep (page 44) and all entries following it are in this category)

md

A leap-frog algorithm for integrating Newton’s equations of motion.
md-vv

A velocity Verlet algorithm for integrating Newton’s equations of motion. For constant NVE simu-
lations started from corresponding points in the same trajectory, the trajectories are analytically, but
not binary, identical to the 1ntegrator=md (page 44) leap-frog integrator. The kinetic energy is
determined from the whole step velocities and is therefore slightly too high. The advantage of this in-
tegrator is more accurate, reversible Nose-Hoover and Parrinello-Rahman coupling integration based
on Trotter expansion, as well as (slightly too small) full step velocity output. This all comes at the cost
of extra computation, especially with constraints and extra communication in parallel. Note that for
nearly all production simulations the i ntegrator=md (page 44) integrator is accurate enough.

md-vv-avek

A velocity Verlet algorithm identical to i ntegrator=md-vv (page 44), except that the kinetic en-
ergy is determined as the average of the two half step kinetic energies as in the integrator=md
(page 44) integrator, and this thus more accurate. With Nose-Hoover and/or Parrinello-Rahman cou-
pling this comes with a slight increase in computational cost.

sd

An accurate and efficient leap-frog stochastic dynamics integrator. With constraints, coordinates needs
to be constrained twice per integration step. Depending on the computational cost of the force calcula-
tion, this can take a significant part of the simulation time. The temperature for one or more groups of
atoms (t c-grps (page 56)) is set with re f—t (page 56), the inverse friction constant for each group
is set with tau—t (page 56). The parameters t coupl (page 55) and nsttcouple (page 56) are
ignored. The random generator is initialized with 1d-seed (page 47). When used as a thermostat,
an appropriate value for tau—t (page 56) is 2 ps, since this results in a friction that is lower than the
internal friction of water, while it is high enough to remove excess heat NOTE: temperature deviations
decay twice as fast as with a Berendsen thermostat with the same tau—t (page 56).

bd

An Euler integrator for Brownian or position Langevin dynamics. The velocity is the force divided by
a friction coefficient (bd—fric (page 47)) plus random thermal noise (ref-t (page 56)). When
bd-fric (page 47) is 0, the friction coefficient for each particle is calculated as mass/ tau-t
(page 56), as for the integrator integrator=sd (page 44). The random generator is initialized
with 1d-seed (page 47).

3.7. Molecular dynamics parameters (.mdp options) 44

GROMACS Documentation, Release 2026-rc

steep

cg

A steepest descent algorithm for energy minimization. The maximum step size is emstep (page 47),
the tolerance is emt o1 (page 47).

A conjugate gradient algorithm for energy minimization, the tolerance is emtol (page 47). CG is
more efficient when a steepest descent step is done every once in a while, this is determined by
nstcgsteep (page 47). For a minimization prior to a normal mode analysis, which requires a
very high accuracy, GROMACS should be compiled in double precision.

1-bfgs

nm

tpi

A quasi-Newtonian algorithm for energy minimization according to the low-memory Broyden-
Fletcher-Goldfarb-Shanno approach. In practice this seems to converge faster than Conjugate Gra-
dients, but due to the correction steps necessary it is not (yet) parallelized.

Normal mode analysis is performed on the structure in the 7pr (page 503) file. GROMACS should be
compiled in double precision.

Test particle insertion. The last molecule in the topology is the test particle. A trajectory must be pro-
vided to mdrun -rerun. This trajectory should not contain the molecule to be inserted. Insertions
are performed nsteps (page 45) times in each frame at random locations and with random orienta-
tions of the molecule. When nst1ist (page 49) is larger than one, nst1ist (page 49) insertions
are performed in a sphere with radius rtpi (page 48) around a the same random location using the
same pair list. Since pair list construction is expensive, one can perform several extra insertions with
the same list almost for free. The random seed is set with 1d-seed (page 47). The temperature for
the Boltzmann weighting is set with ref—t (page 56), this should match the temperature of the sim-
ulation of the original trajectory. Dispersion correction is implemented correctly for TPI. All relevant
quantities are written to the file specified with mdrun -tpi. The distribution of insertion energies
is written to the file specified with mdrun -tpid. No trajectory or energy file is written. Parallel
TPI gives identical results to single-node TPI. For charged molecules, using PME with a fine grid is
most accurate and also efficient, since the potential in the system only needs to be calculated once per
frame.

tpic

Test particle insertion into a predefined cavity location. The procedure is the same as for
integrator=tpi (page 45), except that one coordinate extra is read from the trajectory, which
is used as the insertion location. The molecule to be inserted should be centered at 0,0,0. GROMACS
does not do this for you, since for different situations a different way of centering might be optimal.
Also rtpi (page 48) sets the radius for the sphere around this location. Neighbor searching is done
only once per frame, nst1ist (page 49) is not used. Parallel integrator=tpic (page 45) gives
identical results to single-rank integrator=tpic (page 45).

mimic

tinit

Enable MiMiC QM/MM coupling to run hybrid molecular dynamics. Keey in mind that its required
to launch CPMD compiled with MiMiC as well. In this mode all options regarding integration (T-
coupling, P-coupling, timestep and number of steps) are ignored as CPMD will do the integration
instead. Options related to forces computation (cutoffs, PME parameters, etc.) are working as usual.
Atom selection to define QM atoms is read from OMMM-grps (page 81)

(0) [ps] starting time for your run (only makes sense for time-based integrators)

dt

(0.001) [ps] time step for integration (only makes sense for time-based integrators)

nsteps

(0) maximum number of steps to integrate or minimize, -1 is no maximum

3.7. Molecular dynamics parameters (.mdp options) 45

GROMACS Documentation, Release 2026-rc

init-step

(0) The starting step. The time at step i in a run is calculated as: t = tinit (page 45) + dt (page 45) *
(init-step (page 45) + 1). The free-energy lambda is calculated as: lambda = init—Iambda (page 72)
+ delta-lambda (page 72) * (init—-step (page 45) + i). Also non-equilibrium MD parameters can
depend on the step number. Thus for exact restarts or redoing part of a run it might be necessary to set
init-step (page 45) to the step number of the restart frame. gmx convert-tpr (page 151) does this
automatically.

simulation-part

mts

(0) A simulation can consist of multiple parts, each of which has a part number. This option specifies what
that number will be, which helps keep track of parts that are logically the same simulation. This option is
generally useful to set only when coping with a crashed simulation where files were lost.

no

Evaluate all forces at every integration step.

yes
Use a multiple timing-stepping integrator to evaluate some forces, as specified by
mts—level2-forces (page 46) every mts—levellZ-factor (page 46) integration steps.
All other forces are evaluated at every step. MTS is currently only supported with integrator=md
(page 44).

mts—-levels

(2) The number of levels for the multiple time-stepping scheme. Currently only 2 is supported.

mts-level2-forces

(longrange-nonbonded) A list of one or more force groups that will be evaluated only ev-
ery mts—level2-factor (page 46) steps. Supported entries are: longrange-nonbonded,
nonbonded, pair, dihedral, angle, pull and awh. With pair the listed pair forces (such as
1-4) are selected. With dihedral all dihedrals are selected, including cmap. All other forces, including
all restraints, are evaluated and integrated every step. When PME or Ewald is used for electrostatics and/or
LJ interactions, Longrange—nonbonded can not be omitted here.

mts-level2-factor

(2) [steps] Interval for computing the forces in level 2 of the multiple time-stepping scheme

mass-repartition-factor

(1) [] Scales the masses of the lightest atoms in the system by this factor to the mass mMin. All atoms with
a mass lower than mMin also have their mass set to that mMin. The mass change is subtracted from the
mass of the atom the light atom is bound to. If there is no bound atom a warning is generated. If there is
more than one atom bound an error is generated. If the mass of the bound atom would become lower than
mMin an error is generated. For typical atomistic systems only the masses of hydrogens are scaled. With
constraints=h-bonds (page 59), a factor of 3 will usually enable a time step of 4 fs.

comm—-mode

Linear

Remove center of mass translational velocity

Angular

Remove center of mass translational and rotational velocity

Linear—-acceleration-correction

Remove center of mass translational velocity. Correct the center of mass position assuming linear
acceleration over nstcomm (page 47) steps. This is useful for cases where an acceleration is expected
on the center of mass which is nearly constant over nstcomm (page 47) steps. This can occur for
example when pulling on a group using an absolute reference.

3.7.

Molecular dynamics parameters (.mdp options) 46

GROMACS Documentation, Release 2026-rc

None

No restriction on the center of mass motion

nstcomm
(100) [steps] interval for center of mass motion removal
comm—-grps

group(s) for center of mass motion removal, default is the whole system

Langevin dynamics

bd-fric
(0) [amu ps™'] Brownian dynamics friction coefficient. When hd—-fric (page 47) is 0, the friction coeffi-
cient for each particle is calculated as mass/ tau—t (page 56).

ld-seed

(-1) [integer] used to initialize random generator for thermal noise for stochastic and Brownian dynamics.
When 1d-seed (page 47) is set to -1, a pseudo random seed is used. When running BD or SD on multiple
processors, each processor uses a seed equal to 1d—-seed (page 47) plus the processor number.

Energy minimization

emtol

(10.0) [kJ mol! nm™'] the minimization is converged when the maximum force is smaller than this value

emstep
(0.01) [nm] initial step-size

nstcgsteep
(1000) [steps] interval of performing 1 steepest descent step while doing conjugate gradient energy mini-
mization.

nbfgscorr

(10) Number of correction steps to use for L-BFGS minimization. A higher number is (at least theoretically)
more accurate, but slower.

Shell Molecular Dynamics

When shells or flexible constraints are present in the system the positions of the shells and the lengths of the
flexible constraints are optimized at every time step until either the RMS force on the shells and constraints is less
than emt ol (page 47), or a maximum number of iterations niter (page 47) has been reached. Minimization is
converged when the maximum force is smaller than emt ol (page 47). For shell MD this value should be 1.0 at
most.

niter

(20) maximum number of iterations for optimizing the shell positions and the flexible constraints.

fcstep

(0) [ps?] the step size for optimizing the flexible constraints. Should be chosen as mu/(d2V/dg2) where
mu is the reduced mass of two particles in a flexible constraint and d2V/dq2 is the second derivative of the
potential in the constraint direction. Hopefully this number does not differ too much between the flexible
constraints, as the number of iterations and thus the runtime is very sensitive to fcstep. Try several values!

3.7. Molecular dynamics parameters (.mdp options) 47

GROMACS Documentation, Release 2026-rc

Test particle insertion

rtpi
(0.05) [nm] the test particle insertion radius, see integrators integrator=tpi (page 45) and
integrator=tpic (page 45)

Output control

nstxout
(0) [steps] number of steps that elapse between writing coordinates to the output trajectory file (17
(page 503)), the first and last coordinates are always written unless 0, which means coordinates are not
written into the trajectory file.

nstvout
(0) [steps] number of steps that elapse between writing velocities to the output trajectory file (177 (page 503)),
the first and last velocities are always written unless 0, which means velocities are not written into the
trajectory file.

nstfout
(0) [steps] number of steps that elapse between writing forces to the output trajectory file (zrr (page 503)),
the first and last forces are always written, unless 0, which means forces are not written into the trajectory
file.

nstlog
(1000) [steps] number of steps that elapse between writing energies to the log file, the first and last energies
are always written.

nstcalcenergy

(100) number of steps that elapse between calculating the energies, 0 is never. This option is only relevant
with dynamics. This option affects the performance in parallel simulations, because calculating energies
requires global communication between all processes which can become a bottleneck at high parallelization.

nstenergy

(1000) [steps] number of steps that elapse between writing energies to the energy file (edr (page 494)),
the first and last energies are always written, should be a multiple of nstcalcenergy (page 48). Note
that the exact sums and fluctuations over all MD steps modulo nstcalcenergy (page 48) are stored
in the energy file, so gmx energy (page 182) can report exact energy averages and fluctuations also when
nstenergy (page 48) > 1

nstxout—-compressed
(0) [steps] number of steps that elapse between writing position coordinates using lossy compression (xtc
(page 505) file), the first and last coordinates are always written, unless 0, which means that there is no
compressed coordinates output.

compressed—-x—precision
(1000) [real] precision with which to write to the compressed trajectory file

compressed—-x—-grps
group(s) to write to the compressed trajectory file, by default the whole system is written (if

nstxout-compressed (page 48) > 0)

energygrps
group(s) for which to write to write short-ranged non-bonded potential energies to the energy file (not
supported on GPUs)

3.7. Molecular dynamics parameters (.mdp options) 48

GROMACS Documentation, Release 2026-rc

Neighbor searching

cutoff-scheme

Verlet

Generate a pair list with buffering. The buffer size is automatically set based on
verlet-buffer—tolerance (page 49), unless this is set to -1, in which case r1ist (page 50)
will be used.

group
Generate a pair list for groups of atoms, corresponding to the charge groups in the topology. This
option is no longer supported.

nstlist

pbc

(10) [steps]

>0
Interval between steps that update the neighbor list. When dynamics and
verlet-buffer—-tolerance (page 49) set, nstlist (page 49) is actually a minimum
value and gmx mdrun (page 221) might increase it, unless it is set to 1. With parallel simulations
and/or non-bonded force calculation on the GPU, a value of 20 or 40 often gives the best performance.
With energy minimization this parameter is not used as the pair list is updated when at least one atom
has moved by more than half the pair list buffer size.

0
The neighbor list is only constructed once and never updated. This is mainly useful for vacuum simu-
lations in which all particles see each other. But vacuum simulations are (temporarily) not supported.

<0
Unused.

Xyz
Use periodic boundary conditions in all directions.

no
Use no periodic boundary conditions, ignore the box. To simulate without cut-offs, set all cut-offs and
nstlist (page 49) to 0. For best performance without cut-offs on a single MPI rank, set nst1ist
(page 49) to zero.

Xy

Use periodic boundary conditions in x and y directions only. This can be used in combination with
walls (page 61). Without walls or with only one wall the system size is infinite in the z direction.
Therefore pressure coupling or Ewald summation methods can not be used. These disadvantages do
not apply when two walls are used.

periodic—-molecules

no

molecules are finite, fast molecular PBC can be used

yes

for systems with molecules that couple to themselves through the periodic boundary conditions, this
requires a slower PBC algorithm and molecules are not made whole in the output

verlet-buffer-tolerance

(0.005) [kJ mol™! ps']

Used when performing a simulation with dynamics. This sets the maximum allowed error for pair interac-
tions per particle caused by the Verlet buffer, which indirectly sets r1ist (page 50). As both nstlist
(page 49) and the Verlet buffer size are fixed (for performance reasons), particle pairs not in the pair list can

3.7. Molecular dynamics parameters (.mdp options) 49

GROMACS Documentation, Release 2026-rc

occasionally get within the cut-off distance during nst1ist (page 49) -1 steps. This causes very small
jumps in the energy. In a constant-temperature ensemble, these very small energy jumps can be estimated
for a given cut-off and r11ist (page 50). The estimate assumes a homogeneous particle distribution, hence
the errors might be slightly underestimated for multi-phase systems. (See the reference manual for details).
For longer pair-list life-time (nst1ist (page 49) -1) * dt (page 45) the buffer is overestimated, because
the interactions between particles are ignored. Combined with cancellation of errors, the actual drift of the
total energy is usually one to two orders of magnitude smaller. Note that the generated buffer size takes into
account that the GROMACS pair-list setup leads to a reduction in the drift by a factor 10, compared to a sim-
ple particle-pair based list. Without dynamics (energy minimization etc.), the buffer is 5% of the cut-off. For
NVE simulations the initial temperature is used, unless this is zero, in which case a buffer of 10% is used.
For NVE simulations the tolerance usually needs to be lowered to achieve proper energy conservation on
the nanosecond time scale. To override the automated buffer setting, use verlet-buffer—-tolerance
(page 49) =-1 and set r11ist (page 50) manually.

verlet-buffer-pressure-tolerance
(0.5) [bar]

Used when performing a simulation with dynamics and only active when verlet-buffer-tolerance
(page 49) is positive. This sets the maximum tolerated error in the average pressure due to missing Lennard-
Jones interactions of particle pairs that are not in the pair list, but come within rvdw (page 53) range as the
pair list ages. As for the drift tolerance, the (over)estimate of the pressure error is tight at short times. At
longer time it turns into a significant overestimate, because interactions limit the displacement of particles.
Note that the default tolerance of 0.5 bar corresponds to a maximum relative deviation of the density of
liquid water of 2e-5.

rlist

(1) [nm] Cut-off distance for the short-range neighbor list. With dynamics, this is by default set by the
verlet-buffer—tolerance (paged49)and verlet-buffer-pressure—tolerance (page 50)
options and the value of r1ist (page 50) is ignored. Without dynamics, this is by default set to the
maximum cut-off plus 5% buffer, except for test particle insertion, where the buffer is managed exactly and
automatically. For NVE simulations, where the automated setting is not possible, the advised procedure is
to run gmx grompp (page 196) with an NVT setup with the expected temperature and copy the resulting
value of r1ist (page 50) to the NVE setup.

Electrostatics

coulombtype

Cut-off

Plain cut-off with pair list radius r1ist (page 50) and Coulomb cut-off rcoulomb (page 51),
where rlist (page 50) >= rcoulomb (page 51). Note that with the (default) setting of
coulomb-modifier (page 51) =Potential-shift not only the potentials between interacting pairs
are shifted to be zero at the cut-off, but the same shift is also applied to excluded pairs. This does not
lead to forces between excluded pairs, but does add a constant offset to the total Coulomb potential.

Ewald

Classical Ewald sum electrostatics. The real-space cut-off rcoulomb (page 51) should be equal
to r1ist (page 50). Use e.g. rlist (page 50) =0.9, rcoulomb (page 51) =0.9. The highest
magnitude of wave vectors used in reciprocal space is controlled by fourierspacing (page 53).
The relative accuracy of direct/reciprocal space is controlled by ewa ld-rtol (page 54).

NOTE: Ewald scales as O(N*?) and is thus extremely slow for large systems. It is included mainly for
reference - in most cases PME will perform much better.

PME

Fast smooth Particle-Mesh Ewald (SPME) electrostatics. Direct space is similar to the Ewald
sum, while the reciprocal part is performed with FFTs. Grid dimensions are controlled with
fourierspacing (page 53) and the interpolation order with pme—-order (page 54). With a grid
spacing of 0.1 nm and cubic interpolation the electrostatic forces have an accuracy of 2-3*10*. Since
the error from the vdw-cutoff is larger than this you might try 0.15 nm. When running in parallel

3.7. Molecular dynamics parameters (.mdp options) 50

GROMACS Documentation, Release 2026-rc

the interpolation parallelizes better than the FFT, so try decreasing grid dimensions while increasing
interpolation.

P3M-AD

Particle-Particle Particle-Mesh algorithm with analytical derivative for for long-range electrostatic in-
teractions. The method and code is identical to SPME, except that the influence function is optimized
for the grid. This gives a slight increase in accuracy.

Reaction-Field

Reaction field electrostatics with Coulomb cut-off rcoulomb (page 51), where r1ist (page 50) >=
rvdw (page 53). The dielectric constant beyond the cut-off is epsilon—rf (page 52). The dielectric
constant can be set to infinity by setting epsilon-rf (page 52) =0.

User

Currently unsupported. gmx mdrun (page 221) will now expect to find a file table . xvg with user-
defined potential functions for repulsion, dispersion and Coulomb. When pair interactions are present,
gmx mdrun (page 221) also expects to find a file tablep.xvg for the pair interactions. When the
same interactions should be used for non-bonded and pair interactions the user can specify the same file
name for both table files. These files should contain 7 columns: the x value, f (x), -f' (%), g (x),
-g'(x),h(x),-h' (%), where f (x) is the Coulomb function, g (x) the dispersion function and
h (x) the repulsion function. When vdwt ype (page 52) is not set to User the values for g, -g', h
and —h"' are ignored. For the non-bonded interactions x values should run from O to the largest cut-off
distance + table-extension (page 53) and should be uniformly spaced. For the pair interactions
the table length in the file will be used. The optimal spacing, which is used for non-user tables, is
0.002 nm when you run in mixed precision or 0. 0005 nm when you run in double precision. The
function value at x=0 is not important. More information is in the printed manual.

PME-Switch
Currently unsupported. A combination of PME and a switch function for the direct-space part (see
above). rcoulomb (page 51) is allowed to be smaller than r11st (page 50).

PME-User

Currently unsupported. A combination of PME and user tables (see above). rcoulomb (page 51) is
allowed to be smaller than r11ist (page 50). The PME mesh contribution is subtracted from the user
table by gmx mdrun (page 221). Because of this subtraction the user tables should contain about 10
decimal places.

PME-User-Switch

Currently unsupported. A combination of PME-User and a switching function (see above). The
switching function is applied to final particle-particle interaction, i.e. both to the user supplied function
and the PME Mesh correction part.

coulomb-modifier

Potential-shift
Shift the Coulomb potential by a constant such that it is zero at the cut-off. This makes the potential
the integral of the force. Note that this does not affect the forces or the sampling.
None
Use an unmodified Coulomb potential. This can be useful when comparing energies with those com-
puted with other software.
rcoulomb-switch
(0) [nm] where to start switching the Coulomb potential, only relevant when force or potential switching is
used
rcoulomb

(1) [nm] The distance for the Coulomb cut-off. Note that with PME this value can be increased by the PME
tuning in gmx mdrun (page 221) along with the PME grid spacing.

3.7. Molecular dynamics parameters (.mdp options) 51

GROMACS Documentation, Release 2026-rc

epsilon-r

(1) The relative dielectric constant. A value of 0 means infinity.

epsilon-rf

(0) The relative dielectric constant of the reaction field. This is only used with reaction-field electrostatics.
A value of 0 means infinity.

Van der Waals

vdwtype

Cut—-off

PME

Plain cut-off with pair list radius r1ist (page 50) and VAW cut-off rvdw (page 53), where r1ist
(page 50) >= rvdw (page 53).

Fast smooth Particle-mesh Ewald (SPME) for VAW interactions. The grid dimensions are controlled
with fourierspacing (page 53) in the same way as for electrostatics, and the interpolation order
is controlled with pme-order (page 54). The relative accuracy of direct/reciprocal space is con-
trolled by ewald-rtol—-1j (page 54), and the specific combination rules that are to be used by the
reciprocal routine are set using 1 j—pme—-comb—-rule (page 54).

Shift

This functionality is deprecated and replaced by using vdwtype=Cut-off (page 52) with
vdw-modifier=Force—switch (page 52). The LJ (not Buckingham) potential is decreased over
the whole range and the forces decay smoothly to zero between rvdw—switch (page 53) and rvdw

(page 53).

Switch

This functionality is deprecated and replaced by using vdwtype=Cut-off (page 52) with
vdw-modifier=Potential-switch (page 52). The LJ (not Buckingham) potential is normal
outto rvdw—switch (page 53), after which it is switched off to reach zero at rvdw (page 53). Both
the potential and force functions are continuously smooth, but be aware that all switch functions will
give rise to a bulge (increase) in the force (since we are switching the potential).

User

Currently unsupported. See coulombtype=User (page 51) for instructions. The function value at
zero is not important. When you want to use LJ correction, make sure that rvdw (page 53) corresponds
to the cut-off in the user-defined function. When coulombt ype (page 50) is not set to User the values
for the f and —£' columns are ignored.

vdw-modifier

Potential-shift

Shift the Van der Waals potential by a constant such that it is zero at the cut-off. This makes the
potential the integral of the force. Note that this does not affect the forces or the sampling.

None

Use an unmodified Van der Waals potential. This can be useful when comparing energies with those
computed with other software.

Force-switch

Smoothly switches the forces to zero between rvdw—switch (page 53) and rvdw (page 53). This
shifts the potential shift over the whole range and switches it to zero at the cut-off. Note that this is
more expensive to calculate than a plain cut-off and it is not required for energy conservation, since
Potential-shift conserves energy just as well.

3.7. Molecular dynamics parameters (.mdp options) 52

GROMACS Documentation, Release 2026-rc

Potential-switch

Smoothly switches the potential to zero between rvdw—switch (page 53) and rvdw (page 53).
Note that this introduces articifically large forces in the switching region and is much more expensive
to calculate. This option should only be used if the force field you are using requires this.

rvdw-switch

rvdw

(0) [nm] where to start switching the LJ force and possibly the potential, only relevant when force or
potential switching is used

(1) [nm] distance for the LJ or Buckingham cut-off

DispCorr

no

do not apply any correction

EnerPres

apply long-range dispersion corrections for Energy and Pressure

Ener

apply long-range dispersion corrections for Energy only

Tables

table—-extension

(1) [nm] Extension of the non-bonded potential lookup tables beyond the largest cut-off distance. With
actual non-bonded interactions the tables are never accessed beyond the cut-off. But a longer table length
might be needed for the 1-4 interactions, which are always tabulated irrespective of the use of tables for the
non-bonded interactions.

energygrp-table

Currently unsupported. When user tables are used for electrostatics and/or VAW, here one can give pairs of
energy groups for which separate user tables should be used. The two energy groups will be appended to
the table file name, in order of their definition in energygrps (page 48), separated by underscores. For
example, if energygrps = Na Cl Sol and energygrp-table = Na Na Na C1l, gmx mdrun
(page 221) will read table_Na_Na.xvg and table_Na_Cl.xvg in addition to the normal table.
xvg which will be used for all other energy group pairs.

Ewald

four

four

four

ierspacing

(0.12) [nm] For ordinary Ewald, the ratio of the box dimensions and the spacing determines a lower bound
for the number of wave vectors to use in each (signed) direction. For PME and P3M, that ratio determines
a lower bound for the number of Fourier-space grid points that will be used along that axis. In all cases, the
number for each direction can be overridden by entering a non-zero value for that fourier—nx (page 53)
direction. For optimizing the relative load of the particle-particle interactions and the mesh part of PME, it
is useful to know that the accuracy of the electrostatics remains nearly constant when the Coulomb cut-off
and the PME grid spacing are scaled by the same factor. Note that this spacing can be scaled up along with
rcoulomb (page 51) by the PME tuning in gmx mdrun (page 221).

ier—-nx

ier—-ny

3.7. Molecular dynamics parameters (.mdp options) 53

GROMACS Documentation, Release 2026-rc

fourier—nz

(0) Highest magnitude of wave vectors in reciprocal space when using Ewald. Grid size when using PME or
P3M. These values override fourierspacing (page 53) per direction. The best choice is powers of 2,
3,5 and 7. Avoid large primes. Note that these grid sizes can be reduced along with scaling up rcoulomb
(page 51) by the PME tuning in gmx mdrun (page 221).

pme—order

(4) The number of grid points along a dimension to which a charge is mapped. The actual order of the PME
interpolation is one less, e.g. the default of 4 gives cubic interpolation. Supported values are 3 to 12 (max
8 for P3M-AD). When running in parallel, it can be worth to switch to 5 and simultaneously increase the
grid spacing. Note that on the CPU only values 4 and 5 have SIMD acceleration and GPUs only support the
value 4.

ewald-rtol

(10) The relative strength of the Ewald-shifted direct potential at rcoulomb (page 51) is given by
ewald-rtol (page 54). Decreasing this will give a more accurate direct sum, but then you need more
wave vectors for the reciprocal sum.

ewald-rtol-1j
(103) When doing PME for VdW-interactions, ewald-rtol—17j (page 54) is used to control the relative
strength of the dispersion potential at rvdw (page 53) in the same way as ewald-rtol (page 54) controls
the electrostatic potential.

1j-pme—-comb-rule
(Geometric) The combination rules used to combine VdW-parameters in the reciprocal part of LJ-PME.
Geometric rules are much faster than Lorentz-Berthelot and usually the recommended choice, even when
the rest of the force field uses the Lorentz-Berthelot rules.
Geometric

Apply geometric combination rules

Lorentz-Berthelot
Apply Lorentz-Berthelot combination rules

ewald-geometry

3d
The Ewald sum is performed in all three dimensions.

3dc

The reciprocal sum is still performed in 3D, but a force and potential correction applied in the z
dimension to produce a pseudo-2D summation. If your system has a slab geometry in the x—y plane
you can try to increase the z-dimension of the box (a box height of 3 times the slab height is usually
ok) and use this option.

epsilon-surface

(0) This controls the dipole correction to the Ewald summation in 3D. The default value of zero means it is
turned off. Turn it on by setting it to the value of the relative permittivity of the imaginary surface around
your infinite system. Be careful - you should not use this if you have free mobile charges in your system.
This value does not affect the slab 3DC variant of the long-range corrections.

3.7. Molecular dynamics parameters (.mdp options) 54

GROMACS Documentation, Release 2026-rc

Temperature coupling

ensemble-temperature-setting

auto
With this setting gmx grompp (page 196) will determine which of the next three settings is available
and choose the appropriate one. When all atoms are coupled to a temperature bath with the same
temperature, a constant ensemble temperature is chosen and the value is taken from the temperature
bath.

constant
The system has a constant ensemble temperature given by ensemble-temperature (page 55). A
constant ensemble temperature is required for certain sampling algorithms such as AWH.

variable
The system has a variable ensemble temperature due to simulated annealing or simulated tempering.
The system ensemble temperature is set dynamically during the simulation.

not-available

The system has no ensemble temperature.

ensemble—-temperature
(-1) [K]

The ensemble temperature for the system. The input value is only wused with
ensemble—-temperature-setting=constant. By default the ensemble temperature is copied
from the temperature of the thermal bath (when used).

tcoupl
no
No temperature coupling.
berendsen

Temperature coupling with a Berendsen thermostat to a bath with temperature re -t (page 56), with
time constant tau—t (page 56). Several groups can be coupled separately, these are specified in the
tc—grps (page 56) field separated by spaces. This is a historical thermostat needed to be able to
reproduce previous simulations, but we strongly recommend not to use it for new production runs.
Consult the manual for details.

nose-hoover

Temperature coupling using a Nose-Hoover extended ensemble. The reference temperature and cou-
pling groups are selected as above, but in this case tau—t (page 56) controls the period of the tem-
perature fluctuations at equilibrium, which is slightly different from a relaxation time. For NVT sim-
ulations the conserved energy quantity is written to the energy and log files.

andersen

Temperature coupling by randomizing a fraction of the particle velocities at each timestep. Reference
temperature and coupling groups are selected as above. tau—t (page 56) is the average time between
randomization of each molecule. Inhibits particle dynamics somewhat, but has little or no ergodicity
issues. Currently only implemented with velocity Verlet, and not implemented with constraints.

andersen-massive

Temperature coupling by randomizing velocities of all particles at infrequent timesteps. Reference
temperature and coupling groups are selected as above. tau-t (page 56) is the time between ran-
domization of all molecules. Inhibits particle dynamics somewhat, but has little or no ergodicity
issues. Currently only implemented with velocity Verlet.

v-rescale

Temperature coupling using velocity rescaling with a stochastic term (JCP 126, 014101). This thermo-
stat is similar to Berendsen coupling, with the same scaling using t au—t (page 56), but the stochastic
term ensures that a proper canonical ensemble is generated. The random seed is set with 1d-seed

3.7. Molecular dynamics parameters (.mdp options) 55

GROMACS Documentation, Release 2026-rc

(page 47). This thermostat works correctly even for tau—t (page 56) =0. For NVT simulations the
conserved energy quantity is written to the energy and log file.

nsttcouple

(-1) The interval between steps that couple the temperature. The default value of -1 sets nsttcouple
(page 56) equal to 100, or fewer steps if required for accurate integration (5 steps per tau for first order
coupling, 20 steps per tau for second order coupling). Note that the default value is large in order to reduce
the overhead of the additional computation and communication required for obtaining the kinetic energy.
For velocity Verlet integrators nsttcouple (page 56) is set to 1.

nh-chain-length

(10) The number of chained Nose-Hoover thermostats for velocity Verlet integrators, the leap-
frog integrator=md (page 44) integrator only supports 1. Data for the NH chain vari-
ables is not printed to the edr (page 494) file by default, but can be turned on with the
print-nose-hoover-chain-variables (page 56) option.

print—-nose-hoover—-chain-variables

no
Do not store Nose-Hoover chain variables in the energy file.

yes
Store all positions and velocities of the Nose-Hoover chain in the energy file.

tc—grps

groups to couple to separate temperature baths

tau-t

[ps] time constant for coupling (one for each group in tc—grps (page 56)), -1 means no temperature
coupling

ref-t

[K] reference temperature for coupling (one for each group in t c-grps (page 56))

Pressure coupling

pcoupl
no
No pressure coupling. This means a fixed box size.
Berendsen

Exponential relaxation pressure coupling with time constant tau-p (page 57). The box is scaled
every nstpcouple (page 57) steps. This barostat does not yield a correct thermodynamic ensemble;
it is only included to be able to reproduce previous runs, and we strongly recommend against using it
for new simulations. See the manual for details.

C-rescale

Exponential relaxation pressure coupling with time constant t au—p (page 57), including a stochastic
term to enforce correct volume fluctuations. The box is scaled every nstpcouple (page 57) steps.
It can be used for both equilibration and production.

Parrinello—-Rahman

Extended-ensemble pressure coupling where the box vectors are subject to an equation of motion. The
equation of motion for the atoms is coupled to this. No instantaneous scaling takes place. As for Nose-
Hoover temperature coupling the time constant t au—p (page 57) is the period of pressure fluctuations
at equilibrium. This is a good method when you want to apply pressure scaling during data collection,
but beware that you can get very large oscillations if you are starting from a different pressure. For
simulations where the exact fluctations of the NPT ensemble are important, or if the pressure coupling
time is very short, it may not be appropriate, as the previous time step pressure is used in some steps
of the GROMACS implementation for the current time step pressure.

3.7.

Molecular dynamics parameters (.mdp options) 56

GROMACS Documentation, Release 2026-rc

MTTK

Martyna-Tuckerman-Tobias-Klein implementation, only useable with integrator=md-vv
(page 44) or integrator=md-vv-avek (page 44), very similar to Parrinello-Rahman. As for
Nose-Hoover temperature coupling the time constant t au—p (page 57) is the period of pressure fluc-
tuations at equilibrium. This is probably a better method when you want to apply pressure scaling
during data collection, but beware that you can get very large oscillations if you are starting from a
different pressure. This requires a constant ensemble temperature for the system. It only supports
isotropic scaling, and only works without constraints. MTTK coupling is deprecated.

pcoupltype

Specifies the kind of isotropy of the pressure coupling used. Each kind takes one or more values for

compressibility (page 57) and ref-p (page 57). Only a single value is permitted for tau—p

(page 57).

isotropic
Isotropic pressure coupling with time constant tau-p (page 57). One value each for
compressibility (page 57) and ref—p (page 57) is required.

semiisotropic
Pressure coupling which is isotropic in the x and y direction, but different in the z direction. This
can be useful for membrane simulations. Two values each for compressibility (page 57) and
ref—p (page 57) are required, for x /vy and z directions respectively.

anisotropic

Same as before, but 6 values are needed for xx, yy, zz, xy/yx, xz/zx and yz/zy components,
respectively. When the off-diagonal compressibilities are set to zero, a rectangular box will stay rect-
angular. Beware that anisotropic scaling can lead to extreme deformation of the simulation box.

surface-tension

Surface tension coupling for surfaces parallel to the xy-plane. Uses normal pressure coupling for
the z-direction, while the surface tension is coupled to the x/y dimensions of the box. The first
ref-p (page 57) value is the reference surface tension times the number of surfaces bar nm, the
second value is the reference z-pressure bar. The two compressibility (page 57) values are
the compressibility in the x/y and z direction respectively. The value for the z-compressibility should
be reasonably accurate since it influences the convergence of the surface-tension, it can also be set to
zero to have a box with constant height.

nstpcouple
(-1) The interval between steps that couple the pressure. The default value of -1 sets nstpcouple
(page 57) equal to 100, or fewer steps if required for accurate integration (5 steps per tau for first order
coupling, 20 steps per tau for second order coupling). Note that the default value is large in order to reduce
the overhead of the additional computation and communication required for obtaining the virial and kinetic
energy. For velocity Verlet integrators nsttcouple (page 56) is set to 1.

tau-p
(5) [ps] The time constant for pressure coupling (one value for all directions).

compressibility
[bar!] The compressibility (NOTE: this is now really in bar’") For water at 1 atm and 300 K the compress-
ibility is 4.5e-5 bar’!. The number of required values is implied by pcouplt ype (page 57).

ref-p
[bar] The reference pressure for coupling. The number of required values is implied by pcoupltype
(page 57).

refcoord-scaling

no

The reference coordinates for position restraints are not modified. Note that with this option the virial
and pressure might be ill defined, see here (page 431) for more details.

3.7. Molecular dynamics parameters (.mdp options) 57

GROMACS Documentation, Release 2026-rc

all

The reference coordinates are scaled with the scaling matrix of the pressure coupling.

com

Scale the center of mass of the reference coordinates with the scaling matrix of the pressure coupling.
The vectors of each reference coordinate to the center of mass are not scaled. Only one COM is
used, even when there are multiple molecules with position restraints. For calculating the COM of
the reference coordinates in the starting configuration, periodic boundary conditions are not taken into
account. Note that with this option the virial and pressure might be ill defined, see here (page 431) for
more details.

Simulated annealing

Simulated annealing is controlled separately for each temperature group in GROMACS. The reference temperature
is a piecewise linear function, but you can use an arbitrary number of points for each group, and choose either
a single sequence or a periodic behaviour for each group. The actual annealing is performed by dynamically
changing the reference temperature used in the thermostat algorithm selected, so remember that the system will
usually not instantaneously reach the reference temperature!

annealing

Type of annealing for each temperature group

no
No simulated annealing - just couple to reference temperature value.

single
A single sequence of annealing points. If your simulation is longer than the time of the last point, the
temperature will be coupled to this constant value after the annealing sequence has reached the last
time point.

periodic

The annealing will start over at the first reference point once the last reference time is reached. This is
repeated until the simulation ends.

annealing—npoints

A list with the number of annealing reference/control points used for each temperature group. Use O for
groups that are not annealed. The number of entries should equal the number of temperature groups.

annealing-time

List of times at the annealing reference/control points for each group. If you are using periodic annealing,
the times will be used modulo the last value, i.e. if the values are 0, 5, 10, and 15, the coupling will restart at
the Ops value after 15ps, 30ps, 45ps, etc. The number of entries should equal the sum of the numbers given
in annealing-npoints (page 58).

annealing-temp

List of temperatures at the annealing reference/control points for each group. The number of entries should
equal the sum of the numbers given in annealing-npoints (page 58).

Confused? OK, let’s use an example. Assume you have two temperature groups, set the group selections to
annealing = single periodic, the number of points of each group to annealing-npoints = 3
4, the times to annealing-time = 0 3 6 0 2 4 6 and finally temperatures to annealing-temp =
298 280 270 298 320 320 298. The first group will be coupled to 298K at Ops, but the reference tem-
perature will drop linearly to reach 280K at 3ps, and then linearly between 280K and 270K from 3ps to 6ps. After
this is stays constant, at 270K. The second group is coupled to 298K at Ops, it increases linearly to 320K at 2ps,
where it stays constant until 4ps. Between 4ps and 6ps it decreases to 298K, and then it starts over with the same
pattern again, i.e. rising linearly from 298K to 320K between 6ps and 8ps. Check the summary printed by gmx
grompp (page 196) if you are unsure!

3.7. Molecular dynamics parameters (.mdp options) 58

GROMACS Documentation, Release 2026-rc

Velocity generation

gen-vel

no
Do not generate velocities. The velocities are set to zero when there are no velocities in the input
structure file.
yes
Generate velocities in gmx grompp (page 196) according to a Maxwell distribution at temperature
gen—-temp (page 59), with random seed gen-seed (page 59). This is only meaningful with
integrator=md (page 44).
gen—-temp
(300) [K] temperature for Maxwell distribution
gen-seed

(-1) [integer] used to initialize random generator for random velocities, when gen—-seed (page 59) is set
to -1, a pseudo random seed is used.

Bonds

constraints
Controls which bonds in the topology will be converted to rigid holonomic constraints. Note that typical
rigid water models do not have bonds, but rather a specialized [settles] directive, so are not affected
by this keyword.
none

No bonds converted to constraints.

h-bonds

Convert the bonds with H-atoms to constraints.

all-bonds

Convert all bonds to constraints. Note that many force fields have been parameterized with flexible
bonds between heavy atoms and that constraining these bonds can increase energy barriers of dihe-
drals.

h-angles
Convert all bonds to constraints and convert the angles that involve H-atoms to bond-constraints. This
option is deprecated.

all-angles

Convert all bonds to constraints and all angles to bond-constraints. This option is deprecated.

constraint-algorithm
Chooses which solver satisfies any non-SETTLE holonomic constraints.

LINCS

LINear Constraint Solver. With domain decomposition the parallel version P-LINCS is used. The
accuracy in set with 1incs—-order (page 60), which sets the number of matrices in the expansion
for the matrix inversion. After the matrix inversion correction the algorithm does an iterative correction
to compensate for lengthening due to rotation. The number of such iterations can be controlled with
lincs—iter (page 60). The root mean square relative constraint deviation is printed to the log file
every nstlog (page 48) steps. If a bond rotates more than 1 incs-warnangle (page 60) in one
step, a warning will be printed both to the log file and to stderr. LINCS should not be used with
coupled angle constraints.

3.7. Molecular dynamics parameters (.mdp options) 59

GROMACS Documentation, Release 2026-rc

SHAKE

SHAKE is slightly slower and less stable than LINCS, but does work with angle constraints. The

relative tolerance is set with shake—tol (page 60), 0.0001 is a good value for “normal” MD. SHAKE

does not support constraints between atoms on different decomposition domains, so it can only be used

with domain decomposition when so-called update-groups are used, which is usually the case when

only bonds involving hydrogens are constrained. SHAKE can not be used with energy minimization.
continuation

This option was formerly known as unconstrained-start.

no

apply constraints to the start configuration and reset shells

yes
do not apply constraints to the start configuration and do not reset shells, useful for exact continuation
and reruns
shake-tol
(0.0001) relative tolerance for SHAKE

lincs—-order

(4) Highest order in the expansion of the constraint coupling matrix. When constraints form triangles, an
additional expansion of the same order is applied on top of the normal expansion only for the couplings
within such triangles. For “normal” MD simulations an order of 4 usually suffices, 6 is needed for large
time-steps with virtual sites or BD. For accurate energy minimization in double precision an order of 8
or more might be required. Note that in single precision an order higher than 6 will often lead to worse
accuracy due to amplification of rounding errors. With domain decomposition, the cell size is limited by
the distance spanned by 1incs-order (page 60) +1 constraints. When one wants to scale further than
this limit, one can decrease !incs—order (page 60) and increase 1incs—iter (page 60), since the
accuracy does not deteriorate when (1+ 1incs—-iter (page 60))* 1incs—-order (page 60) remains
constant.

lincs-iter
(1) Number of iterations to correct for rotational lengthening in LINCS. For normal runs a single step is
sufficient, but for NVE runs where you want to conserve energy accurately or for accurate energy mini-
mization in double precision you might want to increase it to 2. Note that in single precision using more
than 1 iteration will often lead to worse accuracy due to amplification of rounding errors.

lincs—-warnangle

(30) [deg] maximum angle that a bond can rotate before LINCS will complain
morse
no
bonds are represented by a harmonic potential

yes

bonds are represented by a Morse potential

Energy group exclusions

energygrp—excl
Exclusion between pairs of energy groups are currently not supported.

3.7. Molecular dynamics parameters (.mdp options) 60

GROMACS Documentation, Release 2026-rc

Walls

nwall

(0) When set to 1 there is a wall at z=0, when set to 2 there is also a wall at z=z-box. Walls can only be
used with pbc (page 49) =xy. When set to 2, pressure coupling and Ewald summation can be used (it is
usually best to use semiisotropic pressure coupling with the x/y compressibility set to 0, as otherwise the
surface area will change). Walls interact wit the rest of the system through an optional wall-atomtype
(page 61). Energy groups wall0 and walll (for nwall (page 61)=2) are added automatically to monitor
the interaction of energy groups with each wall. The center of mass motion removal will be turned off in
the z-direction.
wall-atomtype

the atom type name in the force field for each wall. By (for example) defining a special wall atom type in
the topology with its own combination rules, this allows for independent tuning of the interaction of each
atomtype with the walls.

wall-type

9-3

LJ integrated over the volume behind the wall: 9-3 potential
10-4

LJ integrated over the wall surface: 10-4 potential
12-6

direct LJ potential with the z distance from the wall

table

user-defined potentials indexed with the z distance from the wall, the tables are read analogously to
the energygrp-table (page 53) option, where the first name is for a “normal” energy group and
the second name is wal1l0 or walll, only the dispersion and repulsion columns are used

wall-r-linpot
(-1) [nm] Below this distance from the wall the potential is continued linearly and thus the force is constant.
Setting this option to a postive value is especially useful for equilibration when some atoms are beyond a
wall. When the value is <=0 (<0 for wall-type (page 61) =table), a fatal error is generated when atoms
are beyond a wall.

wall-density

[nm™3]/ [nm2] the number density of the atoms for each wall for wall types 9-3 and 10-4

wall-ewald-zfac

(3) The scaling factor for the third box vector for Ewald summation only, the minimum is 2. Ewald sum-
mation can only be used with nwall (page 61) =2, where one should use ewald-geometry (page 54)
=3dc. The empty layer in the box serves to decrease the unphysical Coulomb interaction between periodic
images.

COM pulling

Sets whether pulling on collective variables is active. Note that where pulling coordinates are applicable, there
can be more than one (set with pull-ncoords (page 63)) and multiple related mdp (page 497) variables will
exist accordingly. Documentation references to things like pull-coordl—-vec (page 65) should be understood
to apply to to the applicable pulling coordinate, eg. the second pull coordinate is described by pull-coord2-vec,
pull-coord2-k, and so on.

pull

no

No center of mass pulling. All the following pull options will be ignored (and if present in the mdp
(page 497) file, they unfortunately generate warnings)

3.7. Molecular dynamics parameters (.mdp options) 61

GROMACS Documentation, Release 2026-rc

yes
Center of mass pulling will be applied on 1 or more groups using 1 or more pull coordinates.
pull-cylinder-r
(1.5) [nm] the radius of the cylinder for pull-coordl-geometry=cylinder (page 64)
pull-constr-tol

(10°) the relative constraint tolerance for constraint pulling
pull-print-com
no
do not print the COM for any group

yes

print the COM of all groups for all pull coordinates to the pullx.xvg file.

pull-print-ref-value

no

do not print the reference value for each pull coordinate

yes

print the reference value for each pull coordinate to the pullx.xvg file.

pull-print-components

no

only print the distance for each pull coordinate

yes
print the distance and Cartesian components selected in pull-coordl-dim (page 65) to the
pullx.xvg file.
pull-nstxout
(50) interval for writing out the COMs of all the pull groups (0 is never) to the pullx.xvg file.

pull-nstfout
(50) interval for writing out the force of all the pulled groups (0 is never) to the pullf.xvg file.

pull-pbc-ref-prev-step—com

no
Use the reference atom (pull—-groupl-pbcatom (page 63)) for the treatment of periodic boundary
conditions.

yes

Use the COM of the previous step as reference for the treatment of periodic boundary conditions.
The reference is initialized using the reference atom (pull-groupl-pbcatom (page 63)), which
should be located centrally in the group. Using the COM from the previous step can be useful if one
or more pull groups are large or very flexible.

pull-xout-average
no
Write the instantaneous coordinates for all the pulled groups.

yes

Write the average coordinates (since last output) for all the pulled groups. N.b., some analysis tools
might expect instantaneous pull output.

pull-fout-average

3.7. Molecular dynamics parameters (.mdp options) 62

GROMACS Documentation, Release 2026-rc

no

Write the instantaneous force for all the pulled groups.

yes

Write the average force (since last output) for all the pulled groups. N.b., some analysis tools might
expect instantaneous pull output.

pull-ngroups
(1) The number of pull groups, not including the absolute reference group, when used. Pull groups can be
reused in multiple pull coordinates. Below only the pull options for group 1 are given, further groups simply
increase the group index number.

pull-ncoords
(1) The number of pull coordinates. Below only the pull options for coordinate 1 are given, further coordi-
nates simply increase the coordinate index number.

pull-groupl—-name
The name of the pull group, is looked up in the index file or in the default groups to obtain the atoms
involved.

pull-groupl-weights
Optional relative weights which are multiplied with the masses of the atoms to give the total weight for the
COM. The number of weights should be 0, meaning all 1, or the number of atoms in the pull group.

pull-groupl-pbcatom

(0) The reference atom for the treatment of periodic boundary conditions inside the group (this has no effect
on the treatment of the pbc between groups). This option is only important when the diameter of the pull
group is larger than half the shortest box vector. For determining the COM, all atoms in the group are put at
their periodic image which is closest to pull-groupl-pbcatom (page 63). A value of 0 means that the
middle atom (number wise) is used, which is only safe for small groups. gmx grompp (page 196) checks
that the maximum distance from the reference atom (specifically chosen, or not) to the other atoms in the
group is not too large. This parameter is not used with pull-coordl-geometry (page 64) cylinder. A
value of -1 turns on cosine weighting, which is useful for a group of molecules in a periodic system, e.g. a
water slab (see Engin et al. J. Chem. Phys. B 2010).

pull-coordl-type

umbrella
Center of mass pulling using an umbrella potential between the reference group and one or more
groups.

constraint
Center of mass pulling using a constraint between the reference group and one or more groups. The
setup is identical to the option umbrella, except for the fact that a rigid constraint is applied instead of
a harmonic potential. Note that this type is not supported in combination with multiple time stepping.

constant-force
Center of mass pulling using a linear potential and therefore a constant force. For this option
there is no reference position and therefore the parameters pull-coordli-init (page 65) and
pull-coordl-rate (page 65) are not used.

flat-bottom
At distances above pull-coordl-init (page 65) a harmonic potential is applied, otherwise no
potential is applied.

flat-bottom-high
At distances below pull-coordl-init (page 65) a harmonic potential is applied, otherwise no
potential is applied.

external-potential

An external potential that needs to be provided by another module.

3.7. Molecular dynamics parameters (.mdp options) 63

GROMACS Documentation, Release 2026-rc

pull-coordl-potential-provider

The name of the external module that provides the potential for the case where
pull-coordl-type=external-potential (page 63).

pull-coordl-geometry

distance

Pull along the vector connecting the two groups. Components can be selected with
pull-coordl-dim (page 65).

direction

Pull in the direction of pull-coordl-vec (page 65).

direction—-periodic
As pull-coordl-geometry=direction (page 64), butdoes not apply periodic box vector cor-
rections to keep the distance within half the box length. This is (only) useful for pushing groups apart
by more than half the box length by continuously changing the reference location using a pull rate.
With this geometry the box should not be dynamic (e.g. no pressure scaling) in the pull dimensions
and the pull force is not added to the virial.

direction-relative

As pull-coordl—-geometry=direction (page 64), but the pull vector is the vector that points
from the COM of a third to the COM of a fourth pull group. This means that 4 groups need to be
supplied in pull-coordl-groups (page 65). Note that the pull force will give rise to a torque on
the pull vector, which is turn leads to forces perpendicular to the pull vector on the two groups defining
the vector. If you want a pull group to move between the two groups defining the vector, simply use
the union of these two groups as the reference group.

cylinder

Designed for pulling with respect to a layer where the reference COM is given by a local cylindrical
part of the reference group. The pulling is in the direction of pull-coordl-vec (page 65). From
the first of the two groups in pull-coordl—-groups (page 65) a cylinder is selected around the
axis going through the COM of the second group with direction pull-coordl-vec (page 65) with
radius pull-cylinder—r (page 62). Weights of the atoms decrease continuously to zero as the
radial distance goes from 0 to pull-cylinder—r (page 62) (mass weighting is also used). The
radial dependence gives rise to radial forces on both pull groups. Note that the radius should be
smaller than half the box size. For tilted cylinders they should be even smaller than half the box size
since the distance of an atom in the reference group from the COM of the pull group has both a radial
and an axial component. This geometry is not supported with constraint pulling.

angle
Pull along an angle defined by four groups. The angle is defined as the angle between two vectors:

the vector connecting the COM of the first group to the COM of the second group and the vector
connecting the COM of the third group to the COM of the fourth group.

angle-axis
As pull-coordl-geometry=angle (page 64) but the second vector is given by

pull-coordl-vec (page 65). Thus, only the two groups that define the first vector need to be
given.

dihedral

Pull along a dihedral angle defined by six groups. These pairwise define three vectors: the vector
connecting the COM of group 1 to the COM of group 2, the COM of group 3 to the COM of group 4,
and the COM of group 5 to the COM group 6. The dihedral angle is then defined as the angle between
two planes: the plane spanned by the the two first vectors and the plane spanned the two last vectors.

transformation

Transforms other pull coordinates wusing a mathematical expression defined by
pull-coordl—-expression (page 65). Pull coordinates of lower indices, and time, can be
used as variables to this pull coordinate. Thus, pull transformation coordinates should have a higher
pull coordinate index than all pull coordinates they transform.

3.7. Molecular dynamics parameters (.mdp options) 64

GROMACS Documentation, Release 2026-rc

pull-coordl-expression

Mathematical expression to transform pull coordinates of lower indices to a new one. The pull coordinates
are referred to as variables in the equation so that pull-coordl’s value becomes ‘x1°, pull-coord2 value
becomes ‘x2’ etc. Time can also be used a variable, becoming ‘t’. Note that angular coordinates use units
of radians in the expression. The mathematical expression are evaluated using muParser. Only relevant if
pull-coordl-geometry=transformation (page 64).

pull-coordl-dx

(1e-9) Size of finite difference to use in numerical derivation of the pull coordinate with respect to other pull
coordinates. The current implementation uses a simple first order finite difference method to perform deriva-
tion so that f*(x) = (f(x+dx)-f(x))/dx Only relevant if pull-coordl-geometry=transformation

(page 64).
pull-coordl-groups

The group indices on which this pull coordinate will operate. The number of group indices required is ge-
ometry dependent. The first index is the reference group and can be 0, in which case an absolute reference of
pull-coordl-origin (page 65)is used. With an absolute reference the system is no longer translation
invariant and one should think about what to do with the center of mass motion.

pull-coordl-dim

(Y Y Y) Selects the dimensions that this pull coordinate acts on and that are printed to the output

files when pull-print-components (page 62) = pull-coordl-start=yes (page 65). With

pull-coordl-geometry (page 64) = pull-coordl-geometry=distance (page 64), only

Cartesian components set to Y contribute to the distance. Thus setting this to Y Y N results in a dis-

tance in the x/y plane. With other geometries all dimensions with non-zero entries in pull-coordl-vec

(page 65) should be set to Y, the values for other dimensions only affect the output.
pull-coordl-origin

(0.0 0.0 0.0) The pull reference position for use with an absolute reference.

pull-coordl-vec

(0.0 0.0 0.0) The pull direction. gmx grompp (page 196) normalizes the vector.

pull-coordl-start

no

do not modify pull-coordl-init (page 65)
yes
add the COM distance of the starting conformation to pull-coordl-init (page 65)
pull-coordl-init
(0.0) [nm] or [deg] The reference distance or reference angle at t=0.

pull-coordl-rate

(0) [nm/ps] or [deg/ps] The rate of change of the reference position or reference angle.

pull-coordl-k

(0) [kJ mol"! nm™] or [kJ mol! nm™'] or [kJ mol "' rad?] or [kJ mol™! rad"!] The force constant. For umbrella
pulling this is the harmonic force constant in kJ mol"! nm (or kJ mol! rad? for angles). For constant force
pulling this is the force constant of the linear potential, and thus the negative (!) of the constant force in
kJ mol"! nm™! (or kJ mol™!' rad! for angles). Note that for angles the force constant is expressed in terms
of radians (while pull-coordl—init (page 65)and pull-coordl—-rate (page 65) are expressed in
degrees).

pull-coordl-kB

(pull-k1) [kJ mol! nm] or [kJ mol! nm™'] or [kJ mol™! rad?] or [kJ mol! rad"'] As pull-coordl-k
(page 65), but for state B. This is only used when free—energy (page 72) is turned on. The force constant
is then (1 - lambda) * pull-coordl -k (page 65) + lambda * pull-coordl-kB (page 65).

3.7. Molecular dynamics parameters (.mdp options) 65

GROMACS Documentation, Release 2026-rc

AWH adaptive biasing

awh

no
No biasing.
yes

Adaptively bias a reaction coordinate using the AWH method and estimate the correspond-
ing PMF. This requires a constant ensemble temperature to be available. The PMF and
other AWH data are written to the energy file (edr (page 494)) at an interval set by
awh-nstout (page 66) and can be extracted with the gmx awh tool. ~The AWH co-
ordinate can be multidimensional and is defined by mapping each dimension to a pull co-
ordinate index (and/or up to one alchemical free lambda state dimension free-energy
(page 72)). This is only allowed if pull-coordl-type=external-potential (page 63)
and pull-coordl-potential-provider (page 63) = awh for the concerned pull coordinate
indices. Pull geometry ‘direction-periodic’ and transformation coordinates that depend on time are not
supported by AWH.

awh—potential

convolved

The applied biasing potential is the convolution of the bias function and a set of harmonic umbrella
potentials (see awh—potential=umbrella (page 66) below). This results in a smooth potential
function and force. The resolution of the potential is set by the force constant of each umbrella,
see awhl-diml-force-constant (page 69). This option is not compatible with using the free
energy lambda state as an AWH reaction coordinate dimension.

umbrella

The potential bias is applied by controlling the position of a harmonic potential using Monte-Carlo
sampling. The force constant is set with awh1-diml-force-constant (page 69). The umbrella
location is sampled using Monte-Carlo every awh—nstsample (page 66) steps. This is option is
required when using the free energy lambda state as an AWH reaction coordinate dimension. Apart
from that, this option is mainly for comparison and testing purposes as there are no advantages to using
an umbrella.

awh-share-multisim

no
AWH will not share biases across simulations started with gmx mdrun (page 221) option -multidir.
The biases will be independent.

yes

With gmx mdrun (page 221) and option ~-multidir the bias and PMF estimates for biases with
awhl-share—group (page 68) >0 will be shared across simulations with the biases with the same
awhl-share—group (page 68) value. The simulations should have the same AWH settings for
sharing to make sense. gmx mdrun (page 221) will check whether the simulations are technically
compatible for sharing, but the user should check that bias sharing physically makes sense.

awh-seed
(-1) Random seed for Monte-Carlo sampling the umbrella position, where -1 indicates to generate a seed.
Only used with awh—potential=umbrella (page 66).

awh-nstout
(100000) Number of steps between printing AWH data to the energy file, should be a multiple of
nstenergy (page 48).

awh-nstsample

(10) Number of steps between sampling of the coordinate value. This sampling is the basis for updating the
bias and estimating the PMF and other AWH observables.

3.7. Molecular dynamics parameters (.mdp options) 66

GROMACS Documentation, Release 2026-rc

awh—nsamples—update

(100) The number of coordinate samples used for each AWH update. The update interval in steps is
awh-nstsample (page 66) times this value.

awh-nbias

(1) The number of biases, each acting on its own coordinate. The following options should be specified for
each bias although below only the options for bias number 1 is shown. Options for other bias indices are
obtained by replacing ‘1’ by the bias index.

awhl—-error-init

(10.0) [kJ mol™'] Estimated initial average error of the PMF for this bias. This value together with an
estimate of the crossing time, based on the length of the sampling interval and the given diffusion con-
stant(s) awh1-diml-diffusion (page 69), determine the initial biasing rate. With multiple dimen-
sions, the longest crossing time is used. The error is obviously not known a priori. Only a rough estimate
of awhl—-error—init (page 67) is needed however. As a general guideline, leave awhl-error-init
(page 67) to its default value when starting a new simulation. On the other hand, when there is a pri-
ori knowledge of the PMF (e.g. when an initial PMF estimate is provided, see the awhl-user-data
(page 68) option) then awhl-error-init (page 67) should reflect that knowledge.

awhl-growth

Each bias keeps a reference weight histogram for the coordinate samples. Its size sets the magnitude of the
bias function and free energy estimate updates (few samples corresponds to large updates and vice versa).
Thus, its growth rate sets the maximum convergence rate.

exp-linear

By default, there is an initial stage in which the histogram grows close to exponentially (but slower than
the sampling rate). In the final stage that follows, the growth rate is linear and equal to the sampling rate
(setby awh—nstsample (page 66)). The initial stage is typically necessary for efficient convergence
when starting a new simulation where high free energy barriers have not yet been flattened by the bias.

linear
As awhl-growth=exp-linear (page 67) but skip the initial stage. This may be useful if there
is a priori knowledge (see awhl-error—init (page 67)) which eliminates the need for an initial
stage. This is also the setting compatible with awh1-target=I1ocal-boltzmann (page 68).
awhl-growth-factor
(2) [1 The growth factor « during the exponential phase with awh1-growth=exp-1inear (page 67).
Should be larger than 1.
awhl-equilibrate-histogram

yes

Before entering the initial stage (see awhl-growth=exp-linear (page 67)), make
sure the histogram of sampled weights is following the target distribution closely enough
(specifically, at least 80% of the target region needs to have a local relative error of

less than awhl-histogram-tolerance). This option is particularly important when
awhl-share—group (page 68) > 0 and the initial configurations poorly represent the target dis-
tribution.

no

Do not equilibrate the histogram.

awhl-histogram-tolerance

(03) [] The relative tolerance for the histogram of sampled weigths, used with
awhl-equilibrate—histogram=yes (page 67). The value of 0.3 is sufficiently large to not
slow down the convergence, even when a single walker is used.

awhl-target

3.7. Molecular dynamics parameters (.mdp options) 67

GROMACS Documentation, Release 2026-rc

constant

The bias is tuned towards a constant (uniform) coordinate distribution in the defined sampling interval
(defined by [awh1-diml-start (page 69), awhl-diml—-end (page 69)]).

cutoff

Similar to awhl-target=constant (page 67), but the target distribution is proportional to 1/(1
+exp(F - awhl-target=cutoff (page 68))), where F is the free energy relative to the estimated
global minimum. This provides a smooth switch of a flat target distribution in regions with free energy
lower than the cut-off to a Boltzmann distribution in regions with free energy higher than the cut-off.

boltzmann

The target distribution is a Boltzmann distribtution with a scaled beta (inverse temperature) factor
given by awhl-target-beta-scaling (page 68). E.g., a value of 0.1 would give the same
coordinate distribution as sampling with a simulation temperature scaled by 10.

local-boltzmann

Same target distribution and use of awh1-target-beta-scaling (page 68) but the convergence
towards the target distribution is inherently local i.e., the rate of change of the bias only depends on the
local sampling. This local convergence property is only compatible with awh1-growth=1inear
(page 67), since for awh1-growth=exp-1linear (page 67) histograms are globally rescaled in the
initial stage.

awhl-target-beta-scaling
(0) For awhl-target=boltzmann (page 68) and awhl-target=1local-boltzmann (page 68) it
is the unitless beta scaling factor taking values in (0,1).

awhl-target—-cutoff
(0) [kJ mol'] For awh1-target=cutoff (page 68) this is the cutoff, should be > 0.

awhl-user-data

no

Initialize the PMF and target distribution with default values.

yes

Initialize the PMF and target distribution with user provided data. For awh-nbias (page 67) =
1, gmx mdrun (page 221) will expect a file awhinit .xvg to be present in the run directory. For
multiple biases, gmx mdrun (page 221) expects files awhinitl.xvg, awhinit2.xvg, etc. The
file name can be changed with the —awh option. The first awh1-ndim (page 69) columns of each
input file should contain the coordinate values, such that each row defines a point in coordinate space.
Column awh1-ndim (page 69) + 1 should contain the PMF value (in kT) for each point. The target
distribution column can either follow the PMF (column awh1-ndim (page 69) + 2) or be in the same
column as written by gmx awh (page 135).

awhl-share—-group

0

Do not share the bias.
positive

Share the bias and PMF estimates between simulations. This currently only works between biases
with the same index. Note that currently sharing within a single simulation is not supported. The bias
will be shared across simulations that specify the same value for awh1-share—group (page 68).
To enable this, use awh-share-multisim=yes (page 66) and the gmx mdrun (page 221) option
-multidir. Sharing may increase convergence initially, although the starting configurations can be
critical, especially when sharing between many biases. N.b., multiple walkers sharing a degenerate

reaction coordinate may have problems overlapping their sampling, possibly making it difficult to
cover the sampling interval.

awhl-target-metric-scaling

3.7. Molecular dynamics parameters (.mdp options) 68

GROMACS Documentation, Release 2026-rc

no

Do not scale the target distribution based on the AWH friction metric.

yes
Scale the target distribution based on the AWH friction metric. Regions with high friction (long
autocorrelation times) will be sampled more. The diffusion metric is the inverse of the fric-
tion metric. This scaling can be used with any awhl-target (page 67) type and is applied
after user-provided target distribution modifications (awhl-user-data (page 68)), if any. If
awhl-growth=exp-1linear (page 67), the target distribution scaling starts after leaving the initial
phase.

awhl-target-metric—-scaling-limit
(10) The upper limit of scaling, relative to the average, when awhl-target-metric-scaling is
enabled. The lower limit will be the inverse of this value. This upper limit should be > 1.

awhl-ndim

(1) [integer] Number of dimensions of the coordinate, each dimension maps to 1 pull coordinate. The
following options should be specified for each such dimension. Below only the options for dimension
number 1 is shown. Options for other dimension indices are obtained by replacing ‘1’ by the dimension
index.

awhl-diml-coord—-provider

pull
The pull module is providing the reaction coordinate for this dimension. With multiple time-stepping,
AWH and pull should be in the same MTS level.

fep-lambda

The free energy free-energy (page 72) lambda state is the reaction coordinate for this di-
mension. The lambda states to use are specified by fep—lambdas (page 73), vdw-lambdas
(page 73), coul—-lambdas (page 73) etc. This is not compatible with delta-lambda. It also re-
quires calc-lambda-neighbors=-1. With multiple time-stepping, AWH should be in the slow
level. This option requires awh-potential=umbrella (page 66).

awhl-diml-coord-index
(1) Index of the pull coordinate defining this coordinate dimension.

awhl-diml-force-constant

(0) [kJ mol! nm™] or [kJ mol™' rad?] Force constant for the (convolved) umbrella potential(s) along this
coordinate dimension.

awhl-diml-start

(0.0) [nm] or [deg] Start value of the sampling interval along this dimension. The range of allowed values
depends on the relevant pull geometry (see pull-coordl-geometry (page 64)). For dihedral geome-
tries awhl-diml-start (page 69) greater than awh1-diml—-end (page 69) is allowed. The interval
will then wrap around from +period/2 to -period/2. For the direction geometry, the dimension is made pe-
riodic when the direction is along a box vector and covers more than 95% of the box length. Note that one
should not apply pressure coupling along a periodic dimension.

awhl-diml-end
(0.0) [nm] or [deg] End value defining the sampling interval together with awh1-diml-start (page 69).

awhl-diml-diffusion

(10) [nmz/ps], [radz/ps] or [ps™'] Estimated diffusion constant for this coordinate dimension determining
the initial biasing rate. This needs only be a rough estimate and should not critically affect the results unless
it is set to something very low, leading to slow convergence, or very high, forcing the system far from
equilibrium. Not setting this value explicitly generates a warning.

awhl-diml-cover—-diameter

(0.0) [nm] or [deg] Diameter that needs to be sampled by a single simulation around a coordinate value be-
fore the point is considered covered in the initial stage (see awh1-growth=exp-1inear (page 67)). A

3.7. Molecular dynamics parameters (.mdp options) 69

GROMACS Documentation, Release 2026-rc

value > 0 ensures that for each covering there is a continuous transition of this diameter across each coordi-
nate value. This is trivially true for independent simulations but not for for multiple bias-sharing simulations
(awhl-share-group (page 68)>0). For a diameter = 0, covering occurs as soon as the simulations have
sampled the whole interval, which for many sharing simulations does not guarantee transitions across free
energy barriers. On the other hand, when the diameter >= the sampling interval length, covering occurs
when a single simulation has independently sampled the whole interval.

Enforced rotation

These mdp (page 497) parameters can be used enforce the rotation of a group of atoms, e.g. a protein subunit. The
reference manual describes in detail 13 different potentials that can be used to achieve such a rotation.

rotation

no
No enforced rotation will be applied. All enforced rotation options will be ignored (and if present in
the mdp (page 497) file, they unfortunately generate warnings).
yes
Apply the rotation potential specified by rot—-type0 (page 70) to the group of atoms given under
the rot —group0 (page 70) option.
rot-ngroups
(1) Number of rotation groups.
rot-group0
Name of rotation group 0 in the index file.
rot-type0
(iso) Type of rotation potential that is applied to rotation group 0. Can be of of the following: iso, iso-pf,
pm, pm—-pf, rm, rm-pf, rm2, rm2-pf, flex, flex-t, flex2,or flex2-t.
rot-massw0

(no) Use mass weighted rotation group positions.
rot-vecO
(1.0 0.0 0.0) Rotation vector, will get normalized.
rot-pivot0
(0.0 0.0 0.0) [nm] Pivot point for the potentials iso, pm, rm, and rm2.
rot-rate0
(0) [degree ps™'] Reference rotation rate of group 0.
rot-kO
(0) [kJ mol"! nm2] Force constant for group 0.
rot-slab-dist0
(1.5) [nm] Slab distance, if a flexible axis rotation type was chosen.
rot-min—-gaussO
(0.001) Minimum value (cutoff) of Gaussian function for the force to be evaluated (for the flexible axis
potentials).
rot-eps0
(0.0001) [nm?] Value of additive constant epsilon for rm2+ and f1ex2* potentials.
rot—fit-methodO

(rmsd) Fitting method when determining the actual angle of a rotation group (can be one of rmsd, norm,
or potential).

3.7. Molecular dynamics parameters (.mdp options) 70

GROMACS Documentation, Release 2026-rc

rot-potfit—-nsteps0
(21) For fit type potential, the number of angular positions around the reference angle for which the
rotation potential is evaluated.

rot—-potfit-step0
(0.25) For fit type potential, the distance in degrees between two angular positions.

rot—-nstrout
(100) Output interval (in steps) for the angle of the rotation group, as well as for the torque and the rotation
potential energy.

rot-nstsout

(1000) Output interval (in steps) for per-slab data of the flexible axis potentials, i.e. angles, torques and slab
centers.

NMR refinement

disre

no
ignore distance restraint information in topology file
simple
simple (per-molecule) distance restraints.

ensemble

distance restraints over an ensemble of molecules in one simulation box. Normally, one would per-
form ensemble averaging over multiple simulations, using mdrun -multidir. The environment
variable GMX_DISRE_ENSEMBLE_SIZE sets the number of systems within each ensemble (usually
equal to the number of directories supplied to mdrun -multidir).

disre-weighting

equal
divide the restraint force equally over all atom pairs in the restraint

conservative

the forces are the derivative of the restraint potential, this results in an weighting of the atom pairs
to the reciprocal seventh power of the displacement. The forces are conservative when disre-tau
(page 71) is zero.

disre—-mixed

no

the violation used in the calculation of the restraint force is the time-averaged violation

yes
the violation used in the calculation of the restraint force is the square root of the product of the
time-averaged violation and the instantaneous violation
disre-fc
(1000) [kJ mol!' nm2] force constant for distance restraints, which is multiplied by a (possibly) different
factor for each restraint given in the fac column of the interaction in the topology file.
disre-tau

(0) [ps] time constant for distance restraints running average. A value of zero turns off time averaging.

nstdisreout

(100) [steps] period between steps when the running time-averaged and instantaneous distances of all atom
pairs involved in restraints are written to the energy file (can make the energy file very large)

3.7. Molecular dynamics parameters (.mdp options) 71

GROMACS Documentation, Release 2026-rc

orire

no
ignore orientation restraint information in topology file

yes
use orientation restraints, ensemble averaging can be performed with mdrun -multidir

orire-fc
(0) [kJ mol™!] force constant for orientation restraints, which is multiplied by a (possibly) different weight
factor for each restraint, can be set to zero to obtain the orientations from a free simulation
orire-tau
(0) [ps] time constant for orientation restraints running average. A value of zero turns off time averaging.
orire-fitgrp
fit group for orientation restraining. This group of atoms is used to determine the rotation R of the system

with respect to the reference orientation. The reference orientation is the starting conformation of the first
subsystem. For a protein, backbone is a reasonable choice

nstorireout

(100) [steps] period between steps when the running time-averaged and instantaneous orientations for all
restraints, and the molecular order tensor are written to the energy file (can make the energy file very large)

Free energy calculations

free-energy

no

Only use topology A.

yes

Interpolate between topology A (lambda=0) to topology B (lambda=1) and write the derivative
of the Hamiltonian with respect to lambda (as specified with dhdl-derivatives (page 75)),
or the Hamiltonian differences with respect to other “foreign” lambda values (as specified with
calc—lambda—-neighbors (page 73)) to the energy file and/or to dhdl.xvg, where they can
be processed by, for example gmx bar (page 136). The potentials, bond-lengths and angles are inter-
polated linearly as described in the manual. When sc-alpha (page 74) is larger than zero, soft-core
potentials are used for the LJ and Coulomb interactions.

expanded

Turns on expanded ensemble simulation, where the alchemical state becomes a dynamic variable,
allowing jumping between different Hamiltonians. See the expanded ensemble options for controlling
how expanded ensemble simulations are performed. The different Hamiltonians used in expanded
ensemble simulations are defined by the other free energy options.

init-lambda
(-1) starting value for lambda (float). Generally, this should only be used with slow growth (i.e. nonzero
delta-lambda (page 72)). In other cases, init—-lambda-state (page 72) should be specified in-

stead. If a lambda vector is given, init—Ilambda (page 72) is used to interpolate the vector instead of
setting lambda directly. Must be greater than or equal to 0.

delta-lambda

(0) increment per time step for lambda

init-lambda-state

(-1) starting value for the lambda state (integer). Specifies which column of the lambda
vector (coul-lambdas (page 73), vdw-lambdas (page 73), bonded-lambdas (page 73),
restraint—-lambdas (page 73), mass—lambdas (page 73), temperature—lambdas (page 73),
fep-lambdas (page 73)) should be used. This is a zero-based index: init-lambda-state=0 means
the first column, and so on.

3.7. Molecular dynamics parameters (.mdp options) 72

GROMACS Documentation, Release 2026-rc

fep-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are
allowed but should be used carefully. Free energy differences between different lambda values can then
be determined with gmx bar (page 136). fep—lambdas (page 73) is different from the other -lambdas
keywords because all components of the lambda vector that are not specified will use fep-Ilambdas
(page 73).

coul-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. If soft-core potentials are used, values must be between 0 and 1. Only the
electrostatic interactions are controlled with this component of the lambda vector (and only if the lambda=0
and lambda=1 states have differing electrostatic interactions).

vdw—-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. If soft-core potentials are used, values must be between 0 and 1. Only the van
der Waals interactions are controlled with this component of the lambda vector.

bonded-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the bonded interactions are controlled with this component of the lambda
vector.

restraint-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the restraint interactions: dihedral restraints, and the pull code restraints
are controlled with this component of the lambda vector.

mass—lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the particle masses are controlled with this component of the lambda
vector.

temperature-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 75) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the temperatures are controlled with this component of the lambda vector.
Note that these lambdas should not be used for replica exchange, only for simulated tempering.

calc-lambda—-neighbors

(1) Controls the number of lambda values for which Delta H values will be calculated and written out,
if init-lambda-state (page 72) has been set. These lambda values are referred to as “foreign”
lambdas. A positive value will limit the number of lambda points calculated to only the nth neighbors
of init-lambda-state (page 72): for example, if init-lambda—-state (page 72) is 5 and this
parameter has a value of 2, energies for lambda points 3-7 will be calculated and writen out. A value of -1
means all lambda points will be written out. For normal BAR such as with gmx bar (page 136), a value of
1 is sufficient, while for MBAR -1 should be used.

sc—function
(beutler)

beutler

Beutler ef al. soft-core function

3.7. Molecular dynamics parameters (.mdp options) 73

GROMACS Documentation, Release 2026-rc

gapsys
Gapsys et al. soft-core function

sc—-alpha
(0) for sc-function=beutler (page 73) the soft-core alpha parameter, a value of O results in linear
interpolation of the LJ and Coulomb interactions. Used only with sc-function=beutler (page 73)

sc—-r-power
(6) power 6 for the radial term in the soft-core equation. Used only with sc—function=beutler
(page 73)

sc—-coul

(no) Whether to apply the soft-core free energy interaction transformation to the Coulombic interaction of a
molecule. Default is no, as it is generally more efficient to turn off the Coulombic interactions linearly before
turning off the van der Waals interactions. Note that it is only taken into account when there are multiple
lambda components, and you can still turn off soft-core interactions by setting sc—alpha (page 74) to 0.
Used only with sc-function=beutler (page 73)

sc-power

(1) the power for lambda in the soft-core function, only the values 1 and 2 are supported. Used only with
sc-function=beutler (page 73)

sc—sigma
(0.3) [nm] for sc-function=beutler (page 73) the soft-core sigma for particles which have a
C6 or C12 parameter equal to zero or a sigma smaller than sc-sigma (page 74). Used only with
sc—function=beutler (page 73)

sc—gapsys—-scale-linpoint-1j
(0.85) for sc-function=gapsys (page 73) it is the unitless alphalL] parameter. It controls the softness
of the van der Waals interactions by scaling the point for linearizing the vdw force. Setting it to 0 will result
in the standard hard-core van der Waals interactions. Used only with sc—-function=gapsys (page 73)

sc—gapsys—scale-linpoint—-q
(0.3) [nm/e"2] For sc-function=gapsys (page 73) the alphaQ parameter with a default value of 0.3.
It controls the softness of the Coulombic interactions. Setting it to 0 will result in the standard hard-core
Coulombic interactions. Used only with sc-function=gapsys (page 73)

sc—gapsys—-sigma-1j
(0.3) [nm] for sc-function=gapsys (page 73) the soft-core sigma for particles which have a C6 or
C12 parameter equal to zero. Used only with sc—function=gapsys (page 73)

couple-moltype

Here one can supply a molecule type (as defined in the topology) for calculating solvation or coupling free
energies. There is a special option system that couples all molecule types in the system. This can be
useful for equilibrating a system starting from (nearly) random coordinates. free—energy (page 72) has
to be turned on. The Van der Waals interactions and/or charges in this molecule type can be turned on
or off between lambda=0 and lambda=1, depending on the settings of couple-Ilambda0 (page 74) and
couple-lambdal (page 75). If you want to decouple one of several copies of a molecule, you need to
copy and rename the molecule definition in the topology.

couple-lambda0
vdw—q
all interactions are on at lambda=0

vdw
the charges are zero (no Coulomb interactions) at lambda=0

the Van der Waals interactions are turned off at lambda=0; soft-core interactions will be required to
avoid singularities

3.7. Molecular dynamics parameters (.mdp options) 74

GROMACS Documentation, Release 2026-rc

none

the Van der Waals interactions are turned off and the charges are zero at lambda=0; soft-core interac-
tions will be required to avoid singularities.

couple-lambdal
analogous to couple—Ilambdal (page 74), but for lambda=1

couple-intramol

no

All intra-molecular non-bonded interactions for moleculetype couple-moltype (page 74) are re-
placed by exclusions and explicit pair interactions. In this manner the decoupled state of the molecule
corresponds to the proper vacuum state without periodicity effects.

yes
The intra-molecular Van der Waals and Coulomb interactions are also turned on/off. This can be use-
ful for partitioning free-energies of relatively large molecules, where the intra-molecular non-bonded
interactions might lead to kinetically trapped vacuum conformations. The 1-4 pair interactions are not
turned off.

nstdhdl

(100) the interval for writing dH/dlambda and possibly Delta H to dhdl.xvg, 0 means no ouput, should be a
multiple of nstcalcenergy (page 48).

dhdl-derivatives
(yes)

If yes (the default), the derivatives of the Hamiltonian with respect to lambda at each nstdhd1 (page 75)
step are written out. These values are needed for interpolation of linear energy differences with gmx bar
(page 136) (although the same can also be achieved with the right calc—lambda-neighbors (page 73)
setting, that may not be as flexible), or with thermodynamic integration

dhdl-print-energy
(no)

Include either the total or the potential energy in the dhdl file. Options are ‘no’, ‘potential’, or ‘total’. This
information is needed for later free energy analysis if the states of interest are at different temperatures. If all
states are at the same temperature, this information is not needed. ‘potential’ is useful in case one is using
mdrun -rerun to generate the dhdl.xvg file. When rerunning from an existing trajectory, the kinetic
energy will often not be correct, and thus one must compute the residual free energy from the potential
alone, with the kinetic energy component computed analytically.

separate—-dhdl-file

yes

The free energy values that are calculated (as specified with calc-Ilambda-neighbors (page 73)
and dhdl-derivatives (page 75) settings) are written out to a separate file, with the default name
dhdl . xvg. This file can be used directly with gmx bar (page 136).

no

The free energy values are written out to the energy output file (ener . edr, in accumulated blocks at
every nstenergy (page 48) steps), where they can be extracted with gmx energy (page 182) or used
directly with gmx bar (page 136).
dh-hist-size
(0) If nonzero, specifies the size of the histogram into which the Delta H values (specified with
calc-lambda-neighbors (page 73)) and the derivative dH/dl values are binned, and written to
ener.edr. This can be used to save disk space while calculating free energy differences. One histogram
gets written for each foreign lambda and two for the dH/dl, at every nstenergy (page 48) step. Be

aware that incorrect histogram settings (too small size or too wide bins) can introduce errors. Do not use
histograms unless you are certain you need it.

3.7. Molecular dynamics parameters (.mdp options) 75

GROMACS Documentation, Release 2026-rc

dh-hist-spacing
(0.1) Specifies the bin width of the histograms, in energy units. Used in conjunction with dh-hist-size

(page 75). This size limits the accuracy with which free energies can be calculated. Do not use histograms
unless you are certain you need it.

Expanded Ensemble calculations

nstexpanded

The number of integration steps beween attempted moves changing the system Hamiltonian in expanded
ensemble simulations. Must be a multiple of nstcalcenergy (page 48), but can be greater or less than
nstdhdl (page 75).

lmc-stats

no

No Monte Carlo in state space is performed.

metropolis—-transition
Uses the Metropolis weights to update the expanded ensemble weight of each state. Min{1,exp(-
(beta_new u_new - beta_old u_old)}

barker-transition
Uses the Barker transition critera to update the expanded ensemble weight of each state i, defined by
exp(-beta_new u_new)/(exp(-beta_new u_new)+exp(-beta_old u_old))

wang-landau
Uses the Wang-Landau algorithm (in state space, not energy space) to update the expanded ensemble
weights.

min-variance

Uses the minimum variance updating method of Escobedo et al. to update the expanded ensemble
weights. Weights will not be the free energies, but will rather emphasize states that need more sampling
to give even uncertainty.

lmc—-mc-move

no

No Monte Carlo in state space is performed.

metropolis—-transition
Randomly chooses a new state up or down, then uses the Metropolis criteria to decide whether to
accept or reject: Min{ 1,exp(-(beta_new u_new - beta_old u_old)}

barker-transition
Randomly chooses a new state up or down, then uses the Barker transition criteria to decide whether
to accept or reject: exp(-beta_new u_new)/(exp(-beta_new u_new)+exp(-beta_old u_old))

gibbs
Uses the conditional weights of the state given the coordinate (exp(-beta_i u_i) / sum_k exp(beta_i
u_i) to decide which state to move to.

metropolized-gibbs

Uses the conditional weights of the state given the coordinate (exp(-beta_i u_i) / sum_k exp(beta_i u_i)
to decide which state to move to, EXCLUDING the current state, then uses a rejection step to ensure
detailed balance. Always more efficient that Gibbs, though only marginally so in many situations,
such as when only the nearest neighbors have decent phase space overlap.

lmc-seed

(-1) random seed to use for Monte Carlo moves in state space. When Imc—-seed (page 76) is set to -1, a
pseudo random seed is us

3.7. Molecular dynamics parameters (.mdp options) 76

GROMACS Documentation, Release 2026-rc

mc—temperature

Temperature used for acceptance/rejection for Monte Carlo moves. If not specified, the temperature of the
simulation specified in the first group of ref—t (page 56) is used.

wl-ratio
(0.8) The cutoff for the histogram of state occupancies to be reset, and the free energy incrementor to be
changed from delta to delta * wl1—-scale (page 77). If we define the Nratio = (number of samples at each
histogram) / (average number of samples at each histogram). w1 -ratio (page 77) of 0.8 means that means
that the histogram is only considered flat if all Nratio > 0.8 AND simultaneously all 1/Nratio > 0.8.

wl-scale

(0.8) Each time the histogram is considered flat, then the current value of the Wang-Landau incrementor for
the free energies is multiplied by w1 -scale (page 77). Value must be between 0 and 1.

init-wl-delta

(1.0) The initial value of the Wang-Landau incrementor in kT. Some value near 1 kT is usually most efficient,
though sometimes a value of 2-3 in units of kT works better if the free energy differences are large.

wl-oneovert

(no) Set Wang-Landau incrementor to scale with 1/(simulation time) in the large sample limit. There is
significant evidence that the standard Wang-Landau algorithms in state space presented here result in free
energies getting ‘burned in’ to incorrect values that depend on the initial state. when wl-oneovert
(page 77) is true, then when the incrementor becomes less than 1/N, where N is the number of samples
collected (and thus proportional to the data collection time, hence ‘1 over t’), then the Wang-Lambda in-
crementor is set to 1/N, decreasing every step. Once this occurs, wl-ratio (page 77) is ignored, but the
weights will still stop updating when the equilibration criteria set in Imc-weights-equil (page 78) is
achieved.

lmc-repeats

(1) Controls the number of times that each Monte Carlo swap type is performed each iteration. In the limit
of large numbers of Monte Carlo repeats, then all methods converge to Gibbs sampling. The value will
generally not need to be different from 1.

lmc-gibbsdelta

(-1) Limit Gibbs sampling to selected numbers of neighboring states. For Gibbs sampling, it is some-
times inefficient to perform Gibbs sampling over all of the states that are defined. A positive value of
Imc—-gibbsdelta (page 77) means that only states plus or minus Imc-gibbsdelta (page 77) are
considered in exchanges up and down. A value of -1 means that all states are considered. For less than 100
states, it is probably not that expensive to include all states.

lmc-forced—-nstart

(0) Force initial state space sampling to generate weights. In order to come up with reasonable ini-
tial weights, this setting allows the simulation to drive from the initial to the final lambda state, with
Imc-forced-nstart (page 77) steps at each state before moving on to the next lambda state. If
Imc-forced-nstart (page 77) is sufficiently long (thousands of steps, perhaps), then the weights
will be close to correct. However, in most cases, it is probably better to simply run the standard weight
equilibration algorithms.

nst-transition-matrix
(-1) Interval of outputting the expanded ensemble transition matrix. A negative number means it will only
be printed at the end of the simulation.

symmetrized-transition-matrix

(no) Whether to symmetrize the empirical transition matrix. In the infinite limit the matrix will be sym-
metric, but will diverge with statistical noise for short timescales. Forced symmetrization, by using the
matrix T_sym = 1/2 (T + transpose(T)), removes problems like the existence of (small magnitude) negative
eigenvalues.

mininum-var—-min

(100) The min-variance strategy (option of Imc-stats (page 76) is only valid for larger number of sam-
ples, and can get stuck if too few samples are used at each state. mininum-var-min (page 77) is the

3.7. Molecular dynamics parameters (.mdp options) 77

GROMACS Documentation, Release 2026-rc

minimum number of samples that each state that are allowed before the min-variance strategy is activated if
selected.

init-lambda-weights
The initial weights (free energies) used for the expanded ensemble states. Default is a vector of zero weights.

format is similar to the lambda vector settings in fep—I1ambdas (page 73), except the weights can be any
floating point number. Units are kT. Its length must match the lambda vector lengths.

init-wl-histogram-counts

The initial counts used for the Wang-Landau histogram of visiting expanded ensemble states. The flatness
of this histogram is used to decide whether to decrement the histogram-building incrementor. This option is
only generally useful if continuing a shorter simulation from a previous one, as the smaller the incrementor
gets, the longer it takes for the histogram to become flat, often longer than a short simulation takes, requiring
the histogram population to be carried over from the previous simulation. The default is a vector of zeros.
The format is similar to the lambda vector settings in fep-Ilambdas (page 73). The value can be a
floating point number or an integer, as some methods increment multiple histogram bins at the same time
with fractional weights. Its length must match the lambda vector lengths.

init-lambda-counts

The initial counts used for the number of times each expanded ensemble state is visited states. Several
algorithms set by Imc-weights—-equil (page 78) use various functions of the number of visits to
each state states to decide whether to switch to different phases of weight determination. These include
number-all-lambda which requires the mumber of times each lambda state is visited to be equal to or
greater than this number, number—-samples, which requires the total number of visits to all lambda states
to be greater than or equal to this, and count-ratio, which requires the number of states visited at each
state to be within a given ratio of equal visitation. This option is only generally useful if continuing a shorter
simulation from a previous one, as most methods will reach the triggering conditions with relatively low
number of samples collected. The default is a vector of zeros. The format is similar to the lambda vector
settings in fep—lambdas (page 73). Unlike init-wl-histogram, the value can only be an integer.
Its length must match the lambda vector lengths.

lmc-weights—-equil

no
Expanded ensemble weights continue to be updated throughout the simulation.

yes
The input expanded ensemble weights are treated as equilibrated, and are not updated throughout the
simulation.

wl-delta

Expanded ensemble weight updating is stopped when the Wang-Landau incrementor falls below this
value.

number-all-lambda
Expanded ensemble weight updating is stopped when the number of samples at all of the lambda states
is greater than this value.

number-steps
Expanded ensemble weight updating is stopped when the number of steps is greater than the level
specified by this value.

number-samples
Expanded ensemble weight updating is stopped when the number of total samples across all lambda
states is greater than the level specified by this value.

count-ratio

Expanded ensemble weight updating is stopped when the ratio of samples at the least sampled lambda
state and most sampled lambda state greater than this value.

3.7. Molecular dynamics parameters (.mdp options) 78

GROMACS Documentation, Release 2026-rc

simulated-tempering

(no) Turn simulated tempering on or off. Simulated tempering is implemented as expanded ensemble sam-
pling with different temperatures instead of different Hamiltonians.

sim-temp-low
(300) [K] Low temperature for simulated tempering.

sim—-temp-high
(300) [K] High temperature for simulated tempering.

simulated-tempering-scaling

Controls the way that the temperatures at intermediate lambdas are calculated from the
temperature—lambdas (page 73) part of the lambda vector.

linear
Linearly interpolates the temperatures using the values of temperature—Ilambdas (page 73), i.e.
if sim—temp-1ow (page 79) =300, sim-temp—-high (page 79) =400, then lambda=0.5 correspond
to a temperature of 350. A nonlinear set of temperatures can always be implemented with uneven
spacing in lambda.

geometric
Interpolates temperatures geometrically between sim—-temp—Iow (page 79) and sim-temp—high
(page 79). The i:th state has temperature sim—temp—1ow (page 79) * (sim—temp—high (page 79)
/ sim—temp-1low (page 79)) raised to the power of (i/(ntemps-1)). This should give roughly equal
exchange for constant heat capacity, though of course things simulations that involve protein folding
have very high heat capacity peaks.

exponential
Interpolates temperatures exponentially between sim-temp—1ow (page 79) and sim-temp—high
(page 79). The i:th state has temperature sim-temp—1low (page 79) + (sim—temp-high (page 79)
- sim-temp-1low (page 79))*((exp(temperature-lambdas (page 73) (i))-1)/(exp(1.0)-1)).

Non-equilibrium MD

acc—-grps
groups for constant acceleration (e.g. Protein Sol) all atoms in groups Protein and Sol will experience
constant acceleration as specified in the accelerate (page 79) line. Note that the kinetic energy of the
center of mass of accelerated groups contributes to the kinetic energy and temperature of the system. If this
is not desired, make each accelerate group also a separate temperature coupling group.

accelerate
(0) [nm ps~] acceleration for acc—grps (page 79); X, y and z for each group (e.g. 0.1 0.0 0.0 -0.1
0.0 0.0 means that first group has constant acceleration of 0.1 nm ps in X direction, second group the
opposite).

freezegrps
Groups that are to be frozen (i.e. their X, Y, and/or Z position will not be updated; e.g. Lipid SOL).
freezedim (page 79) specifies for which dimension(s) the freezing applies. Note that the virial and
pressure are usually not meaningful when frozen atoms are present. Note that coordinates of frozen atoms
are not scaled by pressure-coupling algorithms.

freezedim
dimensions for which groups in freezegrps (page 79) should be frozen, specify Y or N for X, Y and Z
and foreach group (e.g. Y Y N N N N means that particles in the first group can move only in Z direction.
The particles in the second group can move in any direction).

cos—acceleration
(0) [nm ps2] the amplitude of the acceleration profile for calculating the viscosity. The acceleration is in
the X-direction and the magnitude is cos—acceleration (page 79) cos(2 pi z/boxheight). Two terms
are added to the energy file: the amplitude of the velocity profile and 1/viscosity.

3.7. Molecular dynamics parameters (.mdp options) 79

GROMACS Documentation, Release 2026-rc

deform

(0000 00) [nm ps’'] The velocities of deformation for the box elements: a(x) b(y) c(z) b(x) c¢(x) c(y). Each
step the box elements for which deform (page 79) is non-zero are calculated as: box(ts)+(t-ts)*deform,
off-diagonal elements are corrected for periodicity. The time ts is set to t at the first step and at steps at
which x and v are written to trajectory to ensure exact restarts. Deformation can be used together with
semiisotropic or anisotropic pressure coupling when the appropriate compressibilities are set to zero. The
diagonal elements can be used to strain a solid. The off-diagonal elements can be used to shear a solid
or a liquid. Note that the atom positions are not affected directly by this option. Instead, the deform
option only modifies the velocities of particles that are shifted by a periodic box vector such that their new
velocities match the virtual velocity flow field corresponding to the box deformation. As the deform option
never accelerates the remaining particles in the system, the matching velocity flow field should be set up
at the beginning of the simulation to make the particles follow the deformation. This can be done with the
deform-init—rflow (page 80) option. The flow field is removed from the kinetic energy by gmx mdrun
(page 221) so the actual temperature and pressure of the system are reported.

deform-init-flow

no

Do not modify the velocities. Only use this option when the velocities of the atoms in the initial
configuration already obey the flow field.

yes

When the deform (page 79) option is active, add a velocity profile corresponding to the box defor-
mation to the initial velocities. This is done after computing observables from the initial state such as
the initial temperature.

Electric fields

electric-field-x
electric—-field-y

electric-field-z

Here you can specify an electric field that optionally can be alternating and pulsed. The general expression
for the field has the form of a gaussian laser pulse:

(t—to)?

} cos [w(t — to)]

For example, the four parameters for direction x are set in the fields of electric-field-x (page 80)
(and similar for electric-field-y and electric—-field-z) like

electric-field-x = EO omega t0 sigma

with units (respectively) V nm™!, ps!, ps, ps.

In the special case that sigma = 0, the exponential term is omitted and only the cosine term is used. In
this case, t 0 must be set to 0. If also omega = 0 a static electric field is applied.

Read more at Electric fields (page 533) and in ref. /46 (page 595).

3.7. Molecular dynamics parameters (.mdp options) 80

GROMACS Documentation, Release 2026-rc

Mixed quantum/classical molecular dynamics

OMMM-grps
groups to be described at the QM level for MiMiC QM/MM

OMMM

no

QM/MM is no longer supported via these .mdp options. For MiMic, use no here.

Computational Electrophysiology

Use these options to switch on and control ion/water position exchanges in “Computational Electrophysiology”
simulation setups. (See the reference manual for details).

swapcoords

no
Do not enable ion/water position exchanges.
X, Y; 2
Allow for ion/water position exchanges along the chosen direction. In a typical setup with the mem-
branes parallel to the x-y plane, ion/water pairs need to be exchanged in Z direction to sustain the
requested ion concentrations in the compartments.
swap-frequency
(1) The swap attempt frequency, i.e. every how many time steps the ion counts per compartment are de-
termined and exchanges made if necessary. Normally, it is not necessary to check at every time step. For
typical Computational Electrophysiology setups, a value of about 100 is sufficient and yields a negligible
performance impact.
split—group0
Name of the index group of the membrane-embedded part of channel #0. The center of mass of these
atoms defines one of the compartment boundaries and should be chosen such that it is near the center of the
membrane.
split—-groupl
Defines the position of the other compartment boundary.
massw-splitO
(no) Defines whether or not mass-weighting is used to calculate the split group center.

no

Use the geometrical center.

yes
Use the center of mass.

massw-splitl
(no) As above, but for split—groupl (page 81).

solvent—-group
Name of the index group of solvent molecules.

coupl-steps
(10) Average the number of ions per compartment over these many swap attempt steps. This can be used to
prevent that ions near a compartment boundary (diffusing through a channel, e.g.) lead to unwanted back
and forth swaps.

3.7. Molecular dynamics parameters (.mdp options) 81

GROMACS Documentation, Release 2026-rc

iontypes
(1) The number of different ion types to be controlled. These are during the simulation exchanged with
solvent molecules to reach the desired reference numbers.

iontypeO-name
Name of the first ion type.

iontype0O-in-A
(-1) Requested (=reference) number of ions of type 0 in compartment A. The default value of -1 means: use
the number of ions as found in time step O as reference value.

iontype0O-in-B
(-1) Reference number of ions of type O for compartment B.

bulk-offsetA

(0.0) Offset of the first swap layer from the compartment A midplane. By default (i.e. bulk offset = 0.0),
ion/water exchanges happen between layers at maximum distance (= bulk concentration) to the split group
layers. However, an offset b (-1.0 < b < +1.0) can be specified to offset the bulk layer from the middle at 0.0
towards one of the compartment-partitioning layers (at +/- 1.0).

bulk-offsetB

(0.0) Offset of the other swap layer from the compartment B midplane.
threshold

(1) Only swap ions if threshold difference to requested count is reached.
cylO-r
(2.0) [nm] Radius of the split cylinder #0. Two split cylinders (mimicking the channel pores) can optionally
be defined relative to the center of the split group. With the help of these cylinders it can be counted which
ions have passed which channel. The split cylinder definition has no impact on whether or not ion/water
swaps are done.
cylO-up
(1.0) [nm] Upper extension of the split cylinder #0.
cylO-down
(1.0) [nm] Lower extension of the split cylinder #0.
cyll-r
(2.0) [nm] Radius of the split cylinder #1.
cyll-up
(1.0) [nm] Upper extension of the split cylinder #1.
cyll-down
(1.0) [nm] Lower extension of the split cylinder #1.

Density-guided simulations

These options enable and control the calculation and application of additional forces that are derived from three-
dimensional densities, e.g., from cryo electron-microscopy experiments. (See the reference manual for details)

density—guided-simulation—-active
(no) Activate density-guided simulations.
density—guided-simulation—group

(protein) The atoms that are subject to the forces from the density-guided simulation and contribute to the
simulated density.

3.7. Molecular dynamics parameters (.mdp options) 82

GROMACS Documentation, Release 2026-rc

density—guided-simulation-similarity-measure
(inner-product) Similarity measure between the density that is calculated from the atom positions and the
reference density.
inner-product

Takes the sum of the product of reference density and simulated density voxel values.

relative—-entropy
Uses the negative relative entropy (or Kullback-Leibler divergence) between reference density and
simulated density as similarity measure. Negative density values are ignored.
cross—-correlation
Uses the Pearson correlation coefficient between reference density and simulated density as similarity
measure.
density-guided-simulation-atom-spreading-weight
(unity) Determines the multiplication factor for the Gaussian kernel when spreading atoms on the grid.
unity
Every atom in the density fitting group is assigned the same unit factor.
mass

Atoms contribute to the simulated density proportional to their mass.

charge
Atoms contribute to the simulated density proportional to their charge.

density-guided-simulation-force-constant
(1e+09) [kJ mol™'] The scaling factor for density-guided simulation forces. May also be negative.

density-guided-simulation-gaussian-transform-spreading-width
(0.2) [nm] The Gaussian RMS width for the spread kernel for the simulated density.
density-guided-simulation-gaussian-transform-spreading-range-in-multiples—-of-width
(4) The range after which the gaussian is cut off in multiples of the Gaussian RMS width described above.

density—-guided-simulation-reference-density-filename
(reference.mrc) Reference density file name using an absolute path or a path relative to the to the folder
from which gmx mdrun (page 221) is called.
density—guided-simulation—-nst
(1) Interval in steps at which the density fitting forces are evaluated and applied. The forces are scaled by
this number when applied (See the reference manual for details).
density-guided-simulation-normalize-densities
(true) Normalize the sum of density voxel values to one for the reference density as well as the simulated
density.
density-guided-simulation-adaptive-force-scaling
(false) Adapt the force constant to ensure a steady increase in similarity between simulated and reference
density.
true

Use adaptive force scaling.

density—-guided-simulation-adaptive-force-scaling-time—-constant

(4) [ps] Couple force constant to increase in similarity with reference density with this time constant. Larger
times result in looser coupling.

3.7. Molecular dynamics parameters (.mdp options) 83

GROMACS Documentation, Release 2026-rc

density—guided-simulation-shift-vector
(0,0,0) [nm] Add this vector to all atoms in the density-guided-simulation-group before calculating forces
and energies for density-guided simulations. Affects only the density-guided simulation forces and energies.
Corresponds to a shift of the input density in the opposite direction by (-1) * density-guided-simulation-
shift-vector.

density-guided-simulation-transformation-matrix

(1,0,0,0,1,0,0,0,1) Multiply all atoms with this matrix in the density-guided-simulation-group before calcu-
lating forces and energies for density-guided simulations. Affects only the density-guided simulation forces
and energies. Corresponds to a transformation of the input density by the inverse of this matrix. The matrix
is given in row-major order. This option allows, e.g., rotation of the density-guided atom group around the
z-axis by 6 degrees by using the following input: (cos, —sin 6, 0,sin 6, cosf,0,0,0,1) .

QM/MM simulations with CP2K Interface

These options enable and control the calculation and application of additional QM/MM forces that are computed
by the CP2K package if it is linked into GROMACS. For further details about QM/MM interface implementation
follow Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface (page 544).

gqmmm—-cp2k-active
(false) Activate QM/MM simulations. Requires CP2K to be linked with GROMACS

gqmmm—-cp2k—gmgroup
(System) Index group with atoms that are treated with QM.

gmmm-cp2k—gmmethod
(PBE) Method used to describe the QM part of the system.

PBE
DFT using PBE functional and DZVP-MOLOPT basis set.

BLYP
DFT using BLYP functional and DZVP-MOLOPT basis set.

INPUT

Provide an external input file for CP2K when running gmx grompp (page 196) with the —gmi
command-line option. External input files are subject to the limitations that are described in Hybrid
Quantum-Classical simulations (OQM/MM) with CP2K interface (page 544).

gmmm—-cp2k—-gmcharge
(0) Total charge of the QM part.
gmmm—-cp2k—-gmmultiplicity
(1) Multiplicity or spin-state of QM part. Default value 1 means singlet state.

gmmm—-cp2k—-gmfilenames
() Names of the CP2K files that will be generated during the simulation. When using the default, empty,
value the name of the simulation input file will be used with an additional _cp2k suffix.

3.7. Molecular dynamics parameters (.mdp options) 84

GROMACS Documentation, Release 2026-rc

Collective variables (Colvars) module

These options enable and control the features provided by the collective variables (Colvars) module, a software
library for enhanced sampling methods in molecular simulations. The Colvars module is described in ref. /95
(page 597) as well as other references that are reported in the log file when the corresponding features are used.
For further details about Colvars interface implementation follow Collective Variable simulations with the Colvars
module (page 556).
colvars—active
(false) Activate Colvars computation in the current run. Requires that the Colvars library was compiled with
GROMACS, which is the default in a typical installation.
colvars—configfile
Name of the Colvars configuration file, using options specific to Colvars that are documented at: https:
/[colvars.github.io/gromacs-2026/colvars-refman-gromacs.html. The file name can be either an absolute
path, or a path relative to the working directory when gmx grompp (page 196) is called.
colvars-seed
(-1) [integer] Seed used to initialize the random generator associated with certain stochastic methods imple-
mented within Colvars. The default value of -1 generates a random seed.

The current implementation of the Colvars-GROMACS interface gathers the relevant atomic coordinates on one
MPI rank, where all collective variables and their forces are computed. Take this fact into account when choosing
how many atoms to include in selections.

NNP/MM simulations with neural network potentials in the NNPot interface

These options enable and control the calculation and application of additional forces derived from neural network
potentials via the nnpot interface, if GROMACS is built with LibTorch support. For further details about NNP/MM
interface implementation follow Neural Network Potentials (page 558).
nnpot-active
(false) Activate NNP/MM simulations via the NNPot interface. Requires GROMACS to be built with
LibTorch support.
nnpot-modelfile
(model.pt) Path to a TorchScript-compiled model, either absolute or relative to the simulation directory.
nnpot-input-group
(System) Index group defining the input atoms for the NNP subsystem. Defaults to System, which per-
forms a pure NNP simulation.
nnpot-embedding
(mechanical) Type of embedding scheme to use for NNP/MM simulations.

mechanical

Mechanical embedding scheme, NNP-MM interactions are treated classically.

electrostatic—-model
Electrostatic embedding scheme, NNP-MM interactions are computed by the NNP model. In this
case, the NNP model is expected to return the total energy, as well as forces on NNP and MM atoms.
nnpot-model-input [1-9]
Names of input fields to be filled in by GROMACS at each step and passed to the NNP model. Up to 9
inputs can be specified:
atom—-positions

Positions of the NNP atoms specified by nnpot—-input—-group (page 85).

atom—numbers
Atomic numbers of the NNP atoms specified by nnpot —-input-group (page 85).

3.7. Molecular dynamics parameters (.mdp options) 85

https://colvars.github.io/
https://colvars.github.io/gromacs-2026/colvars-refman-gromacs.html
https://colvars.github.io/gromacs-2026/colvars-refman-gromacs.html

GROMACS Documentation, Release 2026-rc

atom-pairs
Pairs of NNP atoms specified by nnpot-input-group (page 85), filter by the pair—-cutoff
(page 86), as a vector of shape (N_pairs, 2).
pair-shifts
Periodic box shift vectors for the NNP atom pairs, as a vector of shape (N_pairs, 3).
atom-positions-mm
Positions of the MM atoms surrounding the NNP region, needed for electrostatic-model em-
bedding.
atom-charges—mm
Charges of the MM atoms surrounding the NNP region, needed for electrostatic-model em-
bedding.
nnp-charge
Total charge of the NNP atoms.
box

Simulation box vectors.

pbc
Periodic boundary conditions.

pair—-cutoff

(0.0) [nm] Cutoff distance for pairs of NNP atoms. Positive cutoff value must be specified when requesting
atom-pairs input.

nnpot-link-type

(H) Type of link atoms to be used in the NNP/MM simulation, specified by element symbol. Defaults to
hydrogen (H).

nnpot-link-distance

(0.1) [nm] Distance between link atom and the bonded MM atom.

Fast Multipole Method (FMM) Interface

These options enable an FMM backend and control its settings. For further details about the FMM interface
implementation follow Fast Multipole Method (FMM) (page 560).

fmm-backend

(inactive) Activate an FMM library for electrostatics.

inactive
No FMM library is used.

exafmm
Use ExaFMM as FMM library.

fmsolvr
Use FMSolvr as FMM library.

3.7.

Molecular dynamics parameters (.mdp options) 86

GROMACS Documentation, Release 2026-rc

Options controlling ExaFmm

fmm-exafmm-direct-provider
(GROMACS) Selects direct interaction provider.

GROMACS
Use GROMACS to compute direct interactions.

FMM
Use ExaFMM to compute direct interactions.

fmm-exafmm-direct-range

(2) Specifies whether ExaFMM includes only immediate or also second-nearest neighboring cells in direct
interactions. Accepts 1 or 2. Must be 2 when using GROMACS as direct provider.

fmm-exafmm-order

(6) Multipole expansion order. Must be greater than 0.

fmm-exafmm-tree-type

(uniform) Tree structure used by ExaFMM.

uniform

Use uniform tree structure.

adaptive

Use adaptive tree structure.

fmm-exafmm-tree—-depth

(0) Tree depth for uniform tree. Required when using FMM as direct provider. Must not be set for adaptive
tree.

fmm-exafmm-max—particles—per-cell

(0) Maximum particles per cell for adaptive tree. Required and positive when fmm-exafmm-tree-type
= adaptive. Must not be set for uniform tree.

Options controlling FMSolvr

fmm-fmsolvr—-order

(8) Multipole expansion order. Must be greater than 0.

fmm-fmsolvr—-tree—-depth

(3) Tree depth controlling spatial subdivision.

fmm-fmsolvr-direct-provider

(FMM) Selects direct interaction provider.

GROMACS
Use GROMACS to compute direct interactions.

FMM

Use FMSolvr to compute direct interactions.

fmm-fmsolvr-direct-range

(1) Direct interaction settings. Must be 1, as FMSolvr currently supports direct interactions only with
immediate neighboring cells.

fmm-fmsolvr-dipole-compensation

(yes) Enables dipole compensation.

3.7. Molecular dynamics parameters (.mdp options) 87

GROMACS Documentation, Release 2026-rc

fmm-fmsolvr-sparse

(no) Enable performance optimizations for sparse simulation systems with a lot of vacuum.

User defined thingies

userl-grps

user2-grps

userintl (0)
userint2 (0)
userint3 (0)
userint4d (0)
userreall (0)
userreal2 (0)
userreal3 (0)

userreald (0)

These you can use if you modify code. You can pass integers and reals and groups to your subroutine.
Check the inputrec definition in src/gromacs/mdtypes/inputrec.h

Removed features

These features have been removed from GROMACS, but so that old mdp (page 497) and pr (page 503) files
cannot be mistakenly misused, we still parse these options. gmx grompp (page 196) and gmx mdrun (page 221)
will issue a fatal error if they are set.

adress
(no)
implicit-solvent

(no)

3.8 Useful mdrun features

This section discusses features in gmx mdrun (page 221) that do not fit well elsewhere.

3.8.1 Re-running a simulation

The rerun feature allows you to take any trajectory file t raj. t rr and compute quantities based upon the coordi-
nates in that file using the model physics supplied in the topol. tpr file. It can be used with command lines like
mdrun -s topol -rerun traj.trr. Thatfpr (page 503) could be different from the one that generated
the trajectory. This can be used to compute the energy or forces for exactly the coordinates supplied as input, or
to extract quantities based on subsets of the molecular system (see gmx convert-tpr (page 151) and gmx trjconv
(page 287)). It is easier to do a correct “single-point” energy evaluation with this feature than a 0-step simulation.

Neighbor searching is performed for every frame in the trajectory independently of the value in nstlist
(page 49), since gmx mdrun (page 221) can no longer assume anything about how the structures were generated.
Naturally, no update or constraint algorithms are ever used.

The rerun feature cannot, in general, compute many of the quantities reported during full simulations. It does only
take positions as input (ignoring potentially present velocities), and does only report potential energies, volume

3.8. Useful mdrun features 88

GROMACS Documentation, Release 2026-rc

and density, dH/dl terms, and restraint information. It does notably not report kinetic, total or conserved energy,
temperature, virial or pressure.

3.8.2 Running a simulation in reproducible mode

It is generally difficult to run an efficient parallel MD simulation that is based primarily on floating-point arithmetic
and is fully reproducible. By default, gmx mdrun (page 221) will observe how things are going and vary how the
simulation is conducted in order to optimize throughput. However, there is a “reproducible mode” available with
mdrun -reprod that will systematically eliminate all sources of variation within that run; repeated invocations
on the same input and hardware will be binary identical. However, running in this mode on different hardware,
or with a different compiler, etc. will not be reproducible. This should normally only be used when investigating
possible problems.

3.8.3 Halting running simulations

When gmx mdrun (page 221) receives a TERM or INT signal (e.g. when ctrl+C is pressed), it will stop at the
next neighbor search step or at the second global communication step, whichever happens later. When gmx mdrun
(page 221) receives a second TERM or INT signal and reproducibility is not requested, it will stop at the first
global communication step. In both cases all the usual output will be written to file and a checkpoint file is written
at the last step. When gmx mdrun (page 221) receives an ABRT signal or the third TERM or INT signal, it will
abort directly without writing a new checkpoint file. When running with MPI, a signal to one of the gmx mdrun
(page 221) ranks is sufficient, this signal should not be sent to mpirun or the gmx mdrun (page 221) process that
is the parent of the others.

3.8.4 Running multi-simulations

There are numerous situations where running a related set of simulations within the same invocation of mdrun are
necessary or useful. Running a replica-exchange simulation requires it, as do simulations using ensemble-based
distance or orientation restraints. Running a related series of lambda points for a free-energy computation is also
convenient to do this way, but beware of the potential side-effects related to resource utilization and load balance
discussed later.

This feature requires configuring GROMACS with an external MPI library (page 10) so that the set of simulations
can communicate. The n simulations within the set can use internal MPI parallelism also, so that mpirun -np
x gmx_mpi mdrun for x a multiple of n will use x/n ranks per simulation.

To launch a multi-simulation, the -mult idir option is used. For the input and output files of a multi-simulation a
set of n subdirectories is required, one for each simulation. Place all the relevant input files in those directories (e.g.
named topol.tpr), and launch a multi-simualtion with mpirun —-np x gmx_mpi mdrun -s topol
-multidir <names-of-directories>. If the order of the simulations within the multi-simulation is
significant, you are responsible for ordering their names when you provide them to —-multidir. Be careful with
shells that do filename globbing dictionary-style, e.g. dirl dirl0 dirll ... dir2

Examples running multi-simulations

[mpirun -np 32 gmx_mpi mdrun -multidir a b c d }

Starts a multi-simulation on 32 ranks with 4 simulations. The input and output files are found in directories a, b,
c, and d.

[mpirun —np 32 gmx_mpi mdrun -multidir a b ¢ d —gputasks 0000000011111111 }

Starts the same multi-simulation as before. On a machine with two physical nodes and two GPUs per node, there
will be 16 MPI ranks per node, and 8 MPI ranks per simulation. The 16 MPI ranks doing PP work on a node
are mapped to the GPUs with IDs 0 and 1, even though they come from more than one simulation. They are

3.8. Useful mdrun features 89

GROMACS Documentation, Release 2026-rc

mapped in the order indicated, so that the PP ranks from each simulation use a single GPU. However, the order
0101010101010101 could run faster.

Running replica-exchange simulations

When running a multi-simulation, using gmx mdrun -replex n means that a replica exchange is attempted
every given number of steps. The number of replicas is set with -multidir option, described above. All run
input files should use a different value for the coupling parameter (e.g. temperature), which ascends over the set of
input files. The random seed for replica exchange is set with —~reseed. After every exchange, the velocities are
scaled and neighbor searching is performed. See the Reference Manual for more details on how replica exchange
functions in GROMACS.

Multi-simulation performance considerations

The frequency of communication across a multi-simulation can have an impact on performance. This is highly
algorithm dependent, but in general it is recommended to set up a multi-simulation to do inter-simulation com-
munication as infrequently as possible but as frequently as necessary. However, even when members of multi-
simulation do not communicate frequently (or at all), and therefore the associated performance overhead is small
or even negligible, load imbalance can still have a significant impact on performance and resource utilization. Cur-
rent multi-simulation algorithms use a fixed interval for data exchange (e.g. replica exchange every N steps) and
therefore all members of a multi-simulation need to reach this step before the collective communication can hap-
pen and any of them can proceed to step N+1. Hence, the slowest member of the multi-simulation will determine
the performance of the entire ensemble. This load imbalance will not only limit performance but will also leave
resources idle; e.g. if one of the simulations in an n-way multi-simulation runs at half the performance of the rest,
the resources assigned to the n—1 faster running simulations will be left idle for approximately half of the wall-
time of the entire multi-simulation job. The source of this imbalance can range from inherent workload imbalance
across the simulations within a multi-simulation to differences in hardware speed or inter-node network perfor-
mance variability affecting a subset of ranks and therefore only some of the simulations. Reducing the amount
of resources left idle requires reducing the load imbalance, which may involve splitting up non-communicating
multi-simulations, or making sure to request a “compact” allocation on a cluster (if the job scheduler allows). Note
that imbalance also applies to non-communicating multi-simulations like FEP calculations since the resources as-
signed to earlier finishing simulations can not be relinquished until the entire MPI job can finish.

3.8.5 Controlling the length of the simulation

Normally, the length of an MD simulation is best managed through the mdp (page 497) option nsteps (page 45),
however there are situations where more control is useful. gmx mdrun -nsteps 100 overrides the mdp
(page 497) file and executes 100 steps. gmx mdrun -maxh 2.5 will terminate the simulation shortly before
2.5 hours elapse, which can be useful when running under cluster queues (as long as the queuing system does not
ever suspend the simulation).

3.9 Getting good performance from mdrun

Here we give an overview on the parallelization and acceleration schemes employed by GROMACS. The aim is
to provide an understanding of the underlying mechanisms that make GROMACS one of the fastest molecular dy-
namics simulation packages. The information presented should help choosing appropriate parallelization options,
run configuration, as well as acceleration options to achieve optimal simulation performance. We start with quick
checklist. That is followed by more detailed discussions of different aspects affecting performance.

3.9. Getting good performance from mdrun 920

GROMACS Documentation, Release 2026-rc

3.9.1 Performance checklist

There are many different aspects that affect the performance of simulations in GROMACS. Most simulations
require a lot of computational resources, therefore it can be worthwhile to optimize the use of those resources.
Several issues mentioned in the list below could lead to a performance difference of a factor of 2. So it can be
useful go through the checklist.

GROMACS configuration

Do not use double precision unless you are absolutely sure you need it.

Compile the FFTW library (yourself) with the correct flags on x86 (in most cases, the correct flags are
automatically configured).

On x86, use gcc as the compiler (not icc, pgi or the Cray compiler).
On POWER, use gcc instead of IBM’s xlc.
Use a new compiler version.
MPI library: OpenMPI usually has good performance and causes little trouble.
Make sure your compiler supports OpenMP (some versions of Clang do not).
If you have GPUs that support either CUDA, OpenCL, SYCL or HIP use them.
— Configure with —-DGMX_GPU=CUDA, —DGMX_GPU=0penCL, or -DGMX_GPU=SYCL.

— For GPUs, use the newest available SDK for your GPU to take advantage of the latest performance
enhancements.

— Use a recent GPU driver.

— Make sure you use an gmx mdrun (page 221) with GMX__STIMD appropriate for the CPU architecture;
the log file will contain a warning note if suboptimal setting is used. However, prefer AVX2 over
AVX512 in GPU or highly parallel MPI runs (for more information see the intra-core parallelization
information (page 95)).

— If compiling on a cluster head node, make sure that GMX_ SIMD is appropriate for the compute nodes.

Run setup

For an approximately spherical solute, use a rhombic dodecahedron unit cell.

When using a time-step of <=2.5 fs, use constraints=h-bonds (page 59) (and not
constraints=all-bonds (page 59)), since:

— this is faster, especially with GPUs;
— it is necessary in order to be able to use GPU-resident mode;
— and most force fields have been parametrized with only bonds involving hydrogens constrained.

When running on CPUs only or with GPUs but integration on the CPU, you can use multiple time stepping
to perform the PME mesh calculations every second step: set mt s to yes.

You can often increase the time-step to 4 fs by repartitioning hydrogen masses using the
mass-repartition-factor mdp option. This does not affect equilibrium distributions, but makes
dynamics slightly slower.

For massively parallel runs with PME, you might need to try different numbers of PME ranks (gmx mdrun
-npme ??7?) to achieve best performance; gmx tune_pme (page 292) can help automate this search.

For massively parallel runs (also gmx mdrun -multidir), or with a slow network, global communi-
cation can become a bottleneck and you can reduce it by choosing larger periods for algorithms such as
temperature and pressure coupling).

3.9.

Getting good performance from mdrun 91

GROMACS Documentation, Release 2026-rc

Checking and improving performance

* Look at the end of the md. 1og file to see the performance and the cycle counters and wall-clock time for
different parts of the MD calculation. The PP/PME load ratio is also printed, with a warning when a lot of
performance is lost due to imbalance.

* Six performance metrics are reported in the md . 1og. Select the appropriate metric for benchmarking based
on the purpose of the simulation.

ns/day
This is a commonly used metric for simulation throughput that is specific to simulation systems, con-
ditions, and hardware.

hour/ns
As the inverse of ns/day, hour/ns can be used to estimate the time to obtain a desired simulation time.

ms/step
This is a time step-independent metric that directly measures the wall-time per timestep and can be
used to measure performance with a given system.

Matom*steps/s
This is a metric for simulation throughput that is timestep-independent and normalized by system size.
It provides a measure of simulation efficiency, as the amount of work scales nearly linearly with the
number of atoms, given the same type of system and simulation settings.

Mnbf/s (Mega non-bonded forces per second)
This throughput metric is time step-independent and partially normalized by system size; When non-
bonded interactions dominate in the simulations, Mnbf/s can be used to compare hardware or algorith-
mic efficiency.

MFlops (Mega floating-point operations per second)
This is not an MD-specific metric and gives an estimate of the achieved flop rate, which can be com-
pared with the theoretical peak flop rate of the hardware. Note that this is an estimate of the useful float-
ing point operations in the code, not the actual operations emitted by the compiler or measured during
profiling. MFlops and Mnbf/s are only printed when the environment variable GMX_DETAILED_—
PERF_STATS is set.

* Adjust the number of PME ranks and/or the cut-off and PME grid-spacing when there is a large PP/PME
imbalance. Note that even with a small reported imbalance, the automated PME-tuning might have reduced
the initial imbalance. You could still gain performance by changing the mdp parameters or increasing the
number of PME ranks.

 (Especially) In GPU-resident runs (—update gpu):

— Frequent virial or energy computation can have a large overhead (and this will not show up in the cycle
counters). To reduce this overhead, increase nstcalcenergy;

— Frequent temperature or pressure coupling can have significant overhead; to reduce this, make sure to
have as infrequent coupling as your algorithms allow (typically >=50-100 steps).

* If the neighbor searching and/or domain decomposition takes a lot of time, increase nst1ist. If a Verlet
buffer tolerance is used, this is done automatically by gmx mdrun (page 221) and the pair-list buffer is
increased to keep the energy drift constant.

— especially with multi-GPU runs, the automatic increasing of nst1ist at mdrun startup can be con-
servative and larger value is often be optimal (e.g2. nst1ist=200-300 with PME and default Verlet
buffer tolerance).

— odd values of nstlist should be avoided when using CUDA Graphs to minimize the overhead associated
with graph instantiation.

e If Comm. energies takes alotof time (a note will be printed in the log file), increase nstcalcenergy.

* If all communication takes a lot of time, you might be running on too many cores, or you could try running
combined MPI/OpenMP parallelization with 2 or 4 OpenMP threads per MPI process.

3.9. Getting good performance from mdrun 92

GROMACS Documentation, Release 2026-rc

¢ In multi-GPU runs, avoid using as many ranks as cores (or hardware threads) since this introduces a major
inefficiency due to overheads associated to GPUs sharing by several MPI ranks. Use at most a few ranks per
GPU, 1-3 ranks is generally optimal; with GPU-resident mode and direct GPU communication typically 1
rank/GPU is best.

The GROMACS build system and the gmx mdrun (page 221) tool have a lot of built-in and configurable intelli-
gence to detect your hardware and make pretty effective use of it. For a lot of casual and serious use of gmx mdrun
(page 221), the automatic machinery works well enough. But to get the most from your hardware to maximize
your scientific quality, read on!

3.9.2 Hardware background information

Modern computer hardware is complex and heterogeneous, so we need to discuss a little bit of background infor-
mation and set up some definitions. Experienced HPC users can skip this section.

core
A hardware compute unit that actually executes instructions. There is normally more than one core in a
processor, often many more.

cache
A special kind of memory local to core(s) that is much faster to access than main memory, kind of like the
top of a human’s desk, compared to their filing cabinet. There are often several layers of caches associated
with a core.

socket
A group of cores that share some kind of locality, such as a shared cache. This makes it more efficient to
spread computational work over cores within a socket than over cores in different sockets. Modern server
and workstation class machines often have more than one CPU socket.

node
A group of sockets that share coarser-level locality, such as shared access to the same memory without
requiring any network hardware. A normal personal computer or racked server is a node. A node is often
the smallest amount of a large compute cluster that a user can request to use.

thread

A stream of instructions for a core to execute. There are many different programming abstractions that
create and manage spreading computation over multiple threads, such as OpenMP, pthreads, winthreads,
CUDA, SYCL, OpenCL, and OpenACC. Some kinds of hardware can map more than one software thread
to a core; on Intel x86 processors this is called “hyper-threading”, while the more general concept is often
called SMT for “simultaneous multi-threading”. IBM Power8 can for instance use up to 8 hardware threads
per core. This feature can usually be enabled or disabled either in the hardware BIOS or through a setting
in the Linux operating system. GROMACS can typically make use of this, for a moderate free performance
boost. In most cases it will be enabled by default e.g. on new x86 processors, but in some cases the system
administrators might have disabled it. If that is the case, ask if they can re-enable it for you. If you are
not sure if it is enabled, check the output of the CPU information in the log file and compare with CPU
specifications you find online.

thread affinity (pinning)
By default, most operating systems allow software threads to migrate between cores (or hardware threads) to
help automatically balance workload. However, the performance of gmx mdrun (page 221) can deteriorate if
this is permitted and will degrade dramatically especially when relying on multi-threading within a rank. To
avoid this, gmx mdrun (page 221) will by default set the affinity of its threads to individual cores/hardware
threads, unless the user or software environment has already done so (or not the entire node is used for the
run, i.e. there is potential for node sharing). Setting thread affinity is sometimes called thread “pinning”.

MPI (Message Passing Interface)
The dominant multi-node parallelization-scheme, which provides a standardized language in which pro-
grams can be written that work across more than one node.

rank
In MPI, a rank is the smallest grouping of hardware used in the multi-node parallelization scheme. That
grouping can be controlled by the user, and might correspond to a core, a socket, a node, or a group of

3.9. Getting good performance from mdrun 93

GROMACS Documentation, Release 2026-rc

nodes. The best choice varies with the hardware, software and compute task. Sometimes an MPI rank is
called an MPI process.

GPU
A graphics processing unit, which is often faster and more efficient than conventional processors for partic-
ular kinds of compute workloads. A GPU is always associated with a particular node, and often a particular
socket within that node.

OpenMP
A standardized technique supported by many compilers to share a compute workload over multiple cores.
Often combined with MPI to achieve hybrid MPI/OpenMP parallelism.

CUDA
A proprietary parallel computing framework and API developed by NVIDIA that allows targeting their
accelerator hardware. GROMACS uses CUDA for GPU acceleration support with NVIDIA hardware.

OpenCL
An open standard-based parallel computing framework that consists of a C99-based compiler and a pro-
gramming API for targeting heterogeneous and accelerator hardware. GROMACS uses OpenCL for GPU
acceleration on AMD devices (both GPUs and APUs), Intel integrated GPUs, and Apple Silicon integrated
GPUs; some NVIDIA hardware is also supported. In GROMACS, OpenCL has been deprecated in favor of
SYCL.

SYCL
An open standard based on C++17 for targeting heterogeneous systems. SYCL has several implementations,
of which GROMACS supports two: Intel oneAPI DPC++ and AdaptiveCpp. GROMACS uses SYCL for
GPU acceleration on AMD and Intel GPUs. There is experimental support for NVIDIA GPUs too.

SIMD
A type of CPU instruction by which modern CPU cores can execute multiple floating-point instructions in
a single cycle.

3.9.3 Work distribution by parallelization in GROMACS

The algorithms in gmx mdrun (page 221) and their implementations are most relevant when choosing how to make
good use of the hardware. For details, see the Reference Manual (page 359). The most important of these are

Domain Decomposition

The domain decomposition (DD) algorithm decomposes the (short-ranged) component of the non-bonded
interactions into domains that share spatial locality, which permits the use of efficient algorithms. Each
domain handles all of the particle-particle (PP) interactions for its members, and is mapped to a single MPI
rank. Within a PP rank, OpenMP threads can share the workload, and some work can be offloaded to a GPU.
The PP rank also handles any bonded interactions for the members of its domain. A GPU may perform work
for more than one PP rank, but it is normally most efficient to use a single PP rank per GPU and for that
rank to have thousands of particles. When the work of a PP rank is done on the CPU, mdrun (page 221) will
make extensive use of the SIMD capabilities of the core. There are various command-line options (page 97)
to control the behaviour of the DD algorithm.

Particle-mesh Ewald

The particle-mesh Ewald (PME) algorithm treats the long-ranged component of the non-bonded interactions
(Coulomb and possibly also Lennard-Jones). Either all, or just a subset of ranks may participate in the
work for computing the long-ranged component (often inaccurately called simply the “PME” component).
Because the algorithm uses a 3D FFT that requires global communication, its parallel efficiency gets worse
as more ranks participate, which can mean it is fastest to use just a subset of ranks (e.g. one-quarter to one-
half of the ranks). If there are separate PME ranks, then the remaining ranks handle the PP work. Otherwise,
all ranks do both PP and PME work.

3.9. Getting good performance from mdrun 94

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp

GROMACS Documentation, Release 2026-rc

3.9.4 Parallelization schemes

GROMACS, being performance-oriented, has a strong focus on efficient parallelization. There are multiple paral-
lelization schemes available, therefore a simulation can be run on a given hardware with different choices of run
configuration.

Intra-core parallelization via SIMD: SSE, AVX, etc.

One level of performance improvement available in GROMACS is through the use of Single Instruction
Multiple Data (SIMD) instructions. In detail information for those can be found under SIMD support
(page 15) in the installation guide.

In GROMACS, SIMD instructions are used to parallelize the parts of the code with the highest impact on per-
formance (nonbonded and bonded force calculation, PME and neighbour searching), through the use of hardware
specific SIMD kernels. Those form one of the three levels of non-bonded kernels that are available: reference
or generic kernels (slow but useful for producing reference values for testing), optimized plain-C kernels (can be
used cross-platform but still slow) and SIMD intrinsics accelerated kernels.

The SIMD intrinsic code is compiled by the compiler. Technically, it is possible to compile different levels of
acceleration into one binary, but this is difficult to manage with acceleration in many parts of the code. Thus,
you need to configure and compile GROMACS for the SIMD capabilities of the target CPU. By default, the build
system will detect the highest supported acceleration of the host where the compilation is carried out. For cross-
compiling for a machine with a different highest SIMD instructions set, in order to set the target acceleration,
the —DGMX_SIMD CMake option can be used. To use a single installation on multiple different machines, it is
convenient to compile the analysis tools with the lowest common SIMD instruction set (as these rely little on
SIMD acceleration), but for best performance mdrun (page 221) should be compiled be compiled separately with
the highest (latest) nat ive SIMD instruction set of the target architecture (supported by GROMACS).

Some Intel CPU architectures bring tradeoffs between the maximum clock frequency of the CPU (ie. its speed),
and the width of the SIMD instructions it executes (ie its throughput at a given speed). In particular, the In-
tel Skylake and Cascade Lake processors (e.g. Xeon SP Gold/Platinum), can offer better throughput when
using narrower SIMD because of the better clock frequency available. Consider building mdrun (page 221) config-
ured with GMX__ SIMD=AVX2_ 256 instead of GMX_SIMD=AVX512 for better performance in GPU accelerated
or highly parallel MPI runs.

Some of the latest ARM based CPU, such as the Fujitsu A64fx, support the Scalable Vector Extensions (SVE).
Though SVE can be used to generate fairly efficient Vector Length Agnostic (VLA) code, this is not a good fit for
GROMACS, as the SIMD vector length is fixed at CMake time. The default is to automatically detect the default
vector length at CMake time (via the /proc/sys/abi/sve_default_vector_length pseudo-file, and
this can be changed by configuring with GMX_SIMD_ARM_ SVE_LENGTH=<1len>. The supported vector lengths
are 128, 256, 512 and 1024. Since the SIMD short-range non-bonded kernels only support up to 16 floating point
numbers per SIMD vector, 1024 bits vector length is only valid in double precision (e.g. ~-DGMX_DOUBLE=o0n).
Note that even if mdrun (page 221) does check the SIMD vector length at runtime, running with a different vector
length than the one used at CMake time is undefined behavior, and mdrun (page 221) might crash before reaching
the check (that would abort with a user-friendly error message).

Process(-or) level parallelization via OpenMP

GROMACS mdrun (page 221) supports OpenMP multithreading for all parts of the code. OpenMP is enabled by
default and can be turned on/off at configure time with the GMX_OPENMP CMake variable and at run-time with
the —ntomp option (or the OMP_NUM_THREADS environment variable). The OpenMP implementation is quite
efficient and scales well for up to 12-24 threads on Intel and 6-8 threads on AMD CPUs.

3.9. Getting good performance from mdrun 95

GROMACS Documentation, Release 2026-rc

Node level parallelization via GPU offloading and thread-MPI

Multithreading with thread-MPI

The thread-MPI library implements a subset of the MPI specification, based on the system threading support.
Both POSIX pthreads and Windows threads are supported. Acting as a drop-in replacement for MPI, thread-MPI
enables compiling and running mdrun (page 221) on a single machine (i.e. not across a network) without MPI.
Additionally, thread-MPI does in some cases make mdrun (page 221) run slightly faster than with MPL

Thread-MPI is included in the GROMACS source and it is the default parallelization mode, practically rendering
the serial mdrun (page 221) deprecated. Compilation with thread-MPI is controlled by the GMX_THREAD_MP I
CMake variable.

Thread-MPI is compatible with most mdrun (page 221) features and parallelization schemes, including OpenMP,
GPUs; it is not compatible with MPI and multi-simulation runs.

By default, the thread-MPI mdrun (page 221) will use all available cores in the machine by starting an appropriate
number of ranks or OpenMP threads to occupy all of them. The number of ranks can be controlled using the —nt
and —ntmpi options. —nt represents the total number of threads to be used (which can be a mix of thread-MPI
and OpenMP threads).

Hybrid/heterogeneous acceleration

Hybrid acceleration means distributing compute work between available CPUs and GPUs to improve simulation
performance. New non-bonded algorithms have been developed with the aim of efficient acceleration both on
CPUs and GPUs.

The most compute-intensive parts of simulations, non-bonded force calculation, as well as possibly the PME,
bonded force calculation and update and constraints can be offloaded to GPUs and carried out simultaneously
with remaining CPU work. Native GPU acceleration is supported for the most commonly used algorithms in
GROMACS. For more information about the GPU kernels, please see the Installation guide (page 8).

The native GPU acceleration can be turned on or off, either at run-time using the mdrun (page 221) —nb option,
or at configuration time using the GMX_GPU CMake variable.

To efficiently use all compute resource available, CPU and GPU computation is done simultaneously. Overlapping
with the OpenMP multithreaded bonded force and PME long-range electrostatic calculations on the CPU, non-
bonded forces are calculated on the GPU. Multiple GPUs, both in a single node as well as across multiple nodes,
are supported using domain-decomposition. A single GPU is assigned to the non-bonded workload of a domain,
therefore, the number of GPUs used has to match the number of MPI processes (or thread-MPI threads) the
simulation is started with. The available CPU cores are partitioned among the processes (or thread-MPI threads)
and a set of cores with a GPU do the calculations on the respective domain.

With PME electrostatics, mdrun (page 221) supports automated CPU-GPU load-balancing by shifting workload
from the PME mesh calculations, done on the CPU, to the particle-particle non-bonded calculations, done on the
GPU. At startup, a few stages of tuning are executed during the first few thousand MD steps. These stages involve
scaling the electrostatics cut-off and PME grid spacing to determine the value that gives optimal CPU-GPU load
balance. The cut-off value provided using the rcoulomb (page 51) =rvdw mdp (page 497) option represents the
minimum electrostatics cut-off the tuning starts with and therefore should be chosen as small as possible (but still
reasonable for the physics simulated). The Lennard-Jones cut-off rvdw is kept fixed. We do not allow scaling
to shorter cut-off as we do not want to change rvdw because that would affect the validity of the force-field
parameters and there would be no performance gain.

While the automated CPU-GPU load balancing always attempts to find the optimal cut-off setting, it might not
always be possible to balance CPU and GPU workload. This happens when the CPU threads finish calculating the
bonded forces and PME before the GPU finishes the non-bonded force calculation, even with the shortest possible
cut-off. In such cases the CPU will wait for the GPU and this time will show up as Wait GPU NB local in
the cycle and timing summary table at the end of the log file.

3.9. Getting good performance from mdrun 96

GROMACS Documentation, Release 2026-rc

Parallelization over multiple nodes via MPI

At the heart of the MPI parallelization in GROMACS is the neutral-territory domain decomposition (page 94)
with dynamic load balancing. To parallelize simulations across multiple machines (e.g. nodes of a cluster) mdrun
(page 221) needs to be compiled with MPI which can be enabled using the GMX_MPI CMake variable.

Controlling the domain decomposition algorithm

This section lists options that affect how the domain decomposition algorithm decomposes the workload to the
available parallel hardware.

—-rdd

Can be used to set the required maximum distance for inter charge-group bonded interactions. Communi-
cation for two-body bonded interactions below the non-bonded cut-off distance always comes for free with
the non-bonded communication. Particles beyond the non-bonded cut-off are only communicated when
they have missing bonded interactions; this means that the extra cost is minor and nearly independent of
the value of —rdd. With dynamic load balancing, option —rdd also sets the lower limit for the domain
decomposition cell sizes. By default —rdd is determined by gmx mdrun (page 221) based on the initial
coordinates. The chosen value will be a balance between interaction range and communication cost.

—ddcheck
On by default. When inter charge-group bonded interactions are beyond the bonded cut-off distance, gmx
mdrun (page 221) terminates with an error message. For pair interactions and tabulated bonds that do not
generate exclusions, this check can be turned off with the option —noddcheck.

—-rcon
When constraints are present, option —rcon influences the cell size limit as well. Particles connected by
NC constraints, where NC is the LINCS order plus 1, should not be beyond the smallest cell size. A error
message is generated when this happens, and the user should change the decomposition or decrease the
LINCS order and increase the number of LINCS iterations. By default gmx mdrun (page 221) estimates the
minimum cell size required for P-LINCS in a conservative fashion. For high parallelization, it can be useful
to set the distance required for P-LINCS with —-rcon.

—-dds
Sets the minimum allowed x, y and/or z scaling of the cells with dynamic load balancing. gmx mdrun
(page 221) will ensure that the cells can scale down by at least this factor. This option is used for the
automated spatial decomposition (when not using —dd) as well as for determining the number of grid
pulses, which in turn sets the minimum allowed cell size. Under certain circumstances the value of —dds
might need to be adjusted to account for high or low spatial inhomogeneity of the system.

Multi-level parallelization: MPI and OpenMP

The multi-core trend in CPU development substantiates the need for multi-level parallelization. Current multi-
processor machines can have 2-4 CPUs with a core count as high as 64. As the memory and cache subsystem
is lagging more and more behind the multicore evolution, this emphasizes non-uniform memory access (NUMA)
effects, which can become a performance bottleneck. At the same time, all cores share a network interface. In a
purely MPI-parallel scheme, all MPI processes use the same network interface, and although MPI intra-node com-
munication is generally efficient, communication between nodes can become a limiting factor to parallelization.
This is especially pronounced in the case of highly parallel simulations with PME (which is very communication
intensive) and with ' ' fat ' ' nodes connected by a slow network. Multi-level parallelism aims to address the
NUMA and communication related issues by employing efficient intra-node parallelism, typically multithreading.

Combining OpenMP with MPI creates an additional overhead especially when running separate multi-threaded
PME ranks. Depending on the architecture, input system size, as well as other factors, MPI+OpenMP runs can
be as fast and faster already at small number of processes (e.g. multi-processor Intel Westmere or Sandy Bridge),
but can also be considerably slower (e.g. multi-processor AMD Interlagos machines). However, there is a more
pronounced benefit of multi-level parallelization in highly parallel runs.

3.9. Getting good performance from mdrun 97

GROMACS Documentation, Release 2026-rc

Separate PME ranks

On CPU ranks, particle-particle (PP) and PME calculations are done in the same process one after another. As
PME requires all-to-all global communication, this is most of the time the limiting factor to scaling on a large
number of cores. By designating a subset of ranks for PME calculations only, performance of parallel runs can be
greatly improved.

OpenMP multithreading in PME ranks is also possible. Using multi-threading in PME can can improve perfor-
mance at high parallelization. The reason for this is that with N>1 threads the number of processes communi-
cating, and therefore the number of messages, is reduced by a factor of N. But note that modern communication
networks can process several messages simultaneously, such that it could be advantageous to have more processes
communicating.

Separate PME ranks are not used at low parallelization, the switch at higher parallelization happens automatically
(at > 16 processes). The number of PME ranks is estimated by mdrun. If the PME load is higher than the PP load,
mdrun will automatically balance the load, but this leads to additional (non-bonded) calculations. This avoids
the idling of a large fraction of the ranks; usually 3/4 of the ranks are PP ranks. But to ensure the best absolute
performance of highly parallel runs, it is advisable to tweak this number which is automated by the rune_pme
(page 292) tool.

The number of PME ranks can be set manually on the mdrun (page 221) command line using the —npme option,
the number of PME threads can be specified on the command line with —nt omp_pme or alternatively using the
GMX_PME_NUM_THREADS environment variable. The latter is especially useful when running on compute nodes
with different number of cores as it enables setting different number of PME threads on different nodes.

3.9.5 Running mdrun within a single node

gmx mdrun (page 221) can be configured and compiled in several different ways that are efficient to use within
a single node. The default configuration using a suitable compiler will deploy a multi-level hybrid parallelism
that uses CUDA/SYCL/OpenCL, OpenMP and the threading platform native to the hardware. For programming
convenience, in GROMACS, those native threads are used to implement on a single node the same MPI scheme
as would be used between nodes, but much more efficient; this is called thread-MPI. From a user’s perspective,
real MPI and thread-MPI look almost the same, and GROMACS refers to MPI ranks to mean either kind, except
where noted. A real external MPI can be used for gmx mdrun (page 221) within a single node, but runs more
slowly than the thread-MPI version.

By default, gmx mdrun (page 221) will inspect the hardware available at run time and do its best to make fairly
efficient use of the whole node. The log file, stdout and stderr are used to print diagnostics that inform the user
about the choices made and possible consequences.

A number of command-line parameters are available to modify the default behavior.

-nt
The total number of threads to use. The default, 0, will start as many threads as available cores. Whether
the threads are thread-MPI ranks, and/or OpenMP threads within such ranks depends on other settings.

-ntmpi
The total number of thread-MPI ranks to use. The default, 0, will start one rank per GPU (if present), and
otherwise one rank per core.

-ntomp
The total number of OpenMP threads per rank to start. The default, 0, will start one thread on each available
core. Alternatively, mdrun (page 221) will honor the appropriate system environment variable (e.g. OMP_ —
NUM_THREADS) if set. Note that the maximum number of OpenMP threads (per rank) is, for efficiency
reasons, limited to 128. While it is rarely beneficial to use a number of threads higher than this, the GMX_-
OPENMP_MAX_THREADS CMake variable can be used to increase the limit.

-npme
The total number of ranks to dedicate to the long-ranged component of PME, if used. The default, -1, will
dedicate ranks only if the total number of threads is at least 12, and will use around a quarter of the ranks
for the long-ranged component.

3.9. Getting good performance from mdrun 98

GROMACS Documentation, Release 2026-rc

—ntomp_pme

-pin

When using PME with separate PME ranks, the total number of OpenMP threads per separate PME rank.
The default, 0, copies the value from —ntomp.

ELINT3

Can be set to “auto,” “on,” “inherit,” or “off” to control whether mdrun (page 221) will attempt to set the
affinity of threads to cores. Defaults to “auto,” which means that if mdrun (page 221) detects that all cores
on the node are used for mdrun (page 221) and the affinity is left default (not set by an external tool such
as an MPI launcher or numact1), then it behaves like “on,” and attempts to set the affinities. With “on,”
mdrun will set thread affinities, overriding any external CPU affinity settings. With “inherit,” mdrun will
set thread affinities within the external affinity mask: that is, if an external tool or a job scheduler set CPU
affinities limiting each process to a specific set of cores/hardware threads, ref:mdrun (page 221) rank(s) will
pin thread(s) within these boundaries. The behavior of “on” and “inherit” is similar, both enable thread
pinning, but they differ in scope: “on” pins threads across all available CPU cores in the system, while
“inherit” only pins threads within the external affinity mask. This scope difference also affects how the
-pinoffset and -pinstride options work.

—pinoffset

If -pin on or —-pin inherit, specifies the logical core number to which mdrun (page 221) should
pin the first thread. When running more than one instance of mdrun (page 221) on a node, use this option
to to avoid pinning threads from different mdrun (page 221) instances to the same core. With -pin on,
the offset is applied relative to all the available CPUs, while with —pin inherit, the offset is applied
relative to the cores within the external affinity mask.

-pinstride

If -pin onor-pin inherit, specifies the stride in logical core numbers for the cores to which mdrun
(page 221) should pin its threads. When running more than one instance of mdrun (page 221) on a node,
use this option to avoid pinning threads from different mdrun (page 221) instances to the same core. Use
the default, 0, to minimize the number of threads per physical core - this lets mdrun (page 221) manage the
hardware-, OS- and configuration-specific details of how to map logical cores to physical cores. With —pin
on, the stride is applied across all available CPUs, while with ~-pin inherit, the stride is applied only
within the external affinity mask.

—ddorder

—pme

99

Can be set to “interleave,” “pp_pme” or “cartesian.” Defaults to “interleave,” which means that any separate
PME ranks will be mapped to MPI ranks in an order like PP, PP, PME, PP, PP, PME, etc. This generally
makes the best use of the available hardware. “pp_pme” maps all PP ranks first, then all PME ranks.
“cartesian” is a special-purpose mapping generally useful only on special torus networks with accelerated
global communication for Cartesian communicators. Has no effect if there are no separate PME ranks.

9 <

Used to set where to execute the short-range non-bonded interactions. Can be set to “auto,” “cpu” or “gpu.”
Defaults to “auto,” which uses a compatible GPU if available. Setting “cpu” requires that no GPU is used.
Setting “gpu” requires that a compatible GPU is available and will be used.

2 <

Used to set where to execute the long-range non-bonded interactions. Can be set to “auto,” “cpu” or “gpu.”
Defaults to “auto,” which uses a compatible GPU if available. Setting “gpu” requires that a compatible GPU
is available. Multiple PME ranks are not supported with PME on GPU, so if a GPU is used for the PME
calculation -npme must be set to 1.

-bonded

Used to set where to execute the bonded interactions that are part of the PP workload for a domain. Can be
set to “auto,” “cpu” or “gpu.” Defaults to “auto,” which uses a compatible CUDA or SYCL GPU only when
one is available, a GPU is handling short-ranged interactions, and the CPU is handling long-ranged inter-
action work (electrostatic or LJ). The work for the bonded interactions takes place on the same GPU as the
short-ranged interactions, and cannot be independently assigned. Setting “gpu” requires that a compatible

GPU is available and will be used.

—-update

29

Used to set where to execute update and constraints, when present. Can be set to “auto,” “cpu” or “gpu.”
Defaults to “auto,” which currently always uses the CPU. Setting “gpu” requires that a compatible CUDA or

3.9. Getting good performance from mdrun 929

GROMACS Documentation, Release 2026-rc

—gpu_

SYCL GPU is available, the simulation uses a single rank. Update and constraints on a GPU is currently not
supported with mass and constraints free-energy perturbation, domain decomposition, virtual sites, Ewald
surface correction, replica exchange, constraint pulling, orientation restraints and computational electro-
physiology.

id

A string that specifies the ID numbers of the GPUs that are available to be used by ranks on each node.
For example, “12” specifies that the GPUs with IDs 1 and 2 (as reported by the GPU runtime) can be
used by mdrun (page 221). This is useful when sharing a node with other computations, or if a GPU that
is dedicated to a display should not be used by GROMACS. Without specifying this parameter, mdrun
(page 221) will utilize all GPUs. When many GPUs are present, a comma may be used to separate the
IDs, so “12,13” would make GPUs 12 and 13 available to mdrun (page 221). It could be necessary to use
different GPUs on different nodes of a simulation, in which case the environment variable GMX_GPU_ -
ID can be set differently for the ranks on different nodes to achieve that result. In GROMACS versions
preceding 2018 this parameter used to specify both GPU availability and GPU task assignment. The latter
is now done with the —gputasks parameter.

—gputasks

A string that specifies the ID numbers of the GPUs to be used by corresponding GPU tasks on this node.
For example, “0011” specifies that the first two GPU tasks will use GPU 0, and the other two use GPU 1.
When using this option, the number of ranks must be known to mdrun (page 221), as well as where tasks of
different types should be run, such as by using —-nb gpu - only the tasks which are set to run on GPUs count
for parsing the mapping. See Assigning tasks to GPUs (page 108) for more details. Note that —gpu_id and
—gputasks can not be used at the same time! In GROMACS versions preceding 2018 only a single type
of GPU task (“PP”) could be run on any rank. Now that there is some support for running PME on GPUs,
the number of GPU tasks (and the number of GPU IDs expected in the ~gputasks string) can actually be
3 for a single-rank simulation. The IDs still have to be the same in this case, as using multiple GPUs per
single rank is not yet implemented. The order of GPU tasks per rank in the string is PP first, PME second.
The order of ranks with different kinds of GPU tasks is the same by default, but can be influenced with the
—ddorder option and gets quite complex when using multiple nodes. Note that the bonded interactions
for a PP task may run on the same GPU as the short-ranged work, or on the CPU, which can be controlled
with the ~-bonded flag. The GPU task assignment (whether manually set, or automated), will be reported
in the mdrun (page 221) output on the first physical node of the simulation. For example:

[gmx mdrun —gputasks 0001 -nb gpu —-pme gpu -npme 1 -ntmpi 4

will produce the following output in the log file/terminal:

On host tcblld 2 GPUs selected for this run.
Mapping of GPU IDs to the 4 GPU tasks in the 4 ranks on this node:
PP:0,PP:0,PP:0,PME: 1

In this case, 3 ranks are set by user to compute PP work on GPU 0, and 1 rank to compute PME on GPU 1.
The detailed indexing of the GPUs is also reported in the log file.

For more information about GPU tasks, please refer to Types of GPU tasks (page 106).

-pmefft

EENT3 ’

Allows choosing whether to execute the 3D FFT computation on a CPU or GPU. Can be set to “auto,” “cpu
or “gpu.” When PME is offloaded to a GPU —pmefft gpu is the default, and the entire PME calculation
is executed on the GPU. However, in some cases, e.g. with a relatively slow or older generation GPU
combined with fast CPU cores in a run, moving some work off of the GPU back to the CPU by computing
FFTs on the CPU can improve performance.

3.9.

Getting good performance from mdrun 100

GROMACS Documentation, Release 2026-rc

Examples for mdrun on one node

[gmx mdrun]

Starts mdrun (page 221) using all the available resources. mdrun (page 221) will automatically choose a fairly
efficient division into thread-MPI ranks, OpenMP threads and assign work to compatible GPUs. Details will vary
with hardware and the kind of simulation being run.

[gmx mdrun -nt 8 }

Starts mdrun (page 221) using 8 threads, which might be thread-MPI or OpenMP threads depending on hardware
and the kind of simulation being run.

[gmx mdrun -ntmpi 2 -ntomp 4 }

Starts mdrun (page 221) using eight total threads, with two thread-MPI ranks and four OpenMP threads per rank.
You should only use these options when seeking optimal performance, and must take care that the ranks you create
can have all of their OpenMP threads run on the same socket. The number of ranks should be a multiple of the
number of sockets, and the number of cores per node should be a multiple of the number of threads per rank.

[gmx mdrun -ntmpi 4 -nb gpu —-pme cpu }

Starts mdrun (page 221) using four thread-MPI ranks. The CPU cores available will be split evenly between the
ranks using OpenMP threads. The long-range component of the forces are calculated on CPUs. This may be
optimal on hardware where the CPUs are relatively powerful compared to the GPUs. The bonded part of force
calculation will automatically be assigned to the GPU, since the long-range component of the forces are calculated
on CPU(s).

[gmx mdrun -ntmpi 1 -nb gpu -pme gpu —-bonded gpu -update gpu]

Starts mdrun (page 221) using a single thread-MPI rank that will use all available CPU cores. All interaction
types that can run on a GPU will do so. This may be optimal on hardware where the CPUs are extremely weak
compared to the GPUs.

[gmx mdrun -ntmpi 4 -nb gpu -pme cpu —-gputasks 0011 }

Starts mdrun (page 221) using four thread-MPI ranks, and maps them to GPUs with IDs 0 and 1. The CPU
cores available will be split evenly between the ranks using OpenMP threads, with the first two ranks offloading
short-range nonbonded force calculations to GPU 0, and the last two ranks offloading to GPU 1. The long-range
component of the forces are calculated on CPUs. This may be optimal on hardware where the CPUs are relatively
powerful compared to the GPUs.

[gmx mdrun —ntmpi 4 —nb gpu -pme gpu —npme 1 —gputasks 0001 }

Starts mdrun (page 221) using four thread-MPI ranks, one of which is dedicated to the long-range PME calculation.
The first 3 threads offload their short-range non-bonded calculations to the GPU with ID 0, the 4th (PME) thread
offloads its calculations to the GPU with ID 1.

[gmx mdrun —-ntmpi 4 —-nb gpu -pme gpu —npme 1 —-gputasks 0011 }

Similar to the above example, with 3 ranks assigned to calculating short-range non-bonded forces, and one rank
assigned to calculate the long-range forces. In this case, 2 of the 3 short-range ranks offload their nonbonded force
calculations to GPU 0. The GPU with ID 1 calculates the short-ranged forces of the 3rd short-range rank, as well
as the long-range forces of the PME-dedicated rank. Whether this or the above example is optimal will depend on
the capabilities of the individual GPUs and the system composition.

[gmx mdrun —-gpu_id 12 J

Starts mdrun (page 221) using GPUs with IDs 1 and 2 (e.g. because GPU 0 is dedicated to running a display).
This requires two thread-MPI ranks, and will split the available CPU cores between them using OpenMP threads.

3.9. Getting good performance from mdrun 101

GROMACS Documentation, Release 2026-rc

gmx mdrun -nt 6 -pin on -pinoffset 0 -pinstride 1
gmx mdrun -nt 6 —-pin on -pinoffset 6 -pinstride 1

Starts two mdrun (page 221) processes, each with six total threads arranged so that the processes affect each other
as little as possible by being assigned to disjoint sets of physical cores. Threads will have their affinities set to
particular logical cores, beginning from the first and 7th logical cores, respectively. The above would work well
on an Intel CPU with six physical cores and hyper-threading enabled. Use this kind of setup only if restricting
mdrun (page 221) to a subset of cores to share a node with other processes. A word of caution: The mapping of
logical CPUs/cores to physical cores may differ between operating systems. On Linux, cat /proc/cpuinfo
can be examined to determine this mapping.

[mpirun -np 2 gmx_mpi mdrun }

When using a gmx mdrun (page 221) compiled with external MPI, this will start two ranks and as many OpenMP
threads as the hardware and MPI setup will permit. If the MPI setup is restricted to one node, then the resulting
gmx mdrun (page 221) will be local to that node.

3.9.6 Running mdrun on more than one node

This requires configuring GROMACS to build with an external MPI library. By default, this mdrun (page 221)
executable is run with gmx_mpi mdrun. All of the considerations for running single-node mdrun (page 221)
still apply, except that —-ntmp1i and —nt cause a fatal error, and instead the number of ranks is controlled by the
MPI environment. Settings such as —npme are much more important when using multiple nodes. Configuring the
MPI environment to produce one rank per core is generally good until one approaches the strong-scaling limit.
At that point, using OpenMP to spread the work of an MPI rank over more than one core is needed to continue
to improve absolute performance. The location of the scaling limit depends on the processor, presence of GPUs,
network, and simulation algorithm, but it is worth measuring at around ~200 particles/core if you need maximum
throughput.

There are further command-line parameters that are relevant in these cases.

—tunepme
Defaults to “on.” If “on,” a simulation will optimize rcoulomb (page 51) and fourierspacing
(page 53) parameters for PME by scaling both by the same value. This results in an equivalent model
physics that has shifted computational load between ranks and/or GPUs and can be optimized to maximize
throughput. Some mdrun (page 221) features are not compatible with this, and these ignore this option.
Note that acceptable equivalence can depend on the use case; multi-replica simulations such as replica ex-
change can tune PME differently for different replicas and thus compute potential energies that are slightly
different depending on the PME parameters in use by that replica, e.g. on a different discrete Fourier-space
grid.

-dlb
Can be set to “auto,” “no,” or “yes.” Defaults to “auto.” Doing Dynamic Load Balancing between MPI
ranks is needed to maximize performance. This is particularly important for molecular systems with het-
erogeneous particle or interaction density. When a certain threshold for performance loss is exceeded, DLB
activates and shifts particles between ranks to improve performance. If available, using ~-bonded gpu
is expected to improve the ability of DLB to maximize performance. DLB is not compatible with GPU-
resident parallelization (with —update gpu) and therefore it remains switched off in such simulations.

During the simulation, gmx mdrun (page 221) must communicate between all PP ranks to compute quantities
such as kinetic energy for log file reporting, or perhaps temperature coupling. By default, this happens whenever
necessary to honor several mdp options (page 43), so that the period between communication phases is the greatest
common divisor of nstcalcenergy (page 48), nsttcouple (page 56), and nstpcouple (page 57).

Note that —tunepme has more effect when there is more than one node, because the cost of communication for
the PP and PME ranks differs. It still shifts load between PP and PME ranks, but does not change the number of
separate PME ranks in use.

Note also that —d1b and -tunepme can interfere with each other, so if you experience performance variation
that could result from this, you may wish to tune PME separately, and run the result with mdrun -notunepme

3.9. Getting good performance from mdrun 102

GROMACS Documentation, Release 2026-rc

-dlb yes.

The gmx tune_pme (page 292) utility is available to search a wider range of parameter space, including making
safe modifications to the 7pr (page 503) file, and varying —npme. It is only aware of the number of ranks created
by the MPI environment, and does not explicitly manage any aspect of OpenMP during the optimization.

Examples for mdrun on more than one node

The examples and explanations for for single-node mdrun (page 221) are still relevant, but —ntmp1i is no longer
the way to choose the number of MPI ranks.

[mpirun -np 16 gmx_mpi mdrun J

Starts gmx mdrun (page 221) with 16 ranks, which are mapped to the hardware by the MPI library, e.g. as specified
in an MPT hostfile. The available cores will be automatically split among ranks using OpenMP threads, depending
on the hardware and any environment settings such as OMP_NUM_THREADS.

[mpirun -np 16 gmx_mpi mdrun —-npme 5 }

Starts gmx mdrun (page 221) with 16 ranks, as above, and require that 5 of them are dedicated to the PME
component.

[mpirun -—np 16 gmx_mpi mdrun -ntomp 2 -npme 6 -ntomp_pme 1 }

Starts gmx mdrun (page 221) with 16 ranks, as above, and require that six of them are dedicated to the PME
component with one OpenMP thread each. The remaining ten do the PP component, with two OpenMP threads
each.

[mpirun -np 4 gmx_mpi mdrun -ntomp 6 —-nb gpu —-gputasks 00]

Starts gmx mdrun (page 221) on a machine with two nodes, using four total ranks, each rank with six OpenMP
threads, and both ranks on a node sharing GPU with ID 0.

[mpirun -np 8 gmx_mpi mdrun -ntomp 3 —gputasks 0000 }

Using a same/similar hardware as above, starts gmx mdrun (page 221) on a machine with two nodes, using eight
total ranks, each rank with three OpenMP threads, and all four ranks on a node sharing GPU with ID 0. This may
or may not be faster than the previous setup on the same hardware.

[mpirun -np 20 gmx_mpi mdrun -ntomp 4 —-gputasks 00 }

Starts gmx mdrun (page 221) with 20 ranks, and assigns the CPU cores evenly across ranks each to one OpenMP
thread. This setup is likely to be suitable when there are ten nodes, each with one GPU, and each node has two
sockets each of four cores.

[mpirun -np 10 gmx_mpi mdrun -gpu_id 1 }

Starts gmx mdrun (page 221) with 10 ranks, and assigns the CPU cores evenly across ranks each to one OpenMP
thread. This setup is likely to be suitable when there are ten nodes, each with two GPUs, but another job on each
node is using GPU 0. The job scheduler should set the affinity of threads of both jobs to their allocated cores, or
the performance of mdrun (page 221) will suffer greatly.

[mpirun —np 20 gmx_mpi mdrun —-gpu_id 01]

Starts gmx mdrun (page 221) with 20 ranks. This setup is likely to be suitable when there are ten nodes, each
with two GPUs, but there is no need to specify —gpu__id for the normal case where all the GPUs on the node are
available for use.

3.9. Getting good performance from mdrun 103

GROMACS Documentation, Release 2026-rc

3.9.7 Avoiding communication for constraints

Because of the very short time it takes to perform an MD step, in particular close to the scaling limit, any com-
munication will have a negative effect on performance due to latency overhead and synchronization. Most of the
communication can not be avoided, but sometimes one can completely avoid communication of coordinates for
constraints. The points listed below will improve performance in general and can have a particularly strong effect
at the scaling limit which is around ~100 atoms/core or ~10000 atoms/GPU. Simulations that need to be done as
fast as possible, or strong-scaling benchmarks should be constructed with these points in mind.

When possible, one should avoid the use of constraints = all-bonds with P-LINCS. This not only re-
quires a lot of communication, it also sets an artificial minimum on the size of domains. If you are using an atom-
istic force field and integrating with a time step of 2 fs, you can usually change to constraints constraints =
h-bonds without changing other settings. These are actually the settings most force fields were parameterized
with, so this is also scientifically better.

To completely avoid communication for constraints and/or to have the update run on a GPU when using domain
decomposition, the system needs to support so-called “update groups” (or no constraints at all). Update groups
are grouped of atoms that are moved as one group between domains, thereby avoiding the need to communicate
for constraints or virtual sites involving only atoms within the group. Update groups are supported when all atoms
involved in coupled constraints are coupled directly to one central atom and consecutively ordered, not interdis-
persed with non-constrained atoms. An example is a compactly described methyl group. For atomistic force
fields with constraints = h-bonds this means in practice that in the topology hydrogens come adjacent
to their connected heavy atom. In addition, when virtual sites are present, the constructing atoms should all be
constrained together and the virtual site and constructing atoms should be consecutive, but the order does not
matter. The TIP4AP water model is an example of this. Whether or not update groups are used is noted in the log
file. When they cannot be used, the reason for disabling them is also noted.

3.9.8 Finding out how to run mdrun better

The Wallcycle module is used for runtime performance measurement of gmx mdrun (page 221). At the end of the
log file of each run, the “Real cycle and time accounting” section provides a table with runtime statistics for differ-
ent parts of the gmx mdrun (page 221) code in rows of the table. The table contains columns indicating the number
of ranks and threads that executed the respective part of the run, wall-time and cycle count aggregates (across all
threads and ranks) averaged over the entire run. The last column also shows what percentage of the total run-
time each row represents. Note that the gmx mdrun (page 221) timer resetting functionalities (-resethway and
—-resetstep) reset the performance counters and therefore are useful to avoid startup overhead and performance
instability (e.g. due to load balancing) at the beginning of the run.

The performance counters are:
* Particle-particle during Particle mesh Ewald
* Domain decomposition
* Domain decomposition communication load
¢ Domain decomposition communication bounds
* Virtual site constraints
* Send X to Particle mesh Ewald
» Neighbor search
* Launch GPU operations
* Communication of coordinates
* Force
¢ Waiting + Communication of force
* Particle mesh Ewald
* PME redist. X/F

3.9. Getting good performance from mdrun 104

GROMACS Documentation, Release 2026-rc

PME spread

PME gather

PME 3D-FFT

PME 3D-FFT Communication
PME solve Lennard-Jones
PME solve LJ

PME solve Elec

PME wait for particle-particle
Wait + Receive PME force
Wait GPU nonlocal

Wait GPU local

Wait PME GPU spread

Wait PME GPU gather
Reduce PME GPU Force
Non-bonded position/force buffer operations
Virtual site spread

COM pull force

AWH (accelerated weight histogram method)
Write trajectory

Update

Constraints

Communication of energies
Enforced rotation

Add rotational forces

Position swapping

Interactive MD

MD Graph

As performance data is collected for every run, they are essential to assessing and tuning the performance of gmx
mdrun (page 221) performance. Therefore, they benefit both developers as well as users of the program. The
counters are an average of the time/cycles different parts of the simulation take, hence can not directly reveal
fluctuations during a single run (although comparisons across multiple runs are still very useful).

Counters will appear in an MD log file only if the related parts of the code were executed during the gmx mdrun
(page 221) run. There is also a special counter called “Rest” which indicates the amount of time not accounted
for by any of the counters above. Therefore, a significant amount “Rest” time (more than a few percent) will
often be an indication of parallelization inefficiency (e.g. serial code) and it is recommended to be reported to the
developers.

An additional set of subcounters can offer more fine-grained inspection of performance. They are:

Domain decomposition redistribution
DD neighbor search grid + sort
DD setup communication

DD make topology

3.9. Getting good performance from mdrun

105

GROMACS Documentation, Release 2026-rc

* DD make constraints

* DD topology other

* Neighbor search grid local

* NS grid non-local

* NS search local

* NS search non-local

* Bonded force

* Bonded-FEP force

* Restraints force

* Listed buffer operations

¢ Nonbonded pruning

* Nonbonded force

* Launch non-bonded GPU tasks

e Launch PME GPU tasks

» Ewald force correction

* Non-bonded position buffer operations
» Non-bonded force buffer operations

Subcounters are geared toward developers and have to be enabled during compilation. See Build system overview
(page 647) for more information.

3.9.9 Running mdrun with GPUs

Types of GPU tasks

To better understand the later sections on different GPU use cases for calculation of short range (page 107), PME
(page 107), bonded interactions (page 107) and update and constraints (page 107) we first introduce the concept
of different GPU tasks. When thinking about running a simulation, several different kinds of interactions between
the atoms have to be calculated (for more information please refer to the reference manual). The calculation can
thus be split into several distinct parts that are largely independent of each other (hence can be calculated in any
order, e.g. sequentially or concurrently), with the information from each of them combined at the end of time
step to obtain the final forces on each atom and to propagate the system to the next time point. For a better
understanding also please see the section on domain decomposition (page 94).

Of all calculations required for an MD step, GROMACS aims to optimize performance bottom-up for each step
from the lowest level (SIMD unit, cores, sockets, accelerators, etc.). Therefore many of the individual computation
units are highly tuned for the lowest level of hardware parallelism: the SIMD units. Additionally, with GPU accel-
erators used as co-processors, some of the work can be offloaded, that is calculated simultaneously/concurrently
with the CPU on the accelerator device, with the result being communicated to the CPU. Right now, GROMACS
supports GPU accelerator offload of two tasks: the short-range nonbonded interactions in real space (page 107),
and PME (page 107).

GROMACS supports two major offload modes: force-offload and GPU-resident. The former involves offloading
some of or all interaction calculations with integration on the CPU (hence requiring per-step data movement). In
the GPU-resident mode by offloading integration and constraints (when used) less data movement is necessary.

The force-offload mode is the more broadly supported GPU-acceleration mode with short-range nonbonded of-
fload supported on a wide range of GPU accelerators (NVIDIA, AMD, and Intel). This is compatible with the
grand majority of the features and parallelization modes and can be used to scale to large machines. Simultane-
ously offloading both short-range nonbonded and long-range PME work to GPU accelerators has some restrictions
in terms of feature and parallelization compatibility (please see the section below (page 107)). Offloading (most

3.9. Getting good performance from mdrun 106

GROMACS Documentation, Release 2026-rc

types of) bonded interactions is supported in CUDA and SYCL. The GPU-resident mode is supported with CUDA
and SYCL, but it has additional limitations as described in the GPU update section (page 107).

GPU computation of short range nonbonded interactions

Using the GPU for the short-ranged nonbonded interactions provides the majority of the available speed-up com-
pared to run using only the CPU. Here, the GPU acts as an accelerator that can effectively parallelize this problem
and thus reduce the calculation time.

GPU accelerated calculation of PME (not for AMD HIP)

GROMACS allows offloading of the PME calculation to the GPU, to further reduce the load on the CPU and
improve usage overlap between CPU and GPU. Here, the solving of PME will be performed in addition to the
calculation of the short range interactions on the same GPU as the short range interactions.

Known limitations

Please note again the limitations outlined below!
* Only a PME order of 4 is supported on GPUs.

* Multiple ranks (hence multiple GPUs) computing PME have limited support: experimental PME decompo-
sition in hybrid mode (-pmefft cpu) with CUDA from the 2022 release and full GPU PME decompo-
sition since the 2023 release with CUDA or SYCL (when GROMACS is built with cuFFFTMp (page 12) or
HeFFTe (page 13)).

* Only dynamical integrators are supported (ie. leap-frog, Velocity Verlet, stochastic dynamics)
* LJ PME is not supported on GPUs.

e When GROMACS is built without a GPU FFT library (-DGMX_GPU_FFT_LIBRARY=none), only hybrid
mode (-pmefft cpu) is supported.

GPU accelerated calculation of bonded interactions (CUDA and SYCL)

GROMACS allows the offloading of the bonded part of the PP workload to a compatible GPU. This is treated as
part of the PP work, and requires that the short-ranged non-bonded task also runs on a GPU. Typically, there is
a performance advantage to offloading bonded interactions in particular when the amount of CPU resources per
GPU is relatively little (either because the CPU is weak or there are few CPU cores assigned to a GPU in a run)
or when there are other computations on the CPU. A typical case for the latter is free-energy calculations.

GPU accelerated calculation of constraints and coordinate update (CUDA and SYCL only)

GROMACS makes it possible to also perform the coordinate update and (if requested) constraint calculation
on a GPU. This parallelization mode is referred to as “GPU-resident” as all force and coordinate data can remain
resident on the GPU for a number of steps (typically between temperature/pressure coupling or neighbor searching
steps). The GPU-resident mode allows executing all (supported) computation of a simulation step on the GPU.
This has the benefit that there is less coupling between CPU host and GPU and on typical MD steps data does
not need to be transferred between CPU and GPU in contrast to the force-offload scheme requires coordinates and
forces to be transferred every step between the CPU and GPU. The GPU-resident scheme however is still able to
carry out part of the computation on the CPU concurrently with GPU calculation. This helps supporting the broad
range of GROMACS features not all of which are ported to GPUs. At the same time, it also allows improving
performance by making use of the otherwise mostly idle CPU. It can often be advantageous to move the bonded
or PME calculation back to the CPU, but the details of this will depending on the relative performance if the CPU
cores paired in a simulation with a GPU.

3.9. Getting good performance from mdrun 107

GROMACS Documentation, Release 2026-rc

GPU-resident mode is enabled by default (when supported) with an automatic fallback to CPU update when the
build configuration or simulation settings are incompatible with it. It is possible to change the default behaviour
by setting the GMX_FORCE_UPDATE_DEFAULT_CPU environment variable. In this case simulations following
the default behavior (ie. —update auto) will run the update on the CPU.

Using this parallelization mode is typically advantageous in cases where a fast GPU is used with a slower CPU,
in particular if there is only single simulation assigned to a GPU. However, in typical throughput cases where
multiple runs are assigned to each GPU, offloading everything, especially without moving back some of the work
to the CPU can perform worse than the parallelization mode where only force computation is offloaded.

Assigning tasks to GPUs

Depending on which tasks should be performed on which hardware, different kinds of calculations can be com-
bined on the same or different GPUs, according to the information provided for running mdrun (page 221).

It is possible to assign the calculation of the different computational tasks to the same GPU, meaning that they
will share the computational resources on the same device, or to different processing units that will each perform
one task each.

One overview over the possible task assignments is given below:
GROMACS version 2018:

Two different types of assignable GPU accelerated tasks are available, (short-range) nonbonded and
PME. Each PP rank has a nonbonded task that can be offloaded to a GPU. If there is only one rank
with a PME task (including if that rank is a PME-only rank), then that task can be offloaded to a GPU.
Such a PME task can run wholly on the GPU, or have its latter stages run only on the CPU.

Limitations are that PME on GPU does not support PME domain decomposition, so that only one
PME task can be offloaded to a single GPU assigned to a separate PME rank, while the nonbonded
can be decomposed and offloaded to multiple GPUs.

GROMACS version 2019:

No new assignable GPU tasks are available, but any bonded interactions may run on the same GPU
as the short-ranged interactions for a PP task. This can be influenced with the ~-bonded flag.

GROMACS version 2020:

Update and constraints can run on the same GPU as the short-ranged nonbonded and bonded interac-
tions for a PP task. This can be influenced with the —update flag.

GROMACS version 2021/2022:

Communication and auxiliary tasks can also be offloaded in CUDA builds. In domain-decomposition
halo exchange and PP-PME communication, instead of staging transfers between GPUs though the
CPU, direct GPU-GPU communication is possible. As an auxiliary tasks for halo exchange data
packing and unpacking is performed which is also offloaded to the GPU. In the 2021 release this
is supported with thread-MPI and from the 2022 release it is also supported using GPU-aware MPI.
Direct GPU communication is not enabled by default and can be triggered using the GMX_ENABLE_ -
DIRECT_GPU_COMM environment variable (will only have an effect on supported systems).

GROMACS version 2023:

Update now runs by default on the GPU with supported simulation settings; note that this is only
available with CUDA and SYCL not with OpenCL.

PME decomposition support adds additional parallelization-related auxiliary GPU tasks including
grid packing and reduction operations as well as distributed GPU FFT computation.

Experimental support for CUDA-graphs scheduling has been added, which supports most GPU-
resident runs that do not require CPU force computation.

GROMACS version 2025:

3.9. Getting good performance from mdrun 108

GROMACS Documentation, Release 2026-rc

Direct GPU communication is now enabled by default on supported setups. The feature can be dis-
abled using the GMX_DISABLE_DIRECT_GPU_COMM environment variable.

Performance considerations for GPU tasks

1) The performance balance depends on the speed and number of CPU cores you have vs the speed and number
of GPUs you have.

2) The GPU-resident parallelization mode (with update/constraints offloaded) is less sensitive to the appropri-
ate CPU-GPU balance than the force-offload mode.

3) With slow/old GPUs and/or fast/modern CPUs with many cores, it might make more sense to let the CPU
do PME calculation, with the GPUs focused on the nonbonded calculation.

4) With fast/modern GPUs and/or slow/old CPUs with few cores, it generally helps to have the GPU do PME.

5) Offloading bonded work to a GPU will often not improve simulation performance as efficient CPU-based
kernels can complete the bonded computation before the GPU is done with other offloaded work. Therefore,
gmx mdrun (page 221) will default to no bonded offload when PME is offloaded. Typical cases where
performance can improve with bonded offload are: with significant bonded work (e.g. pure lipid or mostly
polymer systems with little solvent), with very few and/or slow CPU cores per GPU, or when the CPU does
other computation (e.g. PME, free energy).

6) On most modern hardware GPU-resident mode (default) is faster than force-offload mode, although it may
leave the CPU idle. Moving back the bonded work to the CPU (-bonded cpu) is a better way to make
use of a fast CPU than leaving integration and constraints on the CPU. The only exception may be multi-
simulations with a significant number of simulations assigned to each GPU.

7) Direct GPU communication will in most cases outperform staged communication (both with thread-MPI
and MPI). Ideally it should be combined with GPU-resident mode to maximize the benefit.

8) The only way to know for sure which alternative is best for your machine is to test and check performance.

Reducing overheads in GPU accelerated runs

In order for CPU cores and GPU(s) to execute concurrently, tasks are launched and executed asynchronously
on the GPU(s) while the CPU cores execute non-offloaded force computation (like computing bonded forces or
free energy computation). Asynchronous task launches are handled by the GPU device driver and require CPU
involvement. Therefore, scheduling GPU tasks requires CPU resources that can compete with other CPU tasks
and cause interference that could lead to slowdown.

Delays in CPU execution are caused by the latency of launching GPU tasks, an overhead that can become sig-
nificant as simulation ns/day increases (i.e. with shorter wall-time per step). The cost of launching GPU work is
measured by gmx mdrun (page 221) and reported in the performance summary section of the log file (“Launch
PP GPU ops.”/’Launch PME GPU ops.” rows). A few percent of runtime spent in launching work is normal, but
in fast-iterating and multi-GPU parallel runs, costs of 10% or larger can be observed. Whether this has a signif-
icant performance impact depends on how much work within the main MD step is assigned to the CPU. With
most or all force computation offloaded, and when the CPU is not involved in communication (e.g. with thread-
MPI and direct GPU communication enabled) it may be that large launch costs do not lead to large performance
losses. However, when the CPU is assigned computation (e.g. in free energy or pul/AWH simulations) or MPI
communication is launched from the CPU (even with GPU-aware MPI), the GPU launch cost will compete with
other CPU work and therefore represent overheads. In general, a user can do little to avoid such overheads, but
there are a few cases where tweaks can give performance benefits. In OpenCL runs, timing of GPU tasks is by
default enabled and, while in most cases its impact is small, in fast runs performance can be affected. In these
cases, when more than a few percent of “Launch GPU ops” time is observed, it is recommended to turn off timing
by setting the GMX_DISABLE_GPU_TIMING environment variable. In parallel runs with many ranks sharing a
GPU, launch overheads can also be reduced by starting fewer thread-MPI or MPI ranks per GPU; e.g. most often
one rank per thread or core is not optimal. The CUDA graphs functionality (added in GROMACS 2023) targets
reducing such overheads and improving GPU work scheduling efficiency and therefore it can provide significant

3.9. Getting good performance from mdrun 109

GROMACS Documentation, Release 2026-rc

improvements especially for small simulation systems running on fast GPUs. Since it is a new feature, in the 2023
release CUDA-graph support needs to be triggered using the GMX_CUDA__GRAPH environment variable.

The second type of overhead, interference of the GPU runtime or driver with CPU computation, is caused by
the scheduling and coordination of GPU tasks. A separate GPU runtime/driver thread requires CPU resources
which may compete with the concurrently running non-offloaded tasks (if present), potentially degrading the per-
formance of this CPU work. To minimize the overhead it can be useful to leave at least one CPU hardware thread
unused when launching gmx mdrun (page 221), especially on CPUs with high core counts and/or simultaneous
multithreading enabled. E.g. on a machine with a 16-core CPU and 32 threads, try gmx mdrun -ntomp 31
-pin on. This will leave some CPU resources for the GPU task scheduling potentially reducing interference
with CPU computation. Note that assigning fewer resources to grnx mdrun (page 221) CPU computation involves
a tradeoff which, with many CPU cores per GPU, may not be significant, but in some cases (e.g. with multi-rank
MPI runs) it may lead to complex resource assignment and may outweigh the benefits of reduced GPU scheduling
overheads, so we recommend to test the alternatives before adopting such techniques.

3.9.10 Running the OpenCL version of mdrun

Currently supported hardware architectures are:
¢ GCN-based and CDNA-based AMD GPUs;
* NVIDIA GPUs prior to Volta;
* Intel iGPUs.

Make sure that you have the latest drivers installed. For AMD GPUs, the compute-oriented ROCm stack is
recommended; alternatively, the AMDGPU-PRO stack is also compatible; using the outdated and unsupported
fglrx proprietary driver and runtime is not recommended (but for certain older hardware that may be the only
way to obtain support). In addition Mesa version 17.0 or newer with LLVM 4.0 or newer is also supported. For
NVIDIA GPUs, using the proprietary driver is required as the open source nouveau driver (available in Mesa)
does not provide the OpenCL support. For Intel integrated GPUs, the Neo driver is recommended.

The minimum OpenCL version required is unknown. See also the known limitations (page 110).

Devices from the AMD GCN architectures (all series) are compatible and regularly tested; NVIDIA Kepler and
later (compute capability 3.0) are known to work, but before doing production runs always make sure that the
GROMACS tests pass successfully on the hardware.

The OpenCL GPU kernels are compiled at run time. Hence, building the OpenCL program can take a few seconds,
introducing a slight delay in the gmx mdrun (page 221) startup. This is not normally a problem for long production
MD, but you might prefer to do some kinds of work, e.g. that runs very few steps, on just the CPU (e.g. see —nb
above).

The same —gpu__id option (or GMX_GPU_ID environment variable) used to select CUDA or SYCL devices, or
to define a mapping of GPUs to PP ranks, is used for OpenCL devices.

Some other OpenCL management (page 346) environment variables may be of interest to developers.

Known limitations of the OpenCL support

Limitations in the current OpenCL support of interest to GROMACS users:

¢ Intel integrated GPUs are supported. Intel CPUs are not supported. Set -DGMX_GPU_NB_CLUSTER_—
SIzE=4 when compiling GROMACS to run on consumer Intel GPUs (as opposed to Ponte Vecchio / Data
Center Max GPUs).

* Due to blocking behavior of some asynchronous task enqueuing functions in the NVIDIA OpenCL runtime,
with the affected driver versions there is almost no performance gain when using NVIDIA GPUs. The issue
affects NVIDIA driver versions up to 349 series, but it known to be fixed 352 and later driver releases.

* On NVIDIA GPUs the OpenCL kernels achieve much lower performance than the equivalent CUDA kernels
due to limitations of the NVIDIA OpenCL compiler.

3.9. Getting good performance from mdrun 110

https://rocm.docs.amd.com/en/latest/index.html
https://github.com/intel/compute-runtime/releases

GROMACS Documentation, Release 2026-rc

* On the NVIDIA Volta and Turing architectures the OpenCL code is known to produce incorrect results with
driver version up to 440.x (most likely due to compiler issues). Runs typically fail on these architectures.

3.9.11 Running SYCL version of mdrun
Make sure that you have the latest drivers installed and check the installation guide (page 18) for the list of
compatible hardware and software and the recommended compile-time options.
Please keep in mind the following environment variables that might be useful:
* When using oneAPI runtime:

— SYCL_CACHE_PERSISTENT=L1: enables caching of GPU kernels, reducing gmx mdrun (page 221)
startup time.

In addition to —gpu__id option, backend-specific environment variables, like ONEAPI_DEVICE_SELECTOR or
ROCR_VISIBLE_DEVICES, could be used to select GPUs.

3.9.12 Running HIP version of mdrun
Currently only limited offload capabilities are implemented for AMD HIP support. Please ensure you have a
recent version of the ROCm toolkit and check the AMD HIP installation guide (page 20).

If you are using CDNA hardware, please ensure that your GROMACS build has been configured to use 64-wide
execution on the device.

3.10 Common errors when using GROMACS

The vast majority of error messages generated by GROMACS are descriptive, informing the user where the exact
error lies. Some errors that arise are noted below, along with more details on what the issue is and how to solve it.

3.10.1 Common errors during usage

Out of memory when allocating
The program has attempted to assign memory to be used in the calculation, but is unable to due to insufficient
memory.
Possible solutions are:
* reduce the scope of the number of atoms selected for analysis.
* reduce the length of trajectory file being processed.

* in some cases confusion between Angstrém and nm may lead to users generating a pdb2gmx (page 241)
water box that is 10° times larger than what they think it is (e.g. gmx solvate (page 274)).

* use a computer with more memory.
* install more memory in the computer.

The user should bear in mind that the cost in time and/or memory for various activities will scale with the number
of atoms/groups/residues N or the simulation length T as order N, NlogN, or N (or maybe worse!) and the same
for T, depending on the type of activity. If it takes a long time, have a think about what you are doing, and the
underlying algorithm (see the Reference manual, man page, or use the -h flag for the utility), and see if there is
something sensible you can do that has better scaling properties.

3.10. Common errors when using GROMACS 111

GROMACS Documentation, Release 2026-rc

3.10.2 Errors in pdb2gmx

Residue XXX’ not found in residue topology database

This means that the force field you have selected while running pdb2gmx (page 241) does not have an entry in
the residue database (page 500) for XXX. The residue database (page 500) entry is necessary both for stand-
alone molecules (e.g. formaldehyde) or a peptide (standard or non-standard). This entry defines the atom types,
connectivity, bonded and non-bonded interaction types for the residue and is necessary to use pdb2gmx (page 241)
to build a rop (page 501) file. A residue database (page 500) entry may be missing simply because the database
does not contain the residue at all, or because the name is different.

For new users, this error appears because they are running pdb2gmx (page 241) on a PDB (page 499) file they
have, without consideration of the contents of the file. A force field (page 337) is not magical, it can only deal
with molecules or residues (building blocks) that are provided in the residue database (page 500) or included
otherwise.

If you want to use pdb2gmx (page 241) to automatically generate your topology, you have to ensure that the
appropriate 7fp (page 500) entry is present within the desired force field (page 337) and has the same name as the
building block you are trying to use. If you call your molecule “HIS,” then pdb2gmx (page 241) will try to build
histidine, based on the [HIS] entry in the r7p (page 500) file, so it will look for the exact atomic entries for
histidine, no more no less.

If you want a ropology (page 501) for an arbitrary molecule, you cannot use pdb2gmx (page 241) (unless you
build the r#p (page 500) entry yourself). You will have to build that entry by hand, or use another program (such
as x2top (page 305) or one of the scripts contributed by users) to build the fop (page 501) file.

If there is not an entry for this residue in the database, then the options for obtaining the force field parameters are:

* see if there is a different name being used for the residue in the residue database (page 500) and rename as
appropriate,

 parameterize the residue / molecule yourself (lots of work, even for an expert),

* find a fopology file (page 501) for the molecule, convert it to an itp (page 496) file and include it in your fop
(page 501) file,

* use another force field (page 337) which has parameters available for this,

* search the primary literature for publications for parameters for the residue that are consistent with the force
field that is being used.

Once you have determined the parameters and topology for your residue, see adding a residue to a force field
(page 349) for instructions on how to proceed.

Long bonds and/or missing atoms

There are probably atoms missing earlier in the pdb (page 499) file which makes pdb2gmx (page 241) go crazy.
Check the screen output of pdb2gmx (page 241), as it will tell you which one is missing. Then add the atoms in
your pdb (page 499) file, energy minimization will put them in the right place, or fix the side chain with e.g. the
WHAT IF program.

3.10. Common errors when using GROMACS 112

https://swift.cmbi.umcn.nl/whatif/

GROMACS Documentation, Release 2026-rc

Chain identifier ‘X’ was used in two non-sequential blocks

This means that within the coordinate file (page 492) fed to pdb2gmx (page 241), the X chain has been split,
possibly by the incorrect insertion of one molecule within another. The solution is simple: move the inserted
molecule to a location within the file so that it is not splitting another molecule. This message may also mean that
the same chain identifier has been used for two separate chains. In that case, rename the second chain to a unique
identifier.

WARNING: atom X is missing in residue XXX Y in the pdb file

Related to the long bonds/missing atoms error above, this error is usually quite obvious in its meaning. That is,
pdb2gmx (page 241) expects certain atoms within the given residue, based on the entries in the force field r7p
(page 500) file. There are several cases to which this error applies:

» Missing hydrogen atoms; the error message may be suggesting that an entry in the idb (page 496) file is
missing. More likely, the nomenclature of your hydrogen atoms simply does not match what is expected by
the r7p (page 500) entry. In this case, use —ignh to allow pdb2gmx (page 241) to add the correct hydrogens
for you, or re-name the problematic atoms.

* A terminal residue (usually the N-terminus) is missing H atoms; this usually suggests that the proper -ter
option has not been supplied or chosen properly. In the case of the AMBER force fields (page 42), nomencla-
ture is typically the problem. N-terminal and C-terminal residues must be prefixed by N and C, respectively.
For example, an N-terminal alanine should not be listed in the pdb (page 499) file as ALA, but rather NALA,
as specified in the ffamber instructions.

* Atoms are simply missing in the structure file provided to pdb2gmx (page 241); look for REMARK 465 and
REMARK 470 entries in the pdb (page 499) file. These atoms will have to be modeled in using external
software. There is no GROMACS tool to re-construct incomplete models.

Contrary to what the error message says, the use of the option —missing is almost always inappropriate. The
-missing option should only be used to generate specialized topologies for amino acid-like molecules to take
advantage of rzp (page 500) entries. If you find yourself using —missing in order to generate a topology for a
protein or nucleic acid, do not; the topology produced is likely physically unrealistic.

Atom X in residue YYY not found in rtp entry

If you are attempting to assemble a topology using pdb2gmx (page 241), the atom names are expected to match
those found in the r7p (page 500) file that define the building block(s) in your structure. In most cases, the problem
arises from a naming mismatch, so simply re-name the atoms in your coordinate file (page 492) appropriately. In
other cases, you may be supplying a structure that has residues that do not conform to the expectations of the force
field (page 337), in which case you should investigate why such a difference is occurring and make a decision
based on what you find - use a different force field (page 337), manually edit the structure, etc.

No force fields found (files with name ‘forcefield.itp’ in subdirectories ending on *.ff’)

This means your environment is not configured to use GROMACS properly, because pdb2gmx (page 241) cannot
find its databases of forcefield information. This could happen because a GROMACS installation was moved
from one location to another. Either follow the instructions about Getting access to GROMACS after installation
(page 25) or re-install GROMACS before doing so.

3.10. Common errors when using GROMACS 113

http://ffamber.cnsm.csulb.edu/ffamber.php

GROMACS Documentation, Release 2026-rc

3.10.3 Errors in grompp
Found a second defaults directive file

This is caused by the [defaults] directive appearing more than once in the ropology (page 501) or force field
(page 337) files for the system - it can only appear once. A typical cause of this is a second defaults being set in an
included ropology (page 501) file, itp (page 496), that has been sourced from somewhere else. For specifications
on how the topology files work, see the reference manual, Section 5.6.:

[defaults]
; nbfunc comb-rule gen-pairs fudgelLJ fudgeQQO
1 1 no 1.0 1.0

One solution is to simply comment out (or delete) the lines of code out in the file where it is included for the
second time i.e.,:

; [defaults]
; nbfunc comb-rule gen-pairs fudgeld fudgeQQ
gl 1 no 1.0 1.0

A better approach to finding a solution is to re-think what you are doing. The [defaults] directive should only
be appearing at the top of your fop (page 501) file where you choose the force field (page 337). If you are trying
to mix two force fields (page 337), then you are asking for trouble. If a molecule itp (page 496) file tries to choose
a force field, then whoever produced it is asking for trouble.

Invalid order for directive xxx

The directives in the .top and .itp files have rules about the order in which they can appear, and this error is seen
when the order is violated. Consider the examples and discussion in chapter 5 of the reference manual, and/or
from tutorial material. The include file mechanism (page 33) cannot be used to #include a file in just any old
location, because they contain directives and these have to be properly placed.

In particular, Invalid order for directive defaults isaresult of defaults being set in the ropology
(page 501) or force field (page 337) files in the inappropriate location; the [defaults] section can only appear
once and must be the first directive in the fopology (page 501). The [defaults] directive is typically present in
the force field (page 337) file (forcefield.itp), and is added to the ropology (page 501) when you #include this
file in the system topology.

If the directive in question is [atomtypes] (which is the most common source of this error) or any other bonded
or nonbonded [+types] directive, typically the user is adding some non-standard species (ligand, solvent, etc)
that introduces new atom types or parameters into the system. As indicated above, these new types and parameters
must appear before any [moleculetype] directive. The force field (page 337) has to be fully constructed
before any molecules can be defined.

Atom index n in position_restraints out of bounds

A common problem is placing position restraint files for multiple molecules out of order. Recall that a posi-
tion restraint itp (page 496) file containing a [position_restraints] block can only belong to the [
moleculetype] block that contains it. For example:

WRONG:

#include "topol A.itp"
#include "topol_B.itp"
#include "ligand.itp"

#ifdef POSRES
#include "posre A.itp"
(continues on next page)

3.10. Common errors when using GROMACS 114

GROMACS Documentation, Release 2026-rc

(continued from previous page)
#include "posre B.itp"
#include "ligand posre.itp"
#endif

RIGHT:

#include "topol A.itp"
#1ifdef POSRES

#include "posre A.itp"
#endif

#include "topol_ B.itp"
#ifdef POSRES
#include "posre B.itp
#endif

n

#include "ligand.itp"
#ifdef POSRES

#include "ligand posre.itp
#endif

n”

Further, the atom index of each [position_restraint] must be relative to the [moleculetype], not
relative to the system (because the parsing has not reached [molecules] yet, there is no such concept as
“system’). So you cannot use the output of a tool like genrestr (page 195) blindly (as genrestr —h warns).

System has non-zero total charge

Notifies you that counter-ions may be required for the system to neutralize the charge or there may be problems
with the topology.

If the charge is not very close to an integer, then this indicates that there is a problem with the ropology (page 501).
If pdb2gmx (page 241) has been used, then look at the right-hand comment column of the atom listing, which lists
the cumulative charge. This should be an integer after every residue (and/or charge group where applicable). This
will assist in finding the residue where things start departing from integer values. Also check the terminal capping
groups that have been used.

If the charge is already close to an integer, then the difference is caused by rounding errors (page 347) and not a
major problem.

Note for PME users: It is possible to use a uniform neutralizing background charge in PME to compensate for
a system with a net background charge. This may however, especially for non-homogeneous systems, lead to
unwanted artifacts, as shown in /87 (page 596) (http://pubs.acs.org/doi/abs/10.1021/ct400626b). Nevertheless, it
is a standard practice to actually add counter-ions to make the system net neutral.

Incorrect number of parameters

Look at the topology (page 501) file for the system. You have not given enough parameters for one of the bonded
definitions. Sometimes this also occurs if you have mangled the /nclude File Mechanism (page 33) or the topology
file format (see: reference manual Chapter 5) when you edited the file.

3.10. Common errors when using GROMACS 115

http://pubs.acs.org/doi/abs/10.1021/ct400626b

GROMACS Documentation, Release 2026-rc

Number of coordinates in coordinate file does not match topology

This is pointing out that, based on the information provided in the topology (page 501) file, rop (page 501), the
total number of atoms or particles within the system does not match exactly with what is provided within the
coordinate file (page 492), often a gro (page 495) or a pdb (page 499).

The most common reason for this is simply that the user has failed to update the topology file after solvating or
adding additional molecules to the system, or made a typographical error in the number of one of the molecules
within the system. Ensure that the end of the topology file being used contains something like the following, that
matches exactly with what is within the coordinate file being used, in terms of both numbers and order of the
molecules:

[molecules]

; Compound #mo1l
Protein 1
SOL 10189
NA+ 10

Fatal error: No such moleculetype XXX

Each type of molecule in your [molecules] section of your fop (page 501) file must have a corresponding
[moleculetype] section defined previously, either in the rop (page 501) file or an included (page 33) itp
(page 496) file. See the reference manual section 5.6.1 for the syntax description. Your fop (page 501) file does not
have such a definition for the indicated molecule. Check the contents of the relevant files, how you have named
your molecules, and how you have tried to refer to them later. Pay attention to the status of #ifdef and / or
#include statements.

T-Coupling group XXX has fewer than 10% of the atoms

It is possible to specify separate thermostats (page 333) (temperature coupling groups) for every molecule type
within a simulation. This is a particularly bad practice employed by many new users to molecular dynamics
simulations. Doing so is a bad idea, as you can introduce errors and artifacts that are hard to predict. In many cases
it is best to have all molecules within a single group, using the default Sy stem group. If separate coupling groups
are required to avoid the hot—solvent, cold-solute problem, then ensure that they are of sufficient
s1ize and combine molecule types that appear together within the simulation. For example, for a protein in water
with counter-ions, one would likely want to use Protein and Non-Protein.

The cut-off length is longer than half the shortest box vector or longer than the smallest box
diagonal element. Increase the box size or decrease rlist

This error is generated in the cases as noted within the message. The dimensions of the box are such that an atom
will interact with itself (when using periodic boundary conditions), thus violating the minimum image convention.
Such an event is totally unrealistic and will introduce some serious artefacts. The solution is again what is noted
within the message, either increase the size of the simulation box so that it is at an absolute minimum twice the
cut-off length in all three dimensions (take care here if are using pressure coupling, as the box dimensions will
change over time and if they decrease even slightly, you will still be violating the minimum image convention) or
decrease the cut-off length (depending on the force field (page 337) utilised, this may not be an option).

3.10. Common errors when using GROMACS 116

GROMACS Documentation, Release 2026-rc

Atom index (1) in bonds out of bounds

This kind of error looks like:

Fatal error:

[file spc.itp, line 32]

Atom index (1) in bonds out of bounds (1-0).

This probably means that you have inserted topology
section "settles" in a part belonging to a different
molecule than you intended to. in that case move the
"settles" section to the right molecule.

This error is fairly self-explanatory. You should look at your fop (page 501) file and check that all of the
[molecules] sections contain all of the data pertaining to that molecule, and no other data. That is, you cannot
#include another molecule type (itp (page 496) file) before the previous [moleculetype] has ended. Con-
sult the examples in chapter 5 of the reference manual for information on the required ordering of the different
[sections]. Pay attention to the contents of any files you have included (page 33) with #include directives.

XXX non-matching atom names

This error usually indicates that the order of the fopology (page 501) file does not match that of the coordinate file
(page 492). When running grompp (page 196), the program reads through the ropology (page 501), mapping the
supplied parameters to the atoms in the coordinate (page 492) file. If there is a mismatch, this error is generated.
To remedy the problem, make sure that the contents of your [molecules] directive matches the exact order
of the atoms in the coordinate file.

In a few cases, the error is harmless. Perhaps you are using a coordinate (page 492) file that has the old (pre-
4.5) ion nomenclature. In this case, allowing grompp (page 196) to re-assign names is harmless. For just about
any other situation, when this error comes up, it should not be ignored. Just because the —-maxwarn option is
available does not mean you should use it in the blind hope of your simulation working. It will almost certainly
blow up (page 335).

Invalid line in coordinate file for atom X

This error arises if the format of the gro (page 495) file is broken in some way. The most common explanation is
that the second line in the gro (page 495) file specifies an incorrect number of atoms, causing grompp (page 196)
to continue searching for atoms but finding box vectors.

An input file contains a line longer than 4095 characters

This error is usually due to a problem with line endings, which are different in DOS/Windows and
Unix/Linux/Mac. This can be addressed using separate tools, such as dos2unix or in most text editors. Reading
directly from network file systems, such as Samba, may cause the same problems. In that case it is recommended
to copy the files to a local file system and try again.

3.10.4 Errors in mdrun

Stepsize too small, or no change in energy. Converged to machine precision, but not to the
requested Fpax

This may not be an error as such. It is simply informing you that during the energy minimization process mdrun
reached the limit possible to minimize the structure with your current parameters. It does not mean that the system
has not been minimized fully, but in some situations that may be the case. If the system has a significant amount
of water present, then an Ep of the order of -10° to -10% (in conjunction with an Fp,,, between 10 and 1000 kJ
mol! nm!) is typically a reasonable value for starting most MD simulations from the resulting structure. The
most important result is likely the value of F, ., as it describes the slope of the potential energy surface, i.e. how

3.10. Common errors when using GROMACS 117

https://dos2unix.sourceforge.io/
https://www.samba.org/

GROMACS Documentation, Release 2026-rc

far from an energy minimum your structure lies. Only for special purposes, such as normal mode analysis type of
calculations, it may be necessary to minimize further. Further minimization may be achieved by using a different
energy minimization method or by making use of double precision-enabled GROMACS.

Energy minimization has stopped because the force on at least one atom is not finite

This likely indicates that (at least) two atoms are too close in the input coordinates, and the forces exerted on each
other are greater in magnitude than can be expressed to the extent of the precision of GROMACS, and therefore
minimization cannot proceed. It is sometimes possible to minimize systems that have infinite forces with the
use of soft-core potentials, which scale down the magnitude of Lennard-Jones interactions with the use of the
GROMACS free energy code. This approach is an accepted workflow for equilibration of some coarse-grained
systems such as Martini.

LINCS/SETTLE/SHAKE warnings

Sometimes, when running dynamics, mdrun (page 221) may suddenly stop (perhaps after writing several pdb
(page 499) files) after a series of warnings about the constraint algorithms (e.g. LINCS, SETTLE or SHAKE) are
written to the /og (page 496) file. These algorithms often used to constrain bond lengths and/or angles. When a
system is blowing up (page 335) (i.e. exploding due to diverging forces), the constraints are usually the first thing
to fail. This does not necessarily mean you need to troubleshoot the constraint algorithm. Usually it is a sign of
something more fundamentally wrong (physically unrealistic) with your system. See also the advice here about
diagnosing unstable systems (page 335).

1-4 interaction not within cut-off

Some of your atoms have moved so two atoms separated by three bonds are separated by more than the cut-
off distance. This is BAD. Most importantly, do not increase your cut-off! This error actually indicates that
the atoms have very large velocities, which usually means that (part of) your molecule(s) is (are) blowing up
(page 335). If you are using LINCS for constraints, you probably also already got a number of LINCS warnings.
When using SHAKE this will give rise to a SHAKE error, which halts your simulation before the 1-4 not
within cutoff error can appear.

There can be a number of reasons for the large velocities in your system. If it happens at the beginning of the
simulation, your system might be not equilibrated well enough (e.g. it contains some bad contacts). Try a(nother)
round of energy minimization to fix this. Otherwise you might have a very high temperature, and/or a timestep
that is too large. Experiment with these parameters until the error stops occurring. If this does not help, check the
validity of the parameters in your fopology (page 501)!

Simulation running but no output

Not an error as such, but mdrun appears to be chewing up CPU time but nothing is being written to the output
files. There are a number of reasons why this may occur:

* Your simulation might simply be (very) slow (page 90), and since output is buffered, it can take quite some
time for output to appear in the respective files. If you are trying to fix some problems and you want to get
output as fast as possible, you can set the environment variable GMX_10OG_BUFFER to 0.

* Something might be going wrong in your simulation, causing e.g. not-a-numbers (NAN) to be generated
(these are the result of e.g. division by zero). Subsequent calculations with NAN’s will generate floating
point exceptions which slow everything down by orders of magnitude.

* You might have all nst parameters (see your mdp (page 497) file) set to 0, this will suppress most output.

* Your disk might be full. Eventually this will lead to mdrun (page 221) crashing, but since output is buffered,
it might take a while for mdrun to realize it cannot write.

3.10. Common errors when using GROMACS 118

GROMACS Documentation, Release 2026-rc

Can not do Conjugate Gradients with constraints

This means you cannot do energy minimization with the conjugate gradient algorithm if your topology has con-
straints defined. Please check the reference manual.

Pressure scaling more than 1%

This error tends to be generated when the simulation box begins to oscillate (due to large pressures and / or small
coupling constants), the system starts to resonate and then crashes (page 335). This can mean that the system
is not equilibrated sufficiently before using pressure coupling. Therefore, better / more equilibration may fix the
issue.

It is recommended to observe the system trajectory prior and during the crash. This may indicate if a particular
part of the system / structure is the problem.

In some cases, if the system has been equilibrated sufficiently, this error can mean that the pressure coupling con-
stant, tau—p (page 57), is too small (particularly when using the Berendsen weak coupling method). Increasing
that value will slow down the response to pressure changes and may stop the resonance from occurring. You
are also more likely to see this error if you use Parrinello-Rahman pressure coupling on a system that is not yet
equilibrated - use the C-rescale method instead.

This error can also appear when using a timestep that is too large, e.g. 5 fs, in the absence of constraints and / or
virtual sites.

Range Checking error

This usually means your simulation is blowing up (page 335). Probably you need to do better energy minimization
and/or equilibration and/or topology design.

X particles communicated to PME node Y are more than a cell length out of the domain decom-
position cell of their charge group

This is another way that mdrun (page 221) tells you your system is blowing up (page 335). If you have particles
that are flying across the system, you will get this fatal error. The message indicates that some piece of your
system is tearing apart (hence out of the “cell of their charge group”). Refer to the Blowing Up (page 335) page
for advice on how to fix this issue.

A charge group moved too far between two domain decomposition steps.

See information above.

Software inconsistency error: Some interactions seem to be assigned multiple times

See information above

There is no domain decomposition for n ranks that is compatible with the given box and a mini-
mum cell size of x nm

This means you tried to run a parallel calculation, and when mdrun (page 221) tried to partition your simulation
cell into chunks, it could not. The minimum cell size is controlled by the size of the largest charge group or
bonded interaction and the largest of rvdw, r1ist and rcoulomb, some other effects of bond constraints, and
a safety margin. Thus it is not possible to run a small simulation with large numbers of processors. So, if grompp
(page 196) warned you about a large charge group, pay attention and reconsider its size. mdrun (page 221) prints
a breakdown of how it computed this minimum size in the log (page 496) file, so you can perhaps find a cause
there.

3.10. Common errors when using GROMACS 119

GROMACS Documentation, Release 2026-rc

If you did not think you were running a parallel calculation, be aware that from 4.5, GROMACS uses thread-based
parallelism by default. To prevent this, give mdrun (page 221) the -ntmpi 1 command line option. Otherwise,
you might be using an MPI-enabled GROMACS and not be aware of the fact.

3.11 Command-line reference

GROMACS includes many tools for preparing, running and analyzing molecular dynamics simulations. These are
all structured as part of a single gmx wrapper binary, and invoked with commands like gmx grompp. or gmx
mdrun. Documentation for these can be found at the respective sections below, as well as on man pages (e.g.,
gmx—-grompp (1)) and with gmx help command or gmx command —h.

If you have installed an MPI version of GROMACS, by default the gmx binary is called gmx_mp3i and you should
adapt accordingly.

3.11.1 molecular dynamics simulation suite

Synopsis

gmx [—[no]lh] [—[no]quiet] [-[no]version] [—-[no]copyright] [—-nice <int>]
[-[nolbackup]

Description

GROMACS is a full-featured suite of programs to perform molecular dynamics simulations, i.e., to simulate the
behavior of systems with hundreds to millions of particles using Newtonian equations of motion. It is primarily
used for research on proteins, lipids, and polymers, but can be applied to a wide variety of chemical and biological
research questions.

Options

Other options:

—[no]lh (no)
Print help and quit

—[no]lquiet (no)
Do not print common startup info or quotes

—[no]version (no)
Print extended version information and quit

- [no]copyright (no)
Print copyright information on startup

—nice <int> (19)
Set the nicelevel (default depends on command)

- [no]backup (yes)
Write backups if output files exist

3.11. Command-line reference 120

GROMACS Documentation, Release 2026-rc

gmx commands

The following commands are available. Please refer to their individual man pages or gmx help <command>
for further details.

Trajectory analysis

gmx—gangle (1)
Calculate angles

gmx—-convert—-trj (1)
Converts between different trajectory types

gmx—-distance (1)
Calculate distances between pairs of positions

gmx—dssp (1)
Calculate protein secondary structure via DSSP algorithm

gmx—extract-cluster (1)
Allows extracting frames corresponding to clusters from trajectory

gmx—freevolume (1)
Calculate free volume

gmx—hbond (1)
Compute and analyze hydrogen bonds.

gmx-msd (1)
Compute mean squared displacements

gmx—-pairdist (1)
Calculate pairwise distances between groups of positions

gmx—rdf (1)
Calculate radial distribution functions

gmx—sasa (1)
Compute solvent accessible surface area

gmx—scattering (1)
Calculate small angle scattering profiles for SANS or SAXS

gmx—-select (1)
Print general information about selections

gmx—-trajectory (1)
Print coordinates, velocities, and/or forces for selections

gmx—-gyrate (1)
Calculate radius of gyration of a molecule

Generating topologies and coordinates

gmx—editconf (1)
Edit the box and write subgroups

gmx—-x2top (1)
Generate a primitive topology from coordinates

gmx—-solvate (1)
Solvate a system

gmx—insert-molecules (1)
Insert molecules into existing vacancies

3.11. Command-line reference 121

GROMACS Documentation, Release 2026-rc

gmx—genconf (1)
Multiply a conformation in ‘random’ orientations

gmx—genion (1)
Generate monoatomic ions on energetically favorable positions

gmx—genrestr (1)
Generate position restraints or distance restraints for index groups

gmx—-pdb2gmx (1)
Convert coordinate files to topology and FF-compliant coordinate files

Running a simulation

gmx—grompp (1)
Make a run input file

gmx—-mdrun (1)
Perform a simulation, do a normal mode analysis or an energy minimization

gmx—convert-tpr (1)
Make a modified run-input file

Viewing trajectories

gmx—nmtraj (1)
Generate a virtual oscillating trajectory from an eigenvector

Processing energies

gmx—enemat (1)
Extract an energy matrix from an energy file

gmx—-energy (1)
Writes energies to xvg files and display averages

gmx—-mdrun (1)
(Re)calculate energies for trajectory frames with -rerun

Converting files

gmx—editconf (1)
Convert and manipulates structure files

gmx—eneconv (1)
Convert energy files

gmx—sigeps (1)
Convert c¢6/12 or c6/cn combinations to and from sigma/epsilon

gmx—trjcat (1)
Concatenate trajectory files

gmx—trijconv (1)
Convert and manipulates trajectory files

gmx—-xpm2ps (1)
Convert XPM (XPixelMap) matrices to postscript or XPM

3.11. Command-line reference

122

GROMACS Documentation, Release 2026-rc

Tools

gmx—analyze (1)
Analyze data sets

gmx—awh (1)
Extract data from an accelerated weight histogram (AWH) run

gmx—filter (1)
Frequency filter trajectories, useful for making smooth movies

gmx—-lie (1)
Estimate free energy from linear combinations

gmx—pme_error (1)
Estimate the error of using PME with a given input file

gmx—sham (1)
Compute free energies or other histograms from histograms

gmx—spatial (1)
Calculate the spatial distribution function

gmx—traj(1)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx—tune_ pme (1)
Time mdrun as a function of PME ranks to optimize settings

gmx—wham (1)
Perform weighted histogram analysis after umbrella sampling

gmx—check (1)
Check and compare files

gmx—dump (1)
Make binary files human readable

gmx—-make ndx (1)
Make index files

gmx—-mk_angndx (1)
Generate index files for ‘gmx angle’

gmx-trjorder (1)
Order molecules according to their distance to a group

gmx—xpm2ps (1)
Convert XPM (XPixelMap) matrices to postscript or XPM

gmx—report-methods (1)

Write short summary about the simulation setup to a text file and/or to the standard output.

Distances between structures

gmx—cluster (1)
Cluster structures

gmx—confrms (1)
Fit two structures and calculates the RMSD

gmx—rms (1)
Calculate RMSDs with a reference structure and RMSD matrices

gmx—rmsf (1)
Calculate atomic fluctuations

3.11. Command-line reference

123

GROMACS Documentation, Release 2026-rc

Distances in structures over time

gmx—-mindist (1)
Calculate the minimum distance between two groups

gmx—mdmat (1)
Calculate residue contact maps

gmx—-polystat (1)
Calculate static properties of polymers

gmx—rmsdist (1)
Calculate atom pair distances averaged with power -2, -3 or -6

Mass distribution properties over time

gmx—gyrate-legacy (1)
Calculate the radius of gyration

gmx—-polystat (1)
Calculate static properties of polymers

gmx—rdf (1)
Calculate radial distribution functions

gmx—rotacf (1)
Calculate the rotational correlation function for molecules

gmx—rotmat (1)
Plot the rotation matrix for fitting to a reference structure

gmx—-sans—-legacy (1)
Compute small angle neutron scattering spectra

gmx—-saxs—legacy (1)
Compute small angle X-ray scattering spectra

gmx-traj (1)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx—vanhove (1)
Compute Van Hove displacement and correlation functions

Analyzing bonded interactions

gmx-angle (1)
Calculate distributions and correlations for angles and dihedrals

gmx—-mk_angndx (1)
Generate index files for ‘gmx angle’

3.11. Command-line reference

124

GROMACS Documentation, Release 2026-rc

Structural properties

gmx—bundle (1)
Analyze bundles of axes, e.g., helices

gmx—clustsize (1)
Calculate size distributions of atomic clusters

gmx—-disre (1)
Analyze distance restraints

gmx—hbond-legacy (1)
Compute and analyze hydrogen bonds

gmx—-order (1)
Compute the order parameter per atom for carbon tails

gmx-principal (1)
Calculate principal axes of inertia for a group of atoms

gmx—rdf (1)
Calculate radial distribution functions

gmx—-saltbr (1)
Compute salt bridges

gmx—sorient (1)
Analyze solvent orientation around solutes

gmx—spol (1)
Analyze solvent dipole orientation and polarization around solutes

Kinetic properties

gmx—-bar (1)
Calculate free energy difference estimates through Bennett’s acceptance ratio

gmx—-current (1)
Calculate dielectric constants and current autocorrelation function

gmx—dos (1)
Analyze density of states and properties based on that

gmx—dyecoupl (1)
Extract dye dynamics from trajectories

gmx—principal (1)
Calculate principal axes of inertia for a group of atoms

gmx—tcaf (1)
Calculate viscosities of liquids

gmx—traj(1)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx—vanhove (1)
Compute Van Hove displacement and correlation functions

gmx—-velacc (1)
Calculate velocity autocorrelation functions

3.11. Command-line reference

125

GROMACS Documentation, Release 2026-rc

Electrostatic properties

gmx—current (1)
Calculate dielectric constants and current autocorrelation function

gmx—dielectric (1)
Calculate frequency dependent dielectric constants

gmx—-dipoles (1)
Compute the total dipole plus fluctuations

gmx-potential (1)
Calculate the electrostatic potential across the box

gmx-spol (1)
Analyze solvent dipole orientation and polarization around solutes

gmx—genion (1)
Generate monoatomic ions on energetically favorable positions

Protein-specific analysis

gmx—chi (1)
Calculate everything you want to know about chi and other dihedrals

gmx—helix (1)
Calculate basic properties of alpha helices

gmx—helixorient (1)
Calculate local pitch/bending/rotation/orientation inside helices

gmx—-rama (1)
Compute Ramachandran plots

gmx-wheel (1)
Plot helical wheels

Interfaces

gmx—bundle (1)
Analyze bundles of axes, e.g., helices

gmx—density (1)
Calculate the density of the system

gmx—densmap (1)
Calculate 2D planar or axial-radial density maps

gmx—densorder (1)
Calculate surface fluctuations

gmx—h2order (1)
Compute the orientation of water molecules

gmx-hydorder (1)
Compute tetrahedrality parameters around a given atom

gmx—order (1)
Compute the order parameter per atom for carbon tails

gmx—-potential (1)
Calculate the electrostatic potential across the box

3.11. Command-line reference

126

GROMACS Documentation, Release 2026-rc

Covariance analysis

gmx—anaeig (1)
Analyze the eigenvectors

gmx—covar (1)
Calculate and diagonalize the covariance matrix

gmx—-make _edi (1)
Generate input files for essential dynamics sampling

Normal modes

gmx—anaeig (1)
Analyze the normal modes

gmx—-nmeig (1)
Diagonalize the Hessian for normal mode analysis

gmx—-nmtraj (1)
Generate a virtual oscillating trajectory from an eigenvector

gmx—nmens (1)
Generate an ensemble of structures from the normal modes

gmx—grompp (1)
Make a run input file

gmx-mdrun (1)
Find a potential energy minimum and calculate the Hessian

3.11.2 gmx anaeig

Synopsis
gmx anaeig [-v [<.trr/.cpt/...>]]1 [-v2 [<.trr/.cpt/...>]]
[-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [—-eig [<.xvg>]] [—-eig2 [<.xvg>]]
[-comp [<.xvg>]] [-rmsf [<.xvg>]] [-proj [<.xvg>]]
[-2d [<.xvg>]] [=-3d [<.gro/.g96/...>]]
[-filt [<.xtc/.trr/...>]] [—-extr [<.xtc/.trr/...>]]
[-over [<.xvg>]] [—inpr [<.xpm>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [-[no]lw] [—-xvg <enum>]
[-first <int>] [-last <int>] [-skip <int>] [-max <real>]
[-nframes <int>] [—[nolsplit] [-[no]entropy]
[-temp <real>] [—-nevskip <int>]

Description

gmx anaeig analyzes eigenvectors. The eigenvectors can be of a covariance matrix (gmx covar (page 153)) or
of a Normal Modes analysis (gmx nmeig (page 230)).

When a trajectory is projected on eigenvectors, all structures are fitted to the structure in the eigenvector file, if
present, otherwise to the structure in the structure file. When no run input file is supplied, periodicity will not be
taken into account. Most analyses are performed on eigenvectors —first to —last, but when —first is set to

-1 you will be prompted for a selection.

—comp: plot the vector components per atom of eigenvectors —first to -last.

—rmsf: plot the RMS fluctuation per atom of eigenvectors —first to —last (requires —eig).

3.11. Command-line reference

GROMACS Documentation, Release 2026-rc

—-proj: calculate projections of a trajectory on eigenvectors —first to —last. The projections of a trajectory
on the eigenvectors of its covariance matrix are called principal components (pc’s). It is often useful to check the
cosine content of the pc’s, since the pc’s of random diffusion are cosines with the number of periods equal to half
the pc index. The cosine content of the pc’s can be calculated with the program gmx analyze (page 130).

—2d: calculate a 2d projection of a trajectory on eigenvectors —first and —last.
—3d: calculate a 3d projection of a trajectory on the first three selected eigenvectors.
—filt: filter the trajectory to show only the motion along eigenvectors —first to —last.

—extr: calculate the two extreme projections along a trajectory on the average structure and interpolate
-nframes frames between them, or set your own extremes with -max. The eigenvector —first will be writ-
ten unless —~first and —last have been set explicitly, in which case all eigenvectors will be written to separate
files. Chain identifiers will be added when writing a .pdb (page 499) file with two or three structures (you can use
rasmol -nmrpdb to view such a.pdb (page 499) file).

Overlap calculations between covariance analysis

Note: the analysis should use the same fitting structure

—over: calculate the subspace overlap of the eigenvectors in file —v2 with eigenvectors —first to ~last in
file —v.

—inpr: calculate a matrix of inner-products between eigenvectors in files —v and —v2. All eigenvectors of both
files will be used unless —first and —1ast have been set explicitly.

When -v and -v2 are given, a single number for the overlap between the covariance matrices is generated. Note
that the eigenvalues are by default read from the timestamp field in the eigenvector input files, but when —eig, or
—eig? are given, the corresponding eigenvalues are used instead. The formulas are:

difference = sqrt(tr((sqrt(Ml) - sqgrt(M2))"2))
normalized overlap = 1 - difference/sqgrt (tr(M1l) + tr(M2))
shape overlap 1 - sgrt(tr((sqrt (M1/tr(M1l)) - sqrt(M2/tr(M2)))"2))

where M1 and M2 are the two covariance matrices and tr is the trace of a matrix. The numbers are proportional
to the overlap of the square root of the fluctuations. The normalized overlap is the most useful number, it is 1 for
identical matrices and 0 when the sampled subspaces are orthogonal.

When the —ent ropy flag is given an entropy estimate will be computed based on the Quasiharmonic approach
and based on Schlitter’s formula.

Options

Options to specify input files:
-v [<.trr/.cpt/...>] (eigenvec.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

-v2 [<.trr/.cpt/...>] (eigenvec2.trr) (Optional)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) h5md

—-f [<.xte/.trr/...>] (traj.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

—eig [<.xvg>] (eigenval.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 128

GROMACS Documentation, Release 2026-rc

-eig2 [<.xvg>] (eigenval2.xvg) (Optional)
xvgr/xmgr file

Options to specify output files:

—comp [<.xvg>] (eigcomp.xvg) (Optional)
xvgr/xmgr file

—-rmsf [<.xvg>] (eigrmsf.xvg) (Optional)
xvgr/xmgr file

-proj [<.xvg>] (proj.xvg) (Optional)
xvgr/xmgr file

—-2d [<.xvg>] (2dproj.xvg) (Optional)
xvgr/xmgr file

-3d [<.gro/.g96/...>] (3dproj.pdb) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

-£filt [<.xte/.trr/...>] (filtered.xtc) (Optional)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng

(page 501) hSmd
—-extr [<.xtc/.trr/...>] (extreme.pdb) (Optional)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ng

(page 501) hSmd

—over [<.xvg>] (overlap.xvg) (Optional)
xvgr/xmgr file

—inpr [<.xpm>] (inprod.xpm) (Optional)
X PixMap compatible matrix file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-first <int> (1)
First eigenvector for analysis (-1 is select)

—last <int> (-1)
Last eigenvector for analysis (-1 is till the last)

-skip <int> (1)
Only analyse every nr-th frame

—-max <real> (0)
Maximum for projection of the eigenvector on the average structure, max=0 gives the extremes

-nframes <int> (2)
Number of frames for the extremes output

3.11. Command-line reference

129

GROMACS Documentation, Release 2026-rc

—[no]split (no)
Split eigenvector projections where time is zero

—[no]entropy (no)
Compute entropy according to the Quasiharmonic formula or Schlitter’s method.

—temp <real> (298.15)
Temperature for entropy calculations

-nevskip <int> (6)
Number of eigenvalues to skip when computing the entropy due to the quasi harmonic approximation. When
you do a rotational and/or translational fit prior to the covariance analysis, you get 3 or 6 eigenvalues that
are very close to zero, and which should not be taken into account when computing the entropy.

3.11.3 gmx analyze
Synopsis

gmx analyze [-f [<.xvg>]] [-ac [<.xvg>]] [-msd [<.xvg>]] [—-cc [<.xvg>]]
[-dist [<.xvg>]] [-av [<.xvg>]] [—-ee [<.xvg>]]

[-fitted [<.xvg>]] [-g [<.log>]] [-[no]lw] [-xvg <enum>]
[-[no]ltime] [-b <real>] [—-e <real>] [-n <int>] [-[no]ld]
[-bw <real>] [—errbar <enum>] [—[no]integrate]

[-aver_start <real>] [—-[no]lxydy] [-[no]regression]
[-[no]luzar] [-temp <real>] [—-fitstart <real>]

[-fitend <real>] [-filter <real>] [-[no]power]

[-[no]lsubav] [—-[no]loneacf] [—acflen <int>]

[= [no]normallze] [-P <enum>] [—fitfn <enum>]

[-beginfit <real>] [—endfit <real>]

Description

gmx analyze reads an ASCII file and analyzes data sets. A line in the input file may start with a time (see
option —time) and any number of y-values may follow. Multiple sets can also be read when they are separated
by & (option —n); in this case only one y-value is read from each line. All lines starting with # and @ are skipped.
All analyses can also be done for the derivative of a set (option —d).

All options, except for —av and ~power, assume that the points are equidistant in time.

gmx analyze always shows the average and standard deviation of each set, as well as the relative deviation of
the third and fourth cumulant from those of a Gaussian distribution with the same standard deviation.

Option —ac produces the autocorrelation function(s). Be sure that the time interval between data points is much
shorter than the time scale of the autocorrelation.

Option —cc plots the resemblance of set i with a cosine of i/2 periods. The formula is:

2 (integral from 0 to T of y(t) cos(i pi t) dt)~"2
/ integral from 0 to T of y”2(t) dt

This is useful for principal components obtained from covariance analysis, since the principal components of
random diffusion are pure cosines.

Option -msd produces the mean square displacement(s).
Option —dist produces distribution plot(s).

Option —av produces the average over the sets. Error bars can be added with the option —~errbar. The errorbars
can represent the standard deviation, the error (assuming the points are independent) or the interval containing
90% of the points, by discarding 5% of the points at the top and the bottom.

3.11. Command-line reference 130

GROMACS Documentation, Release 2026-rc

Option —ee produces error estimates using block averaging. A set is divided in a number of blocks and averages
are calculated for each block. The error for the total average is calculated from the variance between averages of
the m blocks B_i as follows: error*2 = sum (B_i -)"2 / (m*(m-1)). These errors are plotted as a function of
the block size. Also an analytical block average curve is plotted, assuming that the autocorrelation is a sum of two
exponentials. The analytical curve for the block average is:

f(t) = sigma "+ “sqrt(2/T (alpha
(tau_1l ((exp(-t/tau_1l) - 1)

tau_ 1/t + 1)) +

(l-alpha) (tau_2

((exp(-t/tau_2) - 1) tau_2/t +
1)))),

where T is the total time. alpha, tau_1 and tau_2 are obtained by fitting f*2(t) to error*2. When the actual
block average is very close to the analytical curve, the error is sigma” "~ *" “sqrt(2/T (a tau_1 + (1-a) tau_2)). The
complete derivation is given in B. Hess, J. Chem. Phys. 116:209-217, 2002.

Option —filter prints the RMS high-frequency fluctuation of each set and over all sets with respect to a filtered
average. The filter is proportional to cos(pi t/len) where t goes from -len/2 to len/2. len is supplied with the option
—filter. This filter reduces oscillations with period len/2 and len by a factor of 0.79 and 0.33 respectively.

Option —g fits the data to the function given with option —fit fn.

Option —power fits the data to b t*a, which is accomplished by fitting to a t + b on log-log scale. All points after
the first zero or with a negative value are ignored.

Option —~1uzar performs a Luzar & Chandler kinetics analysis on output from gmx hbond (page 203). The input
file can be taken directly from gmx hbond -ac, and then the same result should be produced.

Option —fit fn performs curve fitting to a number of different curves that make sense in the context of molecular
dynamics, mainly exponential curves. More information is in the manual. To check the output of the fitting
procedure the option —fitted will print both the original data and the fitted function to a new data file. The
fitting parameters are stored as comment in the output file.

Options

Options to specify input files:

—f [<.xvg>] (graph.xvg)
xvgr/xmgr file

Options to specify output files:

—ac [<.xvg>] (autocorr.xvg) (Optional)
xvgr/xmgr file

-msd [<.xvg>] (msd.xvg) (Optional)
xvgr/xmgr file

—cc [<.xvg>] (coscont.xvg) (Optional)
xvgr/xmgr file

—dist [<.xvg>] (distr.xvg) (Optional)
xvgr/xmgr file

—av [<.xvg>] (average.xvg) (Optional)
xvgr/xmgr file

—ee [<.xvg>] (errest.xvg) (Optional)
xvgr/xmgr file

-fitted [<.xvg>] (fitted.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 131

GROMACS Documentation, Release 2026-rc

—-g [<.log>] (fitlog.log) (Optional)
Log file

Other options:

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no]time (yes)
Expect a time in the input

=b <real> (-1)
First time to read from set

—e <real> (-1)
Last time to read from set

—n <int> (1)
Read this number of sets separated by &

-[nold (no)
Use the derivative

—bw <real> (0.1)
Binwidth for the distribution

—errbar <enum> (none)
Error bars for —av: none, stddev, error, 90

—[no]integrate (no)
Integrate data function(s) numerically using trapezium rule

—-aver_start <real> (0)
Start averaging the integral from here

- [no]xydy (no)
Interpret second data set as error in the y values for integrating

—[no]regression (no)
Perform a linear regression analysis on the data. If —xydy is set a second set will be interpreted as the error
bar in the Y value. Otherwise, if multiple data sets are present a multilinear regression will be performed
yielding the constant A that minimize chi’2 =(y-A_0x_0-A_l x_1-... - A_N x_N)"2 where now Y is
the first data set in the input file and x_i the others. Do read the information at the option —t ime.

—[no]luzar (no)
Do a Luzar and Chandler analysis on a correlation function and related as produced by gmx hbond
(page 203). When in addition the —xydy flag is given the second and fourth column will be interpreted
as errors in ¢(t) and n(t).

—temp <real> (298.15)
Temperature for the Luzar hydrogen bonding kinetics analysis (K)

-fitstart <real> (1)
Time (ps) from which to start fitting the correlation functions in order to obtain the forward and backward
rate constants for HB breaking and formation

-fitend <real> (60)
Time (ps) where to stop fitting the correlation functions in order to obtain the forward and backward rate
constants for HB breaking and formation. Only with —gem

—filter <real> (0)
Print the high-frequency fluctuation after filtering with a cosine filter of this length

- [no]power (no)
Fit data to: b t*a

3.11. Command-line reference 132

GROMACS Documentation, Release 2026-rc

—[no] subav (yes)
Subtract the average before autocorrelating

—[no]oneacf (no)
Calculate one ACF over all sets

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]normalize (yes)
Normalize ACF

—P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp3J, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.4 gmx angle

Synopsis

gmx angle [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [=-od [<.xvg>]]
[-ov [<.xvg>]] [=of [<.xvg>]] [-ot [<.xvg>]] [-oh [<.xvg>]]
[moc [<.xvg>]] [=-or [<.trr>]] [-b <time>] [—-e <time>]
[-dt <time>] [-[no]lw] [-xvg <enum>] [—-type <enum>]
[-[nolall] [-binwidth <real>] [-[no]lperiodic]
[-[no]chandler] [-[no]avercorr] [—acflen <int>]
[-[no]lnormalize] [-P <enum>] [—-fitfn <enum>]
[-beginfit <real>] [—endfit <real>]

Description

gmx angle computes the angle distribution for a number of angles or dihedrals.

With option —ov, you can plot the average angle of a group of angles as a function of time. With the —a11 option,
the first graph is the average and the rest are the individual angles.

With the —of option, gmx angle also calculates the fraction of trans dihedrals (only for dihedrals) as function
of time, but this is probably only fun for a select few.

With option —oc, a dihedral correlation function is calculated.

It should be noted that the index file must contain atom triplets for angles or atom quadruplets for dihedrals. If
this is not the case, the program will crash.

With option —-or, a trajectory file is dumped containing cos and sin of selected dihedral angles, which subsequently
can be used as input for a principal components analysis using gmx covar (page 153).

Option —ot plots when transitions occur between dihedral rotamers of multiplicity 3 and —oh records a histogram
of the times between such transitions, assuming the input trajectory frames are equally spaced in time.

3.11. Command-line reference 133

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing

(page 501) hSmd

-n [<.ndx>] (angle.ndx)
Index file

Options to specify output files:

—od [<.xvg>] (angdist.xvg)
xvgr/xmgr file

—-ov [<.xvg>] (angaver.xvg) (Optional)
xvgr/xmgr file

—of [<.xvg>] (dihfrac.xvg) (Optional)
xvgr/xmgr file

—ot [<.xvg>] (dihtrans.xvg) (Optional)
xvgr/xmgr file

—oh [<.xvg>] (trhisto.xvg) (Optional)
xvgr/xmgr file

—-oc [<.xvg>] (dihcorr.xvg) (Optional)
xvgr/xmgr file

—or [<.trr>] (traj.trr) (Optional)
Trajectory in portable xdr format

Other options:
-b <time> (0)

Time of first frame to read from trajectory (default unit ps)

—e <time> (0)

Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)

Only use frame when t MOD dt = first time (default unit ps)

- [no]w (no)

View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)

xvg plot formatting: xmgrace, xmgr, none

—-type <enum> (angle)

Type of angle to analyse: angle, dihedral, improper, ryckaert-bellemans

-[nolall (no)

Plot all angles separately in the averages file, in the order of appearance in the index file.

—-binwidth <real> (1)

binwidth (degrees) for calculating the distribution

—[no]periodic (yes)

Print dihedral angles modulo 360 degrees

—[no]chandler (no)

Use Chandler correlation function (N[trans] = 1, N[gauche] = 0) rather than cosine correlation function.

Trans is defined as phi < -60 or phi > 60.

-[no]avercorr (no)

Average the correlation functions for the individual angles/dihedrals

3.11. Command-line reference

134

GROMACS Documentation, Release 2026-rc

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[nolnormalize (yes)
Normalize ACF

—P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, expJ, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

Known Issues

* Counting transitions only works for dihedrals with multiplicity 3

3.11.5 gmx awh
Synopsis

gmx awh [-f [<.edr>]] [-s [<.tpr>]] [-o [<.xvg>]] [—-fric [<.xvg>]]
[-b <time>] [-e <time>] [—-[no]lw] [—-xvg <enum>] [-skip <int>]
[-[no]lmore] [—-[no]lkt]

Description

gmx awh extracts AWH data from an energy file. One or two files are written per AWH bias per time frame.
The bias index, if more than one, is appended to the file, as well as the time of the frame. By default only
the PMF is printed. With —more the bias, target and coordinate distributions are also printed, as well as the
metric sqrt(det(friction_tensor)) normalized such that the average is 1. Option —fric prints all components of
the friction tensor to an additional set of files.

Options

Options to specify input files:

—f [<.edr>] (ener.edr)
Energy file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (awh.xvg)
xvgr/xmgr file

—-fric [<.xvg>] (friction.xvg) (Optional)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

3.11. Command-line reference 135

GROMACS Documentation, Release 2026-rc

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-skip <int> (0)
Skip number of frames between data points

—[no]more (no)
Print more output

-[nolkt (no)
Print free energy output in units of kT instead of kJ/mol

3.11.6 gmx bar

Synopsis

gmx bar [-f [<.xvg> [...]]] [-g [<.edr> [...]]] [-o [<.xvg>]]
[-oi [<.xvg>]] [-oh [<.xvg>]] [-[no]lw] [—-xvg <enum>]
[-b <real>] [—-e <real>] [-temp <real>] [-prec <int>]
[-nbmin <int>] [-nbmax <int>] [-nbin <int>] [-[no]extp]

Description

gmx bar calculates free energy difference estimates through Bennett’s acceptance ratio method (BAR). It also
automatically adds series of individual free energies obtained with BAR into a combined free energy estimate.

Every individual BAR free energy difference relies on two simulations at different states: say state A and state
B, as controlled by a parameter, lambda (see the .mdp (page 497) parameter init_lambda). The BAR method
calculates a ratio of weighted average of the Hamiltonian difference of state B given state A and vice versa. The
energy differences to the other state must be calculated explicitly during the simulation. This can be done with the
.mdp (page 497) option foreign_lambda.

Input option — £ expects multiple dhdl . xvg files. Two types of input files are supported:

¢ Files with more than one y-value. The files should have columns with dH/dlambda and Deltalambda. The
lambda values are inferred from the legends: lambda of the simulation from the legend of dH/dlambda and
the foreign lambda values from the legends of Delta H

* Files with only one y-value. Using the —extp option for these files, it is assumed that the y-value is
dH/dlambda and that the Hamiltonian depends linearly on lambda. The lambda value of the simulation is
inferred from the subtitle (if present), otherwise from a number in the subdirectory in the file name.

The lambda of the simulation is parsed from dhdl.xvg file’s legend containing the string ‘dH’, the foreign
lambda values from the legend containing the capitalized letters ‘D’ and ‘H’. The temperature is parsed from the
legend line containing ‘T =’.

The input option —g expects multiple .edr (page 494) files. These can contain either lists of energy differences (see
the .mdp (page 497) option separate_dhdl_file), or aseries of histograms (see the .mdp (page 497) options
dh_hist_size and dh_hist_spacing). The temperature and lambda values are automatically deduced
from the ener . edr file.

In addition to the .mdp (page 497) option foreign_lambda, the energy difference can also be extrapolated
from the dH/dlambda values. This is done with the” “-extp” * option, which assumes that the system’s Hamiltonian
depends linearly on lambda, which is not normally the case.

The free energy estimates are determined using BAR with bisection, with the precision of the output set with
-prec. An error estimate taking into account time correlations is made by splitting the data into blocks and

3.11. Command-line reference 136

GROMACS Documentation, Release 2026-rc

determining the free energy differences over those blocks and assuming the blocks are independent. The final error
estimate is determined from the average variance over 5 blocks. A range of block numbers for error estimation
can be provided with the options —nbmin and —nbmax.

gmx bar tries to aggregate samples with the same ‘native’ and ‘foreign’ lambda values, but always assumes
independent samples. Note that when aggregating energy differences/derivatives with different sampling intervals,
this is almost certainly not correct. Usually subsequent energies are correlated and different time intervals mean
different degrees of correlation between samples.

The results are split in two parts: the last part contains the final results in kJ/mol, together with the error estimate
for each part and the total. The first part contains detailed free energy difference estimates and phase space overlap
measures in units of kT (together with their computed error estimate). The printed values are:

e lam_A: the lambda values for point A.

* lam_B: the lambda values for point B.

* DG: the free energy estimate.

* s_A: an estimate of the relative entropy of B in A.

* s_B: an estimate of the relative entropy of A in B.

* stdev: an estimate expected per-sample standard deviation.

The relative entropy of both states in each other’s ensemble can be interpreted as a measure of phase space overlap:
the relative entropy s_A of the work samples of lambda_B in the ensemble of lambda_A (and vice versa for s_B),
is a measure of the ‘distance’ between Boltzmann distributions of the two states, that goes to zero for identical
distributions. See Wu & Kofke, J. Chem. Phys. 123 084109 (2005) for more information.

The estimate of the expected per-sample standard deviation, as given in Bennett’s original BAR paper: Bennett,
J. Comp. Phys. 22, p 245 (1976). Eq. 10 therein gives an estimate of the quality of sampling (not directly of the
actual statistical error, because it assumes independent samples).

To get a visual estimate of the phase space overlap, use the —oh option to write series of histograms, together with
the —nbin option.

Options

Options to specify input files:

-f [<.xvg> [...]] (dhdlxvg) (Optional)
xvgr/xmgr file

—g [<.edr> [...]] (ener.edr) (Optional)
Energy file

Options to specify output files:

-o [<.xvg>] (bar.xvg) (Optional)
xvgr/xmgr file

—-oi [<.xvg>] (barint.xvg) (Optional)
xvgr/xmgr file

—oh [<.xvg>] (histogram.xvg) (Optional)
xvgr/xmgr file

Other options:

- [no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-b <real> (0)
Begin time for BAR

3.11. Command-line reference 137

GROMACS Documentation, Release 2026-rc

—e <real> (-1)
End time for BAR

—temp <real> (-1)
Temperature (K)

—-prec <int> (2)
The number of digits after the decimal point

—nbmin <int> (5)
Minimum number of blocks for error estimation

—nbmax <int> (5)
Maximum number of blocks for error estimation

—-nbin <int> (100)
Number of bins for histogram output

—[no]extp (no)
Whether to linearly extrapolate dH/dl values to use as energies

3.11.7 gmx bundle

Synopsis
gmx bundle [-f [<.xtc/.trr/...>]]1 [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[0l [<.xvg>]] [-od [<.xvg>]] [-oz [<.xvg>]]
[-ot [<.xvg>]] [-otr [<.xvg>]] [—-otl [<.xvg>]]
[-ok [<.xvg>]] [=okr [<.xvg>]] [—-okl [<.xvg>]]
[-oa [<.pdb>]] [-b <time>] [—-e <time>] [-dt <time>]
[-tu <enum>] [-xvg <enum>] [-na <int>] [—[no]z]
Description

gmx bundle analyzes bundles of axes. The axes can be for instance helix axes. The program reads two index
groups and divides both of them in —na parts. The centers of mass of these parts define the tops and bottoms of
the axes. Several quantities are written to file: the axis length, the distance and the z-shift of the axis mid-points
with respect to the average center of all axes, the total tilt, the radial tilt and the lateral tilt with respect to the
average axis.

With options —ok, —okr and —ok1 the total, radial and lateral kinks of the axes are plotted. An extra index group
of kink atoms is required, which is also divided into —na parts. The kink angle is defined as the angle between the
kink-top and the bottom-kink vectors.

With option —oa the top, mid (or kink when —ok is set) and bottom points of each axis are written to a .pdb
(page 499) file each frame. The residue numbers correspond to the axis numbers. When viewing this file with
Rasmol, use the command line option —-nmrpdb, and type set axis true to display the reference axis.

Options

Options to specify input files:

—-£ [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

3.11. Command-line reference 138

GROMACS Documentation, Release 2026-rc

Options to specify output files:

-ol [<.xvg>] (bun_len.xvg)
xvgr/xmgr file

—od [<.xvg>] (bun_dist.xvg)
xvgr/xmgr file

-oz [<.xvg>] (bun_z.xvg)
xvgr/xmgr file

—-ot [<.xvg>] (bun_tilt.xvg)
xvgr/xmgr file

—otr [<.xvg>] (bun_tiltr.xvg)
xvgr/xmgr file

-otl [<.xvg>] (bun_tiltl.xvg)
xvgr/xmgr file

—ok [<.xvg>] (bun_kink.xvg) (Optional)
xvgr/xmgr file

—okr [<.xvg>] (bun_Kkinkr.xvg) (Optional)
xvgr/xmgr file

—ok1 [<.xvg>] (bun_kinkl.xvg) (Optional)
xvgr/xmgr file

—-oa [<.pdb>] (axes.pdb) (Optional)
Protein data bank file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—na <int> (0)
Number of axes

—[no] z (no)
Use the z-axis as reference instead of the average axis

3.11.8 gmx check

Synopsis

gmx check [-f [<.xtc/.trr/...>]] [-£f2 [<.xtc/.trr/...>]] [=-sl [<.tpr>]]
[-s2 [<.tpr>]] [-e [<.tpr/.gro/...>]] [—-e [<.edr>]]
[-e2 [<.edr>]] [-n [<.ndx>]] [-m [<.tex>]] [-vdwfac <real>]
[-bonlo <real>] [-bonhi <real>] [—-[no]lrmsd] [-tol <real>]
[-abstol <real>] [—-[no]lab] [-lastener <string>]

3.11. Command-line reference

139

GROMACS Documentation, Release 2026-rc

Description

gmx check reads a trajectory (.tng (page 501), .trr (page 503) or .xzc (page 505)), an energy file (.edr (page 494))
or an index file (.ndx (page 498)) and prints out useful information about them.

Option —c checks for presence of coordinates, velocities and box in the file, for close contacts (smaller than
—vdwfac and not bonded, i.e. not between —bonlo and —bonh1i, all relative to the sum of both Van der Waals
radii) and atoms outside the box (these may occur often and are no problem). If velocities are present, an estimated
temperature will be calculated from them.

If an index file, is given its contents will be summarized.

If both a trajectory and a .7pr (page 503) file are given (with —s1) the program will check whether the bond
lengths defined in the tpr file are indeed correct in the trajectory. If not you may have non-matching files due to
e.g. deshuffling or due to problems with virtual sites. With these flags, gmx check provides a quick check for
such problems.

The program can compare two run input (.zpr (page 503)) files when both —s1 and —s2 are supplied. When
comparing run input files this way, the default relative tolerance is reduced to 0.000001 and the absolute tolerance
set to zero to find any differences not due to minor compiler optimization differences, although you can of course
still set any other tolerances through the options. Similarly a pair of trajectory files can be compared (using the
—£2 option), or a pair of energy files (using the —e2 option).

For free energy simulations the A and B state topology from one run input file can be compared with options —s1
and -ab.

Options

Options to specify input files:

—-£f [<.xte/.trr/...>] (traj.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-£2 [<.xte/.trr/...>] (traj.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ng
(page 501) hSmd

-s1 [<.tpr>] (topl.tpr) (Optional)
Portable xdr run input file

-s2 [<.tpr>] (top2.tpr) (Optional)
Portable xdr run input file

—c [<.tpr/.gro/...>] (topol.tpr) (Optional)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—e [<.edr>] (ener.edr) (Optional)
Energy file

—e2 [<.edr>] (ener2.edr) (Optional)
Energy file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-m [<.tex>] (doc.tex) (Optional)
LaTeX file

Other options:

-vdwfac <real> (0.8)
Fraction of sum of VAW radii used as warning cutoff

3.11. Command-line reference 140

GROMACS Documentation, Release 2026-rc

—-bonlo <real> (0.4)
Min. fract. of sum of VAW radii for bonded atoms

-bonhi <real> (0.7)
Max. fract. of sum of VAW radii for bonded atoms

—[no] rmsd (no)
Print RMSD for x, v and f

-tol <real> (0.001)
Relative tolerance for comparing real values defined as 2*(a-b)/(lal+Ibl)

—abstol <real> (0.001)
Absolute tolerance, useful when sums are close to zero.

-[no]ab (no)
Compare the A and B topology from one file

-lastener <string>
Last energy term to compare (if not given all are tested). It makes sense to go up until the Pressure.

3.11.9 gmx chi
Synopsis
gmx chi [-s [<.gro/.g96/...>]]1 [-f [<.xtc/.trr/...>]] [-ss [<.dat>]]
[-o [<.xvg>]] [-p [<.pdb>]] [-jec [<.xvg>]] [-corr [<.xvg>]]
[-g [<.log>]] [-ot [<.xvg>]] [-oh [<.xvg>]] [-rt [<.xvg>]]
[-cp [<.xvg>]] [-b <time>] [—-e <time>] [-dt <time>] [—-[no]lw]
[-xvg <enum>] [-r0 <int>] [-rN <int>] [—[no]lphi] [-[no]psi]
[-[no]lomega] [—-[no]rama] [—-[no]viol] [-[no]periodic]
[-[no]lall] [-[no]lrad] [-[no]lshift] [-binwidth <int>]
[-core_rotamer <real>] [-maxchi <enum>] [—[no]lnormhisto]
[-[no] ramomega] [-bfact <real>] [-[no]lchi_prod] [-[no]HChi]
[-bmax <real>] [—acflen <int>] [—-[no]lnormalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [—endfit <real>]

Description

gmx chi computes phi, psi, omega, and chi dihedrals for all your amino acid backbone and sidechains.
It can compute dihedral angle as a function of time, and as histogram distributions. The distributions
(histo-(dihedral) (RESIDUE) .xvg) are cumulative over all residues of each type.

If option —corr is given, the program will calculate dihedral autocorrelation functions. The function used is
C(t) = <cos(chi(tau)) cos(chi(tau+t))>. The use of cosines rather than angles themselves, resolves the problem of
periodicity. (Van der Spoel & Berendsen (1997), Biophys. J. 72, 2032-2041). Separate files for each dihedral
of each residue (corr (dihedral) (RESIDUE) (nresnr) .xvg) are output, as well as a file containing the
information for all residues (argument of —corr).

With option -all, the angles themselves as a function of time for each residue are printed to separate files
(dihedral) (RESIDUE) (nresnr) .xvg. These can be in radians or degrees.

A log file (argument —g) is also written. This contains
¢ information about the number of residues of each type.
* The NMR ”3]J coupling constants from the Karplus equation.

* a table for each residue of the number of transitions between rotamers per nanosecond, and the order pa-
rameter S*2 of each dihedral.

* atable for each residue of the rotamer occupancy.

3.11. Command-line reference 141

GROMACS Documentation, Release 2026-rc

All rotamers are taken as 3-fold, except for omega and chi dihedrals to planar groups (i.e. chi_2 of aromatics, Asp
and Asn; chi_3 of Glu and Gln; and chi_4 of Arg), which are 2-fold. “rotamer 0" means that the dihedral was not
in the core region of each rotamer. The width of the core region can be set with ~core_rotamer

The S”2 order parameters are also output to an .xvg (page 506) file (argument —o) and optionally as a .pdb
(page 499) file with the S*2 values as B-factor (argument —p). The total number of rotamer transitions per timestep
(argument —ot), the number of transitions per rotamer (argument —rt), and the *3J couplings (argument —jc),
can also be written to .xvg (page 506) files. Note that the analysis of rotamer transitions assumes that the supplied
trajectory frames are equally spaced in time.

If —chi_prod is set (and —maxchi > 0), cumulative rotamers, e.g. 149(chi_1-1)+3(chi_2-1)+ (chi_3-1)
(if the residue has three 3-fold dihedrals and -maxchi >= 3) are calculated. As before, if any dihedral is
not in the core region, the rotamer is taken to be 0. The occupancies of these cumulative rotamers (starting
with rotamer Q) are written to the file that is the argument of —cp, and if the —all flag is given, the ro-
tamers as functions of time are written to chiproduct (RESIDUE) (nresnr) .xvg and their occupancies
to histo-chiproduct (RESIDUE) (nresnr) .xvd.

The option —r generates a contour plot of the average omega angle as a function of the phi and psi angles, that is,
in a Ramachandran plot the average omega angle is plotted using color coding.

Options

Options to specify input files:

-s [<.gro/.g96/...>] (conf.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) h5md

-ss [<.dat>] (ssdump.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.xvg>] (order.xvg)
xvgr/xmgr file

-p [<.pdb>] (order.pdb) (Optional)
Protein data bank file

-je [<.xvg>] (Jeoupling.xvg)
xvgr/xmgr file

—corr [<.xvg>] (dihcorr.xvg) (Optional)
xvgr/xmgr file

-g [<.log>] (chi.log)
Log file

—ot [<.xvg>] (dihtrans.xvg) (Optional)
xvgr/xmgr file

—oh [<.xvg>] (trhisto.xvg) (Optional)
xvgr/xmgr file

—-rt [<.xvg>] (restrans.xvg) (Optional)
xvgr/xmgr file

—cp [<.xvg>] (chiprodhisto.xvg) (Optional)
xvgr/xmgr file

Other options:

3.11. Command-line reference 142

GROMACS Documentation, Release 2026-rc

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-r0 <int> (1)
starting residue
—rN <int> (-1)
last residue
—[no]phi (no)
Output for phi dihedral angles
—[no]lpsi (no)
Output for psi dihedral angles
- [no] omega (no)
Output for omega dihedrals (peptide bonds)
—[no] rama (no)
Generate phi/psi and chi_1/chi_2 Ramachandran plots

-[no]viol (no)
Write a file that gives O or 1 for violated Ramachandran angles

—[no]periodic (yes)
Print dihedral angles modulo 360 degrees

-[nolall (no)
Output separate files for every dihedral.

-[no] rad (no)
in angle vs time files, use radians rather than degrees.

—[no]lshift (no)
Compute chemical shifts from phi/psi angles

-binwidth <int> (1)
bin width for histograms (degrees)

—core_rotamer <real> (0.5)
only the central —core_rotamer*(360/multiplicity) belongs to each rotamer (the rest is assigned to ro-
tamer 0)

-maxchi <enum> (0)
calculate first ndih chi dihedrals: 0, 1, 2, 3,4, 5, 6

—[no]normhisto (yes)
Normalize histograms

- [no] ramomega (no)
compute average omega as a function of phi/psi and plot it in an .xpm (page 504) plot

-bfact <real> (-1)
B-factor value for .pdb (page 499) file for atoms with no calculated dihedral order parameter

—[no]chi_prod (no)
compute a single cumulative rotamer for each residue

3.11. Command-line reference 143

GROMACS Documentation, Release 2026-rc

—[no]HChi (no)
Include dihedrals to sidechain hydrogens

-bmax <real> (0)
Maximum B-factor on any of the atoms that make up a dihedral, for the dihedral angle to be considered
in the statistics. Applies to database work where a number of X-Ray structures is analyzed. —bmax <=0
means no limit.

—acflen <int> (-1)
Length of the ACEF, default is half the number of frames

—[no]lnormalize (yes)
Normalize ACF

=P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, expJ, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

Known Issues

* N-terminal phi and C-terminal psi dihedrals are calculated in a non-standard way, using H-N-CA-C for
phi instead of C(-)-N-CA-C, and N-CA-C-O for psi instead of N-CA-C-N(+). This causes (usually small)
discrepancies with the output of other tools like gmx rama (page 249).

* Rotamers with multiplicity 2 are printed in chi.log as if they had multiplicity 3, with the 3rd (g(+))
always having probability 0

3.11.10 gmx cluster
Synopsis

gmx cluster [-f [<.xtc/.trr/. J1 [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[=dm [<.xpm>]] [—om [<.xpm>]] [-o [<.xpm>]] [—-g [<.log>]]
[-dist [<.xvg>]] [—-ev [<.xvg>]] [—-conv [<.xvg>]]

[-sz [<.xvg>]] [-tr [<.xpm>]] [-ntr [<.xvg>]]

[-elid [<.xvg>]] [-el [<.xtc/.trr/...>]]

[-elndx [<. ndx>]] [-b <time>] [-e <time>] [-dt <time>]
[-tu <enum>] [-[no]lw] [—-xvg <enum>] [—-[noldista]
[-nlevels <1nt>] [-cutoff <real>] [-[no]fit]

[-max <real>] [-skip <int>] [-[nolav] [-wcl <int>]

[-nst <int>] [-rmsmin <real>] [-method <enum>]
[-minstruct <int>] [-[nolbinary] [-M <int>] [-P <int>]
[-seed <int>] [-niter <int>] [-nrandom <int>]

[-kT <real>] [-[no]pbc]

3.11. Command-line reference 144

GROMACS Documentation, Release 2026-rc

Description

gmx cluster can cluster structures using several different methods. Distances between structures can be de-
termined from a trajectory or read from an .xpm (page 504) matrix file with the —dm option. RMS deviation after
fitting or RMS deviation of atom-pair distances can be used to define the distance between structures.

single linkage: add a structure to a cluster when its distance to any element of the cluster is less than cutoff.

Jarvis Patrick: add a structure to a cluster when this structure and a structure in the cluster have each other as
neighbors and they have a least P neighbors in common. The neighbors of a structure are the M closest structures
or all structures within cutoff.

Monte Carlo: reorder the RMSD matrix using Monte Carlo such that the order of the frames is using the smallest
possible increments. With this it is possible to make a smooth animation going from one structure to another with
the largest possible (e.g.) RMSD between them, however the intermediate steps should be as small as possible.
Applications could be to visualize a potential of mean force ensemble of simulations or a pulling simulation.
Obviously the user has to prepare the trajectory well (e.g. by not superimposing frames). The final result can be
inspect visually by looking at the matrix .xpm (page 504) file, which should vary smoothly from bottom to top.

diagonalization: diagonalize the RMSD matrix.

gromos: use algorithm as described in Daura et al. (Angew. Chem. Int. Ed. 1999, 38, pp 236-240). Count number
of neighbors using cut-off, take structure with largest number of neighbors with all its neighbors as cluster and
eliminate it from the pool of clusters. Repeat for remaining structures in pool.

When the clustering algorithm assigns each structure to exactly one cluster (single linkage, Jarvis Patrick and
gromos) and a trajectory file is supplied, the structure with the smallest average distance to the others or the
average structure or all structures for each cluster will be written to a trajectory file. When writing all structures,
separate numbered files are made for each cluster.

Two output files are always written:

* —o writes the RMSD values in the upper left half of the matrix and a graphical depiction of the clusters in
the lower right half When -minstruct =1 the graphical depiction is black when two structures are in the
same cluster. When -minstruct > 1 different colors will be used for each cluster.

» —g writes information on the options used and a detailed list of all clusters and their members.
Additionally, a number of optional output files can be written:

e —dist writes the RMSD distribution.

* —ev writes the eigenvectors of the RMSD matrix diagonalization.

* —sz writes the cluster sizes.

* —tr writes a matrix of the number transitions between cluster pairs.

e —ntr writes the total number of transitions to or from each cluster.

e —clid writes the cluster number as a function of time.

e —clndx writes the frame numbers corresponding to the clusters to the specified index file to be read into
trjconv.

e —c1 writes average (with option —av) or central structure of each cluster or writes numbered files with
cluster members for a selected set of clusters (with option —wcl, depends on —nst and —rmsmin). The
center of a cluster is the structure with the smallest average RMSD from all other structures of the cluster.

3.11. Command-line reference 145

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:
-f [<.xte/.trr/...>] (traj.xtc) (Optional)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing

(page 501) hSmd
-s [<.tpr/.gro/...>] (topol.tpr)

Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

—dm [<.xpm>] (rmsd.xpm) (Optional)
X PixMap compatible matrix file

Options to specify output files:

—om [<.xpm>] (rmsd-raw.xpm)
X PixMap compatible matrix file

-o [<.xpm>] (rmsd-clust.xpm)
X PixMap compatible matrix file

—-g [<.log>] (cluster.log)
Log file

—dist [<.xvg>] (rmsd-dist.xvg) (Optional)
xvgr/xmgr file

—ev [<.xvg>] (rmsd-eig.xvg) (Optional)
xvgr/xmgr file

—conv [<.xvg>] (mc-conv.xvg) (Optional)
xvgr/xmgr file

-sz [<.xvg>] (clust-size.xvg) (Optional)
xvgr/xmgr file

—tr [<.xpm>] (clust-trans.xpm) (Optional)
X PixMap compatible matrix file

-ntr [<.xvg>] (clust-trans.xvg) (Optional)
xvgr/xmgr file

—clid [<.xvg>] (clust-id.xvg) (Optional)
xvgr/xmgr file

—cl [<.xte/.trr/...>] (clusters.pdb) (Optional)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ng

(page 501) hSmd

—clndx [<.ndx>] (clusters.ndx) (Optional)
Index file

Other options:
=b <time> (0)

Time of first frame to read from trajectory (default unit ps)

—e <time> (0)

Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)

Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)

Unit for time values: fs, ps, ns, us, ms, s

3.11. Command-line reference

146

GROMACS Documentation, Release 2026-rc

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—-[no]ldista (no)
Use RMSD of distances instead of RMS deviation

-nlevels <int> (40)
Discretize RMSD matrix in this number of levels

—cutoff <real> (0.1)
RMSD cut-off (nm) for two structures to be neighbor

- [no] £it (yes)
Use least squares fitting before RMSD calculation

-max <real> (-1)
Maximum level in RMSD matrix

-skip <int> (1)
Only analyze every nr-th frame

—[no]av (no)
Write average instead of middle structure for each cluster

-wel <int> (0)
Werite the structures for this number of clusters to numbered files

-nst <int> (1)
Only write all structures if more than this number of structures per cluster

—rmsmin <real> (0)
minimum rms difference with rest of cluster for writing structures

—-method <enum> (linkage)
Method for cluster determination: linkage, jarvis-patrick, monte-carlo, diagonalization, gromos

-minstruct <int> (1)
Minimum number of structures in cluster for coloring in the .xpm (page 504) file

- [no]binary (no)
Treat the RMSD matrix as consisting of 0 and 1, where the cut-off is given by —cutoff

-M <int> (10)
Number of nearest neighbors considered for Jarvis-Patrick algorithm, 0O is use cutoff

-P <int> (3)
Number of identical nearest neighbors required to form a cluster

—-seed <int> (0)
Random number seed for Monte Carlo clustering algorithm (0 means generate)

-niter <int> (10000)
Number of iterations for MC

—nrandom <int> (0)
The first iterations for MC may be done complete random, to shuffle the frames

—=kT <real> (0.001)
Boltzmann weighting factor for Monte Carlo optimization (zero turns off uphill steps)

—[no]pbc (yes)
PBC check

3.11. Command-line reference

147

GROMACS Documentation, Release 2026-rc

3.11.11 gmx clustsize
Synopsis

gmx clustsize [-f [<.xtc/.trr/...>]] [=s [<.tpr>]] [-n [<.ndx>]]

[0 [<.xpm>]] [—-ow [<.xpm>]] [-nc [<.xvg>]]

[-mc [<.xvg>]] [—-ac [<.xvg>]] [-he [<.xvg>]]

[-temp [<.xvg>]] [-mecn [<.ndx>]] [-b <time>] [—-e <time>]

[-dt <time>] [-tu <enum>] [—-[nolw] [-xvg <enum>]

[-cut <real>] [-[no]lmol] [-[nolpbc] [—-nskip <int>]
[-nlevels <int>] [-ndf <int>] [-rgblo <vector>]
[-rgbhi <vector>]

Description

gmx clustsize computes the size distributions of molecular/atomic clusters in the gas phase. The output is
given in the form of an .xpm (page 504) file. The total number of clusters is written to an .xvg (page 506) file.

When the -mo1 option is given clusters will be made out of molecules rather than atoms, which allows clustering
of large molecules. In this case an index file would still contain atom numbers or your calculation will die with a
SEGV.

When velocities are present in your trajectory, the temperature of the largest cluster will be printed in a separate
.xvg (page 506) file assuming that the particles are free to move. If you are using constraints, please correct the
temperature. For instance water simulated with SHAKE or SETTLE will yield a temperature that is 1.5 times too
low. You can compensate for this with the —ndf option. Remember to take the removal of center of mass motion
into account.

The —mc option will produce an index file containing the atom numbers of the largest cluster.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

-s [<.tpr>] (topol.tpr) (Optional)
Portable xdr run input file

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—-o [<.xpm>] (csize.xpm)
X PixMap compatible matrix file

—ow [<.xpm>] (csizew.xpm)
X PixMap compatible matrix file

—-nc [<.xvg>] (nclust.xvg)
xvgr/xmgr file

-mc [<.xvg>] (maxclust.xvg)
xvgr/xmgr file

—ac [<.xvg>] (avclust.xvg)
xvgr/xmgr file

-hc [<.xvg>] (histo-clust.xvg)
xvgr/xmgr file

3.11. Command-line reference 148

GROMACS Documentation, Release 2026-rc

—temp [<.xvg>] (temp.xvg) (Optional)
xvgr/xmgr file

—-mcn [<.ndx>] (maxclust.ndx) (Optional)
Index file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—cut <real> (0.35)
Largest distance (nm) to be considered in a cluster

-[no]lmol (no)
Cluster molecules rather than atoms (needs .7pr (page 503) file)

—[no]pbc (yes)
Use periodic boundary conditions

-nskip <int> (0)
Number of frames to skip between writing

-nlevels <int> (20)
Number of levels of grey in .xpm (page 504) output

-ndf <int> (-1)
Number of degrees of freedom of the entire system for temperature calculation. If not set, the number of
atoms times three is used.

-rgblo <vector> (110)
RGB values for the color of the lowest occupied cluster size

-rgbhi <vector> (0 0 1)
RGB values for the color of the highest occupied cluster size

3.11.12 gmx confrms
Synopsis

gmx confrms [-fl1 [<.tpr/.gro/...>]] [-£2 [<.gro/.g96/...>]]

[-nl [<.ndx>]] [-n2 [<.ndx>]] [-o [<.gro/.g96/...>]]
[-no [<.ndx>]] [-[no]w] [—-[no]lone] [—-[no]mw] [-[no]pbc]
[

—[nolfit] [-[no]lname] [-[no]label] [-[no]lbfac]

3.11. Command-line reference 149

GROMACS Documentation, Release 2026-rc

Description

gmx confrms computes the root mean square deviation (RMSD) of two structures after least-squares fitting the
second structure on the first one. The two structures do NOT need to have the same number of atoms, only the
two index groups used for the fit need to be identical. With —name only matching atom names from the selected
groups will be used for the fit and RMSD calculation. This can be useful when comparing mutants of a protein.

The superimposed structures are written to file. In a .pdb (page 499) file the two structures will be written as
separate models (use rasmol -nmrpdb). Also in a.pdb (page 499) file, B-factors calculated from the atomic
MSD values can be written with -bfac.

Options

Options to specify input files:

—-£1 [<.tpr/.gro/...>] (confl.gro)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-£2 [<.gro/.g96/...>] (conf2.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp tpr (page 503)

-nl [<.ndx>] (fitl.ndx) (Optional)
Index file

-n2 [<.ndx>] (fit2.ndx) (Optional)
Index file

Options to specify output files:

-o [<.gro/.g96/...>] (fit.pdb)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

—no [<.ndx>] (match.ndx) (Optional)
Index file

Other options:

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—[no]one (no)
Only write the fitted structure to file

—[no]mw (yes)
Mass-weighted fitting and RMSD

- [no]pbc (no)
Try to make molecules whole again

—[no] £it (yes)
Do least squares superposition of the target structure to the reference

- [no]name (no)
Only compare matching atom names

—[no]label (no)
Added chain labels A for first and B for second structure

-[no]lbfac (no)
Output B-factors from atomic MSD values

3.11. Command-line reference 150

GROMACS Documentation, Release 2026-rc

3.11.13 gmx convert-tpr

Synopsis
gmx convert-tpr [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.tpr/.gro/...>]] [—extend <time>] [—-until <time>]
[-nsteps <int>] [—-[no]lgenerate_velocities]
[-velocity temp <real>] [-velocity_seed <int>]
Description

gmx convert—tpr can edit run input files in three ways.

1. by modifying the number of steps in a run input file with options —extend, —until or —-nsteps (nsteps=-1
means unlimited number of steps)

2. by creating a .tpx file for a subset of your original tpx file, which is useful when you want to remove the
solvent from your .tpx file, or when you want to make e.g. a pure Calpha .tpx file. Note that you may need to use
-nsteps -1 (or similar) to get this to work. WARNING: this .tpx file is not fully functional.

3. by setting the charges of a specified group to zero. This is useful when doing free energy estimates using the
LIE (Linear Interaction Energy) method.

Options

Options to specify input files:

-s [<.tpr/.gro/...>] (topol.tpr)
Run input file to modify: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
File containing additional index groups

Options to specify output files:

-o [<.tpr/.gro/...>] (tprout.tpr) (Optional)
Generated modified run input file: /pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

Other options:

—extend <time> (0)
Extend runtime by this amount (ps)

—-until <time> (0)
Extend runtime until this ending time (ps)

-nsteps <int> (0)
Change the number of steps remaining to be made

—[no]generate_velocities (no)
Reassign velocities, using a generated seed unless one is explicitly set

-velocity_ temp <real> (300)
Temperature to use when generating velocities

-velocity_seed <int> (-1)
Random seed for velocities. If value is -1, a new one is generated

3.11. Command-line reference 151

GROMACS Documentation, Release 2026-rc

3.11.14 gmx convert-trj
Synopsis

gmx convert-trj [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xtc/.trr/...>]] [-b <time>]
[-e <time>] [-dt <time>] [—-tu <enum>]
[-fgroup <selection>] [—-xvg <enum>] [—[no]rmpbc]
[-[no]lpbec] [-sf <file>] [—-selrpos <enum>]
[-select <selection>] [-vel <enum>] [—-force <enum>]
[-atoms <enum>] [-precision <int>] [-starttime <time>]
[-timestep <time>] [-box <vector>]

Description
gmx convert-trj converts trajectory files between different formats. The module supports writing all GRO-
MACS supported file formats from the supported input formats.

Included is also a selection of possible options to modify individual trajectory frames, including options to produce
slimmer output files. It is also possible to replace the particle information stored in the input trajectory with those
from a structure file

The module can also generate subsets of trajectories based on user supplied selections.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) ing (page 501) h5md

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: #pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xte/.trr/...>] (trajout.xtc)
Output trajectory: xzc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499)
tng (page 501) hSmd

Other options:

=b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 152

GROMACS Documentation, Release 2026-rc

—[no] rmpbc (yes)
Make molecules whole for each frame

- [no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-select <selection>
Selection of particles to write to the file

—vel <enum> (preserved-if-present)
Save velocities from frame if possible: preserved-if-present, always, never

—-force <enum> (preserved-if-present)
Save forces from frame if possible: preserved-if-present, always, never

—atoms <enum> (preserved-if-present)
Decide on providing new atom information from topology or using current frame atom information:
preserved-if-present, always-from-structure, never, always

-precision <int> (3)
Set output precision to custom value

—-starttime <time> (0)
Change start time for first frame

—-timestep <time> (0)
Change time between different frames

—box <vector>
New diagonal box vector for output frame

3.11.15 gmx covar
Synopsis

gmx covar [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [=v [<.trr/.cpt/...>]]

[-av [<.gro/.g96/...>]] [-1 [<.log>]] [—ascii [<.dat>]]
[-xpm [<.xpm>]] [—xpma [<.xpm>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [-xvg <enum>] [—[no]fit]
[-[no]lref] [-[no]lmwa] [-last <int>] [—[no]lpbc]

Description

gmx covar calculates and diagonalizes the (mass-weighted) covariance matrix. All structures are fitted to the
structure in the structure file. When this is not a run input file periodicity will not be taken into account. When the
fit and analysis groups are identical and the analysis is non mass-weighted, the fit will also be non mass-weighted.

The eigenvectors are written to a trajectory file (—v). When the same atoms are used for the fit and the covariance
analysis, the reference structure for the fit is written first with t=-1. The average (or reference when —ref is used)
structure is written with t=0, the eigenvectors are written as frames with the eigenvector number and eigenvalue
as step number and timestamp, respectively.

The eigenvectors can be analyzed with gmx anaeig (page 127).

3.11. Command-line reference 153

GROMACS Documentation, Release 2026-rc

Option —ascii writes the whole covariance matrix to an ASCII file. The order of the elements is: x1x1, x1yl,
x1z1, x1x2, ...

Option —xpm writes the whole covariance matrix to an .xpm (page 504) file.

Option —xpma writes the atomic covariance matrix to an .xpm (page 504) file, i.e. for each atom pair the sum of
the xx, yy and zz covariances is written.

Note that the diagonalization of a matrix requires memory and time that will increase at least as fast as than the
square of the number of atoms involved. It is easy to run out of memory, in which case this tool will probably exit
with a ‘Segmentation fault’. You should consider carefully whether a reduced set of atoms will meet your needs
for lower costs.

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (eigenval.xvg)
xvgr/xmgr file

-v [<.trr/.cpt/...>] (eigenvec.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

—av [<.gro/.g96/...>] (average.pdb)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

-1 [<.log>] (covar.log)
Log file

—ascii [<.dat>] (covar.dat) (Optional)
Generic data file

—-xpm [<.xpm>] (covar.xpm) (Optional)
X PixMap compatible matrix file

—xpma [<.xpm>] (covara.xpm) (Optional)
X PixMap compatible matrix file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 154

GROMACS Documentation, Release 2026-rc

—[no] £it (yes)
Fit to a reference structure

-[no]lref (no)
Use the deviation from the conformation in the structure file instead of from the average

—[no]mwa (no)
Mass-weighted covariance analysis

-last <int> (-1)
Last eigenvector to write away (-1 is till the last)

—[no]pbc (yes)
Apply corrections for periodic boundary conditions

3.11.16 gmx current
Synopsis

gmx current [-s [<.tpr/.gro/...>]] [-n [<.ndx>]] [-f [<.xtc/.trr/...>]]
[-o [<.xvg>]] [-caf [<.xvg>]] [-dsp [<.xvg>]]

[-md [<.xvg>]] [-mj [<.xvg>]] [-mc [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [—-[nolw] [—-xvg <enum>]

[-sh <int>] [-[no]lnojump] [—-eps <real>] [-bfit <real>]
[-efit <real>] [-bvit <real>] [—-evit <real>]

[-temp <real>]

Description

gmx current is a tool for calculating the current autocorrelation function, the correlation of the rotational and
translational dipole moment of the system, and the resulting static dielectric constant. To obtain a reasonable
result, the index group has to be neutral. Furthermore, the routine is capable of extracting the static conductivity
from the current autocorrelation function, if velocities are given. Additionally, an Einstein-Helfand fit can be used
to obtain the static conductivity.

The flag —caf is for the output of the current autocorrelation function and —mc writes the correlation of the rota-
tional and translational part of the dipole moment in the corresponding file. However, this option is only available
for trajectories containing velocities. Options —sh and -t r are responsible for the averaging and integration of
the autocorrelation functions. Since averaging proceeds by shifting the starting point through the trajectory, the
shift can be modified with —sh to enable the choice of uncorrelated starting points. Towards the end, statistical
inaccuracy grows and integrating the correlation function only yields reliable values until a certain point, depend-
ing on the number of frames. The option —t r controls the region of the integral taken into account for calculating
the static dielectric constant.

Option —temp sets the temperature required for the computation of the static dielectric constant.

Option —eps controls the dielectric constant of the surrounding medium for simulations using a Reaction Field
or dipole corrections of the Ewald summation (-eps=0 corresponds to tin-foil boundary conditions).

- [no]nojump unfolds the coordinates to allow free diffusion. This is required to get a continuous translational
dipole moment, required for the Einstein-Helfand fit. The results from the fit allow the determination of the
dielectric constant for system of charged molecules. However, it is also possible to extract the dielectric constant
from the fluctuations of the total dipole moment in folded coordinates. But this option has to be used with
care, since only very short time spans fulfill the approximation that the density of the molecules is approximately
constant and the averages are already converged. To be on the safe side, the dielectric constant should be calculated
with the help of the Einstein-Helfand method for the translational part of the dielectric constant.

3.11. Command-line reference 155

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:
-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

—-£ [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) h5md

Options to specify output files:

-o [<.xvg>] (current.xvg)
xvgr/xmgr file

—caf [<.xvg>] (caf.xvg) (Optional)
xvgr/xmgr file

—-dsp [<.xvg>] (dsp.xvg)
xvgr/xmgr file

-md [<.xvg>] (md.xvg)
xvgr/xmgr file

-mj [<.xvg>] (mj.xvg)
xvgr/xmgr file

-mc [<.xvg>] (mc.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

- [no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—sh <int> (1000)
Shift of the frames for averaging the correlation functions and the mean-square displacement.

—[no]nojump (yes)
Removes jumps of atoms across the box.

—eps <real> (0)
Dielectric constant of the surrounding medium. The value zero corresponds to infinity (tin-foil boundary
conditions).

-bfit <real> (100)
Begin of the fit of the straight line to the MSD of the translational fraction of the dipole moment.

—-efit <real> (400)
End of the fit of the straight line to the MSD of the translational fraction of the dipole moment.

=bvit <real> (0.5)
Begin of the fit of the current autocorrelation function to a*t"b.

3.11. Command-line reference 156

GROMACS Documentation, Release 2026-rc

—evit <real> (5)
End of the fit of the current autocorrelation function to a*t"b.

—temp <real> (300)
Temperature for calculating epsilon.

3.11.17 gmx density
Synopsis

gmx density [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-s [<.tpr>]]
[-ei [<.dat>]] [-o [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-[no]lw] [—-xvg <enum>] [-d <string>]
[-sl <int>] [-dens <enum>] [-ng <int>] [-[no]center]
[

—[no] symm]

Description

gmx density computes partial densities across the box, using an index file.
For the total density of NPT simulations, use gmx energy (page 182) instead.

Option —center performs the histogram binning relative to the center of an arbitrary group, in absolute box
coordinates. If you are calculating profiles along the Z axis box dimension bZ, output would be from -bZ/2 to
bZ/2 if you center based on the entire system. Note that this behaviour has changed in GROMACS 5.0; earlier
versions merely performed a static binning in (0,bZ) and shifted the output. Now we compute the center for each
frame and bin in (-bZ/2,bZ/2).

Option —symm symmetrizes the output around the center. This will automatically turn on —center too. The
binning is now always performed in relative coordinates to account for changing box dimensions with pressure
coupling, with the output scaled to the average box dimension along the output axis.

Densities are in kg/m”3, and number densities or electron densities can also be calculated. For electron densities,
a file describing the number of electrons for each type of atom should be provided using —ei. It should look like:

2
atomname = nrelectrons
atomname = nrelectrons

The first line contains the number of lines to read from the file. There should be one line for each unique atom
name in your system. The number of electrons for each atom is modified by its atomic partial charge.

IMPORTANT CONSIDERATIONS FOR BILAYERS

One of the most common usage scenarios is to calculate the density of various groups across a lipid bilayer,
typically with the z axis being the normal direction. For short simulations, small systems, and fixed box sizes
this will work fine, but for the more general case lipid bilayers can be complicated. The first problem that while
both proteins and lipids have low volume compressibility, lipids have quite high area compressiblity. This means
the shape of the box (thickness and area/lipid) will fluctuate substantially even for a fully relaxed system. Since
GROMACS places the box between the origin and positive coordinates, this in turn means that a bilayer centered
in the box will move a bit up/down due to these fluctuations, and smear out your profile. The easiest way to fix this
(if you want pressure coupling) is to use the —~center option that calculates the density profile with respect to
the center of the box. Note that you can still center on the bilayer part even if you have a complex non-symmetric
system with a bilayer and, say, membrane proteins - then our output will simply have more values on one side of
the (center) origin reference.

Finally, large bilayers that are not subject to a surface tension will exhibit undulatory fluctuations, where there are
‘waves’ forming in the system. This is a fundamental property of the biological system, and if you are comparing
against experiments you likely want to include the undulation smearing effect.

3.11. Command-line reference 157

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing

(page 501) hSmd

-n [<.ndx>] (index.ndx) (Optional)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—ei [<.dat>] (electrons.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.xvg>] (density.xvg)
xvgr/xmgr file

Other options:

—b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—d <string> (Z)
Take the normal on the membrane in direction X, Y or Z.

-s1 <int> (50)
Divide the box in this number of slices.

—dens <enum> (mass)
Density: mass, number, charge, electron

—-ng <int> (1)
Number of groups of which to compute densities.

—[no]center (no)
Perform the binning relative to the center of the (changing) box. Useful for bilayers.

—[no] symm (no)
Symmetrize the density along the axis, with respect to the center. Useful for bilayers.

3.11. Command-line reference

158

GROMACS Documentation, Release 2026-rc

Known Issues

* When calculating electron densities, atomnames are used instead of types. This is bad.

3.11.18 gmx densmap
Synopsis

[-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-od [<.dat>]] [-o [<.xpm>]] [-b <time>] [—-e <time>]
[-dt <time>] [—-[no]lw] [-bin <real>] [—-aver <enum>]
[=xmin <real>] [—-xmax <real>] [-nl <int>] [-n2 <int>]
[-amax <real>] [-rmax <real>] [-[no]lmirror] [-[no]sums]
[=unit <enum>] [-dmin <real>] [-dmax <real>]

gmx densmap

Description

gmx densmap computes 2D number-density maps. It can make planar and axial-radial density maps. The output
.xpm (page 504) file can be visualized with for instance xv and can be converted to postscript with xpm2ps.
Optionally, output can be in text form to a .dat (page 494) file with —od, instead of the usual .xpm (page 504) file
with —o.

The default analysis is a 2-D number-density map for a selected group of atoms in the x-y plane. The averaging
direction can be changed with the option —aver. When —xmin and/or —xmax are set only atoms that are within
the limit(s) in the averaging direction are taken into account. The grid spacing is set with the option —-bin. When
-nl or —n2 is non-zero, the grid size is set by this option. Box size fluctuations are properly taken into account.

When options —amax and —rmax are set, an axial-radial number-density map is made. Three groups should be
supplied, the centers of mass of the first two groups define the axis, the third defines the analysis group. The axial
direction goes from -amax to +amax, where the center is defined as the midpoint between the centers of mass and
the positive direction goes from the first to the second center of mass. The radial direction goes from O to rmax or
from -rmax to +rmax when the —-mirror option has been set.

The normalization of the output is set with the —unit option. The default produces a true number density. Unit
nm-2 leaves out the normalization for the averaging or the angular direction. Option count produces the count
for each grid cell. When you do not want the scale in the output to go from zero to the maximum density, you can
set the maximum with the option —~dmax.

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—od [<.dat>] (densmap.dat) (Optional)
Generic data file

—o [<.xpm>] (densmap.xpm)
X PixMap compatible matrix file

Other options:

3.11. Command-line reference 159

GROMACS Documentation, Release 2026-rc

-b <time> (0)

Time of first frame to read from trajectory (default unit ps)

—e <time> (0)

Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)

Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)

View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—bin <real> (0.02)
Grid size (nm)

—aver <enum> (z)
The direction to average over: z, y, X

—-xmin <real> (-1)
Minimum coordinate for averaging

—xmax <real> (-1)
Maximum coordinate for averaging

-nl <int> (0)
Number of grid cells in the first direction

-n2 <int> (0)
Number of grid cells in the second direction

—amax <real> (0)
Maximum axial distance from the center

—rmax <real> (0)
Maximum radial distance

—[nolmirror (no)
Add the mirror image below the axial axis

—[no] sums (no)
Print density sums (1D map) to stdout

-unit <enum> (nm-3)
Unit for the output: nm-3, nm-2, count

—dmin <real> (0)
Minimum density in output

—dmax <real> (0)

Maximum density in output (0 means calculate it)

3.11.19 gmx densorder

Synopsis

gmx densorder [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-o [<.dat>]] [-or [<.out> [...]]] [-og [<.xpm> [...]]]
[-Spect [<.out> [...]]] [-b <time>] [—-e <time>]
[-dt <time>] [=[no]lw] [-[no]ld] [-bw <real>]
[-bwn <real>] [—-order <int>] [—axis <string>]
[-method <enum>] [-dl <real>] [-d2 <real>]
[-tblock <int>] [-nlevel <int>]

3.11. Command-line reference

160

GROMACS Documentation, Release 2026-rc

Description

gmx densorder reduces a two-phase density distribution along an axis, computed over a MD trajectory, to
2D surfaces fluctuating in time, by a fit to a functional profile for interfacial densities. A time-averaged spatial
representation of the interfaces can be output with the option —tavg.

Options

Options to specify input files:
-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

—n [<.ndx>] (index.ndx)
Index file

Options to specify output files:

-o [<.dat>] (Density4D.dat) (Optional)
Generic data file

—-or [<.out> [...]] (hello.out) (Optional)
Generic output file

—og [<.xpm> [...]] (interface.xpm) (Optional)
X PixMap compatible matrix file

—Spect [<.out> [...]] (intfspect.out) (Optional)
Generic output file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—[no]l1d (no)
Pseudo-1d interface geometry

-bw <real> (0.2)
Binwidth of density distribution tangential to interface

=bwn <real> (0.05)
Binwidth of density distribution normal to interface

—order <int> (0)
Order of Gaussian filter, order 0 equates to NO filtering

—axis <string> (Z)
Axis Direction - X, Y or Z

-method <enum> (bisect)
Interface location method: bisect, functional

3.11. Command-line reference 161

GROMACS Documentation, Release 2026-rc

—d1 <real> (0)
Bulk density phase 1 (at small z)

-d2 <real> (1000)
Bulk density phase 2 (at large z)

—tblock <int> (100)
Number of frames in one time-block average

-nlevel <int> (100)
Number of Height levels in 2D - XPixMaps

3.11.20 gmx dielectric

Synopsis

gmx dielectric [-f [<.xvg>]] [-d [<.xvg>]] [-o0 [<.xvg>]] [—-c [<.xvg>]]
[-b <time>] [—-e <time>] [-dt <time>] [-[no]w]
[-xvg <enum>] [-[no]xl] [—eint <real>] [-bfit <real>]
[—efit <real>] [-tail <real>] [-A <real>] [—-taul <real>]
[-tau2 <real>] [-eps0 <real>] [—epsRF <real>]
[—fix <int>] [—-ffn <enum>] [—-nsmooth <int>]

Description

gmx dielectric calculates frequency dependent dielectric constants from the autocorrelation function of the
total dipole moment in your simulation. This ACF can be generated by gmx dipoles (page 163). The functional
forms of the available functions are:

* One parameter: y = exp(-a_1l x),
e Two parameters: y = a_2 exp(-a_1 x),
* Three parameters: y = a_2 exp(-a_1 x) + (1 - a_2) exp(-a_3 x).

Start values for the fit procedure can be given on the command line. It is also possible to fix parameters at their
start value, use —fix with the number of the parameter you want to fix.

Three output files are generated, the first contains the ACF, an exponential fit to it with 1, 2 or 3 parameters, and
the numerical derivative of the combination data/fit. The second file contains the real and imaginary parts of the
frequency-dependent dielectric constant, the last gives a plot known as the Cole-Cole plot, in which the imaginary
component is plotted as a function of the real component. For a pure exponential relaxation (Debye relaxation)
the latter plot should be one half of a circle.

Options

Options to specify input files:

-f [<.xvg>] (dipcorr.xvg)
xvgr/xmgr file

Options to specify output files:

—-d [<.xvg>] (deriv.xvg)
xvgr/xmgr file

—-o [<.xvg>] (epsw.xvg)
xvgr/xmgr file

—c [<.xvg>] (cole.xvg)
xvgr/xmgr file

Other options:

3.11. Command-line reference 162

GROMACS Documentation, Release 2026-rc

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no]x1 (yes)
use first column as x-axis rather than first data set

—eint <real> (5)
Time to end the integration of the data and start to use the fit

-bfit <real> (5)
Begin time of fit

—-efit <real> (500)
End time of fit

-tail <real> (500)
Length of function including data and tail from fit

—A <real> (0.5)
Start value for fit parameter A

—taul <real> (10)
Start value for fit parameter taul

—tau2 <real> (1)
Start value for fit parameter tau2

—-epsO0 <real> (80)
epsilon0 of your liquid

—epsRF <real> (78.5)
epsilon of the reaction field used in your simulation. A value of 0 means infinity.

-fix <int> (0)
Fix parameters at their start values, A (2), taul (1), or tau2 (4)

—-ffn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp3, exp7, exp9

—nsmooth <int> (3)
Number of points for smoothing

3.11.21 gmx dipoles

Synopsis

gmx dipoles [-en [<.edr>]] [-f [<.xtc/.trr/...>]] [-s [<.tpr>]]
[-n [<.ndx>]] [-o [<.xvg>]] [-eps [<.xvg>]] [-a [<.xvg>]]
[-d [<.xvg>]] [-¢ [<.xvg>]] [-g [<.xvg>]]
[-adip [<.xvg>]] [-dip3d [<.xvg>]] [—-cos [<.xvg>]]
[-cmap [<.xpm>]] [-slab [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-[no]lw] [—-xvg <enum>] [-mu <real>]
[-mumax <real>] [—epsilonRF <real>] [-skip <int>]
[-temp <real>] [—-corr <enum>] [-[no]lpairs] [-[no]lquad]

3.11. Command-line reference

163

GROMACS Documentation, Release 2026-rc

[-ncos <int>] [—axis <string>] [—-sl <int>]
[-gkratom <int>] [—-gkratom2 <int>] [-rcmax <real>]
[-[no]lphi] [-nlevels <int>] [-ndegrees <int>]
[-acflen <int>] [-[no]lnormalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [—-endfit <real>]

Description

gmx dipoles computes the total dipole plus fluctuations of a simulation system. From this you can compute
e.g. the dielectric constant for low-dielectric media. For molecules with a net charge, the net charge is subtracted
at center of mass of the molecule.

The file Mt ot . xvg contains the total dipole moment of a frame, the components as well as the norm of the vector.
The file aver . xvg contains <lmul*2> and I<mu>|"2 during the simulation. The file dipdist .xvg contains
the distribution of dipole moments during the simulation The value of -mumax is used as the highest value in the
distribution graph.

Furthermore, the dipole autocorrelation function will be computed when option —corr is used. The output file
name is given with the —c option. The correlation functions can be averaged over all molecules (mol), plotted
per molecule separately (molsep) or it can be computed over the total dipole moment of the simulation box
(total).

Option —g produces a plot of the distance dependent Kirkwood G-factor, as well as the average cosine of the angle
between the dipoles as a function of the distance. The plot also includes gOO and hOO according to Nymand &
Linse, J. Chem. Phys. 112 (2000) pp 6386-6395. In the same plot, we also include the energy per scale computed
by taking the inner product of the dipoles divided by the distance to the third power.

EXAMPLES
gmx dipoles —-corr mol -P 1 -o dip_sgr —-mu 2.273 -mumax 5.0

This will calculate the autocorrelation function of the molecular dipoles using a first order Legendre polynomial
of the angle of the dipole vector and itself a time t later. For this calculation 1001 frames will be used. Further, the
dielectric constant will be calculated using an —epsilonRF of infinity (default), temperature of 300 K (default)
and an average dipole moment of the molecule of 2.273 (SPC). For the distribution function a maximum of 5.0
will be used.

Options

Options to specify input files:

—en [<.edr>] (ener.edr) (Optional)
Energy file

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (Mtot.xvg)
xvgr/xmgr file

—-eps [<.xvg>] (epsilon.xvg)
xvgr/xmgr file

—-a [<.xvg>] (aver.xvg)
xvgr/xmgr file

3.11. Command-line reference 164

GROMACS Documentation, Release 2026-rc

—-d [<.xvg>] (dipdist.xvg)
xvgr/xmgr file

—c [<.xvg>] (dipcorr.xvg) (Optional)
xvgr/xmgr file

-g [<.xvg>] (gkr.xvg) (Optional)
xvgr/xmgr file

—adip [<.xvg>] (adip.xvg) (Optional)
xvgr/xmgr file

—-dip3d [<.xvg>] (dip3d.xvg) (Optional)
xvgr/xmgr file

—cos [<.xvg>] (cosaver.xvg) (Optional)
xvgr/xmgr file

—cmap [<.xpm>] (cmap.xpm) (Optional)
X PixMap compatible matrix file

—-slab [<.xvg>] (slab.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-mu <real> (-1)
dipole of a single molecule (in Debye)

—mumax <real> (5)
max dipole in Debye (for histogram)

—epsilonRF <real> (0)
epsilon of the reaction field used during the simulation, needed for dielectric constant calculation. WARN-
ING: 0.0 means infinity (default)

-skip <int> (0)
Skip steps in the output (but not in the computations)

—temp <real> (300)
Average temperature of the simulation (needed for dielectric constant calculation)

—corr <enum> (none)
Correlation function to calculate: none, mol, molsep, total

—[no]pairs (yes)
Calculate Icos(theta)l between all pairs of molecules. May be slow

- [no] quad (no)
Take quadrupole into account

—ncos <int> (1)
Must be 1 or 2. Determines whether the <cos(theta)> is computed between all molecules in one group, or
between molecules in two different groups. This turns on the —g flag.

3.11. Command-line reference 165

GROMACS Documentation, Release 2026-rc

—axis <string> (Z)
Take the normal on the computational box in direction X, Y or Z.

-s1 <int> (10)
Divide the box into this number of slices.

—gkratom <int> (0)
Use the n-th atom of a molecule (starting from 1) to calculate the distance between molecules rather than
the center of charge (when 0) in the calculation of distance dependent Kirkwood factors

—gkratom2 <int> (0)
Same as previous option in case ncos = 2, i.e. dipole interaction between two groups of molecules

—rcmax <real> (0)
Maximum distance to use in the dipole orientation distribution (with ncos == 2). If zero, a criterion based
on the box length will be used.

—[no]phi (no)
Plot the ‘torsion angle’ defined as the rotation of the two dipole vectors around the distance vector between
the two molecules in the .xpm (page 504) file from the —cmap option. By default the cosine of the angle
between the dipoles is plotted.

-nlevels <int> (20)
Number of colors in the cmap output

-ndegrees <int> (90)
Number of divisions on the y-axis in the cmap output (for 180 degrees)

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]lnormalize (yes)
Normalize ACF

=P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—fit£fn <enum> (none)
Fit function: none, exp, aexp, exp_exp, expJ, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.22 gmx disre

Synopsis

gmx disre [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-¢ [<.ndx>]] [=ds [<.xvg>]] [-da [<.xvg>]] [=-dn [<.xvg>]]
[-dm [<.xvg>]] [-dr [<.xvg>]] [-1 [<.log>]] [-q [<.pdb>]]
[-x [<.xpm>]] [-b <time>] [—-e <time>] [-dt <time>] [—[no]w]
[-xvg <enum>] [-ntop <int>] [-maxdr <real>]
[-nlevels <int>] [—=[no]lthird]

3.11. Command-line reference 166

GROMACS Documentation, Release 2026-rc

Description

gmx disre computes violations of distance restraints. The program always computes the instantaneous viola-
tions rather than time-averaged, because this analysis is done from a trajectory file afterwards it does not make

sense to use time averaging. However, the time averaged values per restraint are given in the log file.
An index file may be used to select specific restraints by index group label for printing.

When the optional —q flag is given a .pdb (page 499) file coloured by the amount of average violations.

When the —c option is given, an index file will be read containing the frames in your trajectory corresponding to
the clusters (defined in another manner) that you want to analyze. For these clusters the program will compute

average violations using the third power averaging algorithm and print them in the log file.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—-f [<.xte/.trr/...>] (traj.xtc)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng

(page 501) h5md

—-n [<.ndx>] (viol.ndx) (Optional)
Index file

—c [<.ndx>] (clust.ndx) (Optional)
Index file

Options to specify output files:

—ds [<.xvg>] (drsum.xvg)
xvgr/xmgr file

—da [<.xvg>] (draver.xvg)
xvgr/xmgr file

—dn [<.xvg>] (drnum.xvg)
xvgr/xmgr file

—dm [<.xvg>] (drmax.xvg)
xvgr/xmgr file

—dr [<.xvg>] (restr.xvg)
xvgr/xmgr file

-1 [<.]og>] (disres.log)
Log file

—q [<.pdb>] (viol.pdb) (Optional)
Protein data bank file

—-x [<.xpm>] (matrix.xpm) (Optional)
X PixMap compatible matrix file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

3.11. Command-line reference

167

GROMACS Documentation, Release 2026-rc

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—ntop <int> (0)
Number of large violations that are stored in the log file every step

-maxdr <real> (0)
Maximum distance violation in matrix output. If less than or equal to 0 the maximum will be determined
by the data.

-nlevels <int> (20)
Number of levels in the matrix output

—[no]third (yes)
Use inverse third power averaging or linear for matrix output

3.11.23 gmx distance
Synopsis

gmx distance [-f [<.xtc/.trr/...>]]1 [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-oav [<.xvg>]] [-oall [<.xvg>]] [—oxyz [<.xvg>]]

[-oh [<.xvg>]] [—-oallstat [<.xvg>]] [-b <time>]

[-e <time>] [-dt <time>] [-tu <enum>]

[-fgroup <selection>] [—-xvg <enum>] [-[no]rmpbc]

[-[no]lpbc] [-sf <file>] [—-selrpos <enum>]

[-seltype <enum>] [—-select <selection>] [-len <real>]

[-tol <real>] [-binw <real>]

Description

gmx distance calculates distances between pairs of positions as a function of time. Each selection specifies
an independent set of distances to calculate. Each selection should consist of pairs of positions, and the distances
are computed between positions 1-2, 3-4, etc.

—oav writes the average distance as a function of time for each selection. —oall writes all the individual
distances. —oxyz does the same, but the x, y, and z components of the distance are written instead of the norm.
—oh writes a histogram of the distances for each selection. The location of the histogram is set with —len
and —tol. Bin width is set with -binw. —oallstat writes out the average and standard deviation for each
individual distance, calculated over the frames.

Note that gmx distance calculates distances between fixed pairs (1-2, 3-4, etc.) within a single selection.
To calculate distances between two selections, including minimum, maximum, and pairwise distances, use grm.x
pairdist (page 239).

Options

Options to specify input files:

-£ [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) #rr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) tng (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: tpr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

3.11. Command-line reference 168

GROMACS Documentation, Release 2026-rc

Options to specify output files:

—oav [<.xvg>] (distave.xvg) (Optional)
Average distances as function of time

-oall [<.xvg>] (dist.xvg) (Optional)
All distances as function of time

—-oxyz [<.xvg>] (distxyz.xvg) (Optional)
Distance components as function of time

—oh [<.xvg>] (disthist.xvg) (Optional)
Histogram of the distances

—-oallstat [<.xvg>] (diststat.xvg) (Optional)
Statistics for individual distances

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[nolpbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)

Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-

res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)

Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,

dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-select <selection>
Position pairs to calculate distances for

—len <real> (0.1)
Mean distance for histogramming

-tol <real> (1)
Width of full distribution as fraction of —1en

-binw <real> (0.001)
Bin width for histogramming

3.11. Command-line reference

169

GROMACS Documentation, Release 2026-rc

3.11.24 gmx dos

Synopsis
gmx dos [-f [<.trr/.cpt/...>]] [=-s [<.tpr>]] [-n [<.ndx>]]
[-vacf [<.xvg>]] [-mvacf [<.xvg>]] [—-dos [<.xvg>]]
[-g [<.log>]] [-b <time>] [—-e <time>] [-dt <time>] [—[no]lw]
[-xvg <enum>] [—[no]v] [—-[no]recip] [—-[nolabs] [-[no]normdos]
[-T <real>] [—acflen <int>] [-[no]lnormalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [—endfit <real>]
Description

gmx dos computes the Density of States from a simulations. In order for this to be meaningful the velocities
must be saved in the trajecotry with sufficiently high frequency such as to cover all vibrations. For flexible systems
that would be around a few fs between saving. Properties based on the DoS are printed on the standard output.
Note that the density of states is calculated from the mass-weighted autocorrelation, and by default only from the
square of the real component rather than absolute value. This means the shape can differ substantially from the
plain vibrational power spectrum you can calculate with gmx velacc.

Options

Options to specify input files:

—-£ [<.trr/.cpt/...>] (traj.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-vacf [<.xvg>] (vacf.xvg)
xvgr/xmgr file

-mvacf [<.xvg>] (mvacf.xvg)
xvgr/xmgr file

—dos [<.xvg>] (dos.xvg)
xvgr/xmgr file

-g [<.log>] (dos.log)
Log file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

- [no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 170

GROMACS Documentation, Release 2026-rc

- [no]v (yes)
Be loud and noisy.

—[no]recip (no)
Use cm”-1 on X-axis instead of 1/ps for DoS plots.

—[no]abs (no)
Use the absolute value of the Fourier transform of the VACF as the Density of States. Default is to use the
real component only

—[no]lnormdos (no)
Normalize the DoS such that it adds up to 3N. This should usually not be necessary.

—T <real> (298.15)
Temperature in the simulation

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]lnormalize (yes)
Normalize ACF

=P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—fit£fn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

Known Issues

* This program needs a lot of memory: total usage equals the number of atoms times 3 times number of
frames times 4 (or 8 when run in double precision).

3.11.25 gmx dssp

Synopsis

gmx dssp [-f [<.xtc/.trr/...>]]1 [-s [<.tpr/.gro/...>]]1 [-n [<.ndx>]]
[-o [<.dat>]] [-num [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [—[no]rmpbec] [—[nolpbc] [-sf <file>]
[-selrpos <enum>] [—-seltype <enum>] [-sel <selection>]
[-hmode <enum>] [-hbond <enum>] [—-[no]lnb] [—-cutoff <real>]
[-[no]lclear] [-[no]pihelix] [-ppstretch <enum>]
[-[no]polypro]

3.11. Command-line reference 171

GROMACS Documentation, Release 2026-rc

Description

gmx dssp allows using the DSSP algorithm (namely, by detecting specific patterns of hydrogen bonds between
amino acid residues) to determine the secondary structure of a protein.
One-symbol secondary structure designations that are used in the output file:
H — alpha-helix;

B — residue in isolated beta-bridge;

E — extended strand that participates in beta-ladder;

G — 3_10-helix;

I — pi-helix;

P — kappa-helix (poly-proline II helix);

S — bend;

T — hydrogen-bonded turn;

= — break;

~ — loop (no special secondary structure designation).

—num allows you to get a plot of the number of secondary structures of each type as a function of time at the
output.

-hmode selects between using hydrogen atoms directly from the structure (“gromacs” option) and using hydrogen
pseudo-atoms based on C and O atom coordinates of previous residue (“dssp” option). You should always use the
“dssp” option for structures with absent hydrogen atoms!

—hbond selects between different definitions of hydrogen bond. “energy” means the calculation of a hydrogen
bond using the electrostatic interaction energy and “geometry” means the calculation of the hydrogen bond using
geometric criterion for the existence of a hydrogen bond.

—-nb allows using GROMACS neighbor-search method to find residue pairs that may have a hydrogen bond instead
of simply iterating over the residues among themselves.

—cutoff is areal value that defines maximum distance from residue to its neighbor residue used in —nb. Mini-
mum (and also recommended) value is 0.9.

—clear allows you to ignore the analysis of the secondary structure residues that are missing one or more critical
atoms (CA, C, N, O or H). Always use this option together with ~-hmode dssp for structures that lack hydrogen
atoms!

-pihelix changes pattern-search algorithm towards preference of pi-helices.

-ppstretch defines stretch value of polyproline-helices. “shortened” means stretch with size 2 and “default”
means stretch with size 3.

—-polypro enables the search for polyproline helices (default behavior, equivalent to DSSP v4). Disabling this
option will result in disabling the search for polyproline helices, reproducing the behavior of DSSP v2.

Note that gmx dssp currently is not capable of reproducing the secondary structure of proteins whose structure
is determined by methods other than X-ray crystallography (structures in .pdb format with incorrect values in the
CRYST1 line) due to the incorrect cell size in such structures.

Please note that the computation is always done in single precision, regardless of the precision for which GRO-
MACS was configured.

3.11. Command-line reference 172

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) g (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.dat>] (dssp.dat)
Filename for DSSP output

—num [<.xvg>] (num.xvg) (Optional)
Output file name for secondary structures statistics for the trajectory

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-sel <selection>
Group for DSSP

—-hmode <enum> (gromacs)
Hydrogens pseudoatoms creating mode: gromacs, dssp

—hbond <enum> (energy)
Selects between different definitions of hydrogen bond: energy, geometry

3.11. Command-line reference 173

GROMACS Documentation, Release 2026-rc

—[no]nb (yes)
Use GROMACS neighbor-search method

—cutoff <real> (0.9)
Distance from residue to its neighbor residue in neighbor search. Must be >= 0.9

—[no]clear (no)
Clear defective residues from the structure

—[no]pihelix (no)
Prefer Pi Helices

-ppstretch <enum> (default)
Stretch value for PP-helices: shortened, default

—[no]polypro (yes)
Perform a search for polyproline helices

3.11.26 gmx dump

Synopsis

gnx dump [-s <.tpr>] [-f <.xtc/.trr/...>] [-e <.edr>] [—-cp <.cpt>]
[-p <.top>] [-mtx <.mtx>] [—-om <.mdp>] [—[nolnr]
[-[no]lparam] [—-[no]sys] [—-[no]orgir]

Description

gmx dump reads a run input file (.zpr (page 503)), a trajectory (.77 (page 503)/.xtc (page 505)/t ng), an energy file
(-edr (page 494)), a checkpoint file (.cpt (page 494)) or topology file (.zop (page 501)) and prints that to standard
output in a readable format. This program is essential for checking your run input file in case of problems.

Options

Options to specify input files:

—-s <.tpr> (Optional)
Run input file to dump

—-£ <.xtc/.trr/...> (Optional)
Trajectory file to dump: xtc (page 505) trr (page 503) cpr (page 494) gro (page 495) g96 (page 495) pdb
(page 499) tng (page 501) hSmd

—e <.edr> (Optional)
Energy file to dump

—cp <.cpt> (Optional)
Checkpoint file to dump

—p <.top> (Optional)
Topology file to dump

-mtx <.mtx> (Optional)
Hessian matrix to dump

Options to specify output files:

—om <.mdp> (Optional)
grompp input file from run input file

Other options:

3.11. Command-line reference 174

GROMACS Documentation, Release 2026-rc

—[no]nr (yes)
Show index numbers in output (leaving them out makes comparison easier, but creates a useless topology)

—[no]param (no)
Show parameters for each bonded interaction (for comparing dumps, it is useful to combine this with -nonr)

—[no]sys (no)
List the atoms and bonded interactions for the whole system instead of for each molecule type

—[no]orgir (no)
Show input parameters from tpr as they were written by the version that produced the file, instead of how
the current version reads them

Known Issues

* The .mdp (page 497) file produced by —om can not be read by grompp.

3.11.27 gmx dyecoupl

Synopsis

gmx dyecoupl [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-ot [<.xvg>]]
[-oe [<.xvg>]] [-o [<.dat>]] [-rhist [<.xvg>]]
[-khist [<.xvg>]] [-b <time>] [—-e <time>] [—-tu <enum>]
[-[no]lw] [-xvg <enum>] [—[no]lpbecdist] [—-[no]lnorm]
[-bins <int>] [-RO <real>]

Description

gmx dyecoupl extracts dye dynamics from trajectory files. Currently, R and kappa”2 between dyes is extracted
for (F)RET simulations with assumed dipolar coupling as in the Foerster equation. It further allows the calculation
of R(t) and kappa”2(t), R and kappa”2 histograms and averages, as well as the instantaneous FRET efficiency E(t)
for a specified Foerster radius R_0 (switch —R0). The input dyes have to be whole (see res and mol pbc options in
trjconv). The dye transition dipole moment has to be defined by at least a single atom pair, however multiple
atom pairs can be provided in the index file. The distance R is calculated on the basis of the COMs of the given
atom pairs. The —-pbcdist option calculates distances to the nearest periodic image instead to the distance in the
box. This works however only, for periodic boundaries in all 3 dimensions. The —~norm option (area-) normalizes
the histograms.

Options

Options to specify input files:

—-£f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

—n [<.ndx>] (index.ndx)
Index file

Options to specify output files:

-ot [<.xvg>] (rkappa.xvg) (Optional)
xvgr/xmgr file

—oe [<.xvg>] (insteff.xvg) (Optional)
xvgr/xmgr file

-o [<.dat>] (rkappa.dat) (Optional)
Generic data file

3.11. Command-line reference 175

GROMACS Documentation, Release 2026-rc

—-rhist [<.xvg>] (rhist.xvg) (Optional)
xvgr/xmgr file

-khist [<.xvg>] (khist.xvg) (Optional)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—[nolw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

- [no]lpbecdist (no)
Distance R based on PBC

—[no]norm (no)
Normalize histograms

-bins <int> (50)
of histogram bins

—RO <real> (-1)
Foerster radius including kappa®2=2/3 in nm

3.11.28 gmx editconf

Synopsis

gmx editconf [-f [<.gro/.g96/...>]] [-n [<.ndx>]] [-bf [<.dat>]]
[-o [<.gro/.g96/...>]] [-mead [<.pgr>]] [-[nolw]
[-[no]lndef] [-bt <enum>] [-box <vector>]
[-angles <vector>] [-d <real>] [—-[no]c]
[-center <vector>] [—aligncenter <vector>]
[-align <vector>] [—-translate <vector>]
[-rotate <vector>] [—[no]lprinc] [-scale <vector>]
[-density <real>] [—-[no]lpbc] [-resnr <int>] [—-[no]lgrasp]
[-rvdw <real>] [—-[no]lsig56] [-[no]vdwread] [—-[no]atom]
[-[no]llegend] [-label <string>] [—[no]conect]

Description

gmx editconf converts generic structure format to .gro (page 495), . g96 or.pdb (page 499).

The box can be modified with options ~box, —~d and —~angles. Both ~box and —d will center the system in the
box, unless —noc is used. The —center option can be used to shift the geometric center of the system from the
default of (x/2, y/2, z/2) implied by —c to some other value.

Option -bt determines the box type: triclinic is a triclinic box, cubic is a rectangular box with all sides
equal dodecahedron represents a thombic dodecahedron and octahedron is a truncated octahedron. The
last two are special cases of a triclinic box. The length of the three box vectors of the truncated octahedron is the
shortest distance between two opposite hexagons. Relative to a cubic box with some periodic image distance, the

3.11. Command-line reference 176

GROMACS Documentation, Release 2026-rc

volume of a dodecahedron with this same periodic distance is 0.71 times that of the cube, and that of a truncated
octahedron is 0.77 times.

Option —box requires only one value for a cubic, rhombic dodecahedral, or truncated octahedral box.

With —~d and a t riclinic box the size of the system in the x-, y-, and z-directions is used. With —d and cubic,
dodecahedron or octahedron boxes, the dimensions are set to the diameter of the system (largest distance
between atoms) plus twice the specified distance.

Option —angles is only meaningful with option ~box and a triclinic box and cannot be used with option —d.

When —n or -ndef is set, a group can be selected for calculating the size and the geometric center, otherwise the
whole system is used.

—rotate rotates the coordinates and velocities.

-princ aligns the principal axes of the system along the coordinate axes, with the longest axis aligned with the
x-axis. This may allow you to decrease the box volume, but beware that molecules can rotate significantly in a
nanosecond.

Scaling is applied before any of the other operations are performed. Boxes and coordinates can be scaled to give
a certain density (option —~density). Note that this may be inaccurate in case a .gro (page 495) file is given as
input. A special feature of the scaling option is that when the factor -1 is given in one dimension, one obtains
a mirror image, mirrored in one of the planes. When one uses -1 in three dimensions, a point-mirror image is
obtained.

Groups are selected after all operations have been applied.

Periodicity can be removed in a crude manner. It is important that the box vectors at the bottom of your input file
are correct when the periodicity is to be removed.

When writing .pdb (page 499) files, B-factors can be added with the -bf option. B-factors are read from a file
with with following format: first line states number of entries in the file, next lines state an index followed by
a B-factor. The B-factors will be attached per residue unless the number of B-factors is larger than the number
of the residues or unless the —at om option is set. Obviously, any type of numeric data can be added instead of
B-factors. —1egend will produce a row of CA atoms with B-factors ranging from the minimum to the maximum
value found, effectively making a legend for viewing.

With the option —mead a special .pdb (page 499) (.pqr) file for the MEAD electrostatics program (Poisson-
Boltzmann solver) can be made. A further prerequisite is that the input file is a run input file. The B-factor field is
then filled with the Van der Waals radius of the atoms while the occupancy field will hold the charge.

The option —grasp is similar, but it puts the charges in the B-factor and the radius in the occupancy.

Option —align allows alignment of the principal axis of a specified group against the given vector, with an
optional center of rotation specified by —aligncenter.

Finally, with option ~1abel, editconf can add a chain identifier to a .pdb (page 499) file, which can be useful
for analysis with e.g. Rasmol.

To convert a truncated octrahedron file produced by a package which uses a cubic box with the corners cut off
(such as GROMOYS), use:

[gmx editconf -f in -rotate 0 45 35.264 -bt o -box veclen -o out]

where veclen is the size of the cubic box times sqrt(3)/2.

3.11. Command-line reference 177

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

-£f [<.gro/.g96/...>] (conf.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

—-n [<.ndx>] (index.ndx) (Optional)
Index file

-bf [<.dat>] (bfact.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.gro/.g96/...>] (out.gro) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

-mead [<.pqr>] (mead.pqr) (Optional)
Coordinate file for MEAD

Other options:

—[nolw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—[no]lndef (no)
Choose output from default index groups

-bt <enum> (triclinic)
Box type for -box and —d: triclinic, cubic, dodecahedron, octahedron

-box <vector> (0 0 0)
Box vector lengths (a,b,c)

—angles <vector> (90 90 90)
Angles between the box vectors (bc,ac,ab)

—d <real> (0)
Distance between the solute and the box

-[no]c (no)
Center molecule in box (implied by —~box and —d)

—center <vector> (0 0 0)
Shift the geometrical center to (X,y,z)

—aligncenter <vector> (0 0 0)
Center of rotation for alignment

—align <vector> (0 0 0)
Align to target vector

—-translate <vector> (0 0 0)
Translation

—-rotate <vector> (0 0 0)
Rotation around the X, Y and Z axes in degrees

—[no]princ (no)
Orient molecule(s) along their principal axes

—-scale <vector>(111)
Scaling factor

—density <real> (1000)
Density (g/L) of the output box achieved by scaling

- [no]pbc (no)
Remove the periodicity (make molecule whole again)

3.11. Command-line reference 178

GROMACS Documentation, Release 2026-rc

—resnr <int> (-1)
Renumber residues starting from resnr

- [no]grasp (no)
Store the charge of the atom in the B-factor field and the radius of the atom in the occupancy field

—rvdw <real> (0.12)
Default Van der Waals radius (in nm) if one can not be found in the database or if no parameters are present
in the topology file

-[no]lsig56 (no)
Use rmin/2 (minimum in the Van der Waals potential) rather than sigma/2

- [no]vdwread (no)
Read the Van der Waals radii from the file vdwradii .dat rather than computing the radii based on the
force field

—[no]atom (no)
Force B-factor attachment per atom

—[no]legend (no)
Make B-factor legend

—label <string> (A)
Add chain label for all residues

—[no] conect (no)
Add CONECT records to a .pdb (page 499) file when written. Can only be done when a topology (tpr file)
is present

Known Issues

* For complex molecules, the periodicity removal routine may break down,

* in that case you can use gmx trjconv (page 287).

3.11.29 gmx eneconv

Synopsis

gmx eneconv [—-f [<.edr> [...]]] [-o [<.edr>]] [-b <real>] [—-e <real>]
[-dt <real>] [—offset <real>] [—-[no]lsettime] [—-[no]sort]
[-[no]l]rmdh] [-scalefac <real>] [—-[no]error]

Description

With multiple files specified for the — £ option:

Concatenates several energy files in sorted order. In the case of double time frames, the one in the later file is
used. By specifying —settime you will be asked for the start time of each file. The input files are taken from
the command line, such that the command gmx eneconv —-f *.edr -o fixed.edr should do the trick.

With one file specified for —£f:

Reads one energy file and writes another, applying the —dt, —offset, —t0 and —sett ime options and con-
verting to a different format if necessary (indicated by file extensions).

—-settime is applied first, then —~dt/-offset followed by —b and —e to select which frames to write.

3.11. Command-line reference 179

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

—f [<.edr> [...]] (ener.edr)
Energy file

Options to specify output files:

-o [<.edr>] (fixed.edr)
Energy file

Other options:

=b <real> (-1)
First time to use

—e <real> (-1)
Last time to use

—dt <real> (0)
Only write out frame when t MOD dt = offset

—-offset <real> (0)
Time offset for —dt option

—[no] settime (no)
Change starting time interactively

—[no] sort (yes)
Sort energy files (not frames)

—[no] rmdh (no)
Remove free energy block data

—-scalefac <real> (1)
Multiply energy component by this factor

—[no]error (yes)
Stop on errors in the file

Known Issues

* When combining trajectories the sigma and E*2 (necessary for statistics) are not updated correctly. Only
the actual energy is correct. One thus has to compute statistics in another way.

3.11.30 gmx enemat

Synopsis

gmx enemat [—-f [<.edr>]] [—-groups [<.dat>]] [—eref [<.dat>]]
[—emat [<.xpm>]] [—-etot [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-[no]lw] [—-xvg <enum>] [—-[no]sum]
[-skip <int>] [—-[no]lmean] [—-nlevels <int>] [—-max <real>]
[-min <real>] [—-[no]coulsr] [-[no]coulld] [-[no]ljsr]
[-[no]1jl4] [-[no]lbhamsr] [-[no]free] [—-temp <real>]

3.11. Command-line reference

180

GROMACS Documentation, Release 2026-rc

Description

gmx enemat extracts an energy matrix from the energy file (-£). With ~groups a file must be supplied with
on each line a group of atoms to be used. For these groups matrix of interaction energies will be extracted from
the energy file by looking for energy groups with names corresponding to pairs of groups of atoms, e.g. if your
—groups file contains:

2
Protein
SOL

then energy groups with names like ‘Coul-SR:Protein-SOL’ and ‘LJ:Protein-SOL’ are expected in the energy
file (although gmx enemat is most useful if many groups are analyzed simultaneously). Matrices for differ-
ent energy types are written out separately, as controlled by the — [no]coul, —[no]coulr, —[no]coulld,
-[nollj,-[nolljld, -[nolbhamand - [no] free options. Finally, the total interaction energy energy per
group can be calculated (—etot).

An approximation of the free energy can be calculated using: E_free = E_0 + kT log(<exp((E-E_0)/kT)>), where
‘<>’ stands for time-average. A file with reference free energies can be supplied to calculate the free energy
difference with some reference state. Group names (e.g. residue names) in the reference file should correspond
to the group names as used in the —~groups file, but a appended number (e.g. residue number) in the —~groups
will be ignored in the comparison.

Options

Options to specify input files:

—f [<.edr>] (ener.edr) (Optional)
Energy file

—groups [<.dat>] (groups.dat)
Generic data file

—eref [<.dat>] (eref.dat) (Optional)
Generic data file

Options to specify output files:

—emat [<.xpm>] (emat.xpm)
X PixMap compatible matrix file

—etot [<.xvg>] (energy.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no] sum (no)
Sum the energy terms selected rather than display them all

3.11. Command-line reference 181

GROMACS Documentation, Release 2026-rc

—-skip <int> (0)
Skip number of frames between data points

—[no]mean (yes)
with —~groups extracts matrix of mean energies instead of matrix for each timestep

-nlevels <int> (20)
number of levels for matrix colors

-max <real> (1e+20)
max value for energies

-min <real> (-1e+20)
min value for energies

—[no] coulsr (yes)
extract Coulomb SR energies

—[no]coull4 (no)
extract Coulomb 1-4 energies

—-[no]ljsr (yes)
extract Lennard-Jones SR energies

-[no]ljl4 (no)
extract Lennard-Jones 1-4 energies

—[no]lbhamsr (no)
extract Buckingham SR energies

—[no] free (yes)
calculate free energy

—temp <real> (300)
reference temperature for free energy calculation

3.11.31 gmx energy
Synopsis

gmx energy [—-f [<.edr>]] [-f2 [<.edr>]] [-s [<.tpr>]] [-o [<.xvg>]]
[-viol [<.xvg>]] [—-pairs [<.xvg>]] [—-corr [<.xvg>]]
[-vis [<.xvg>]] [—evisco [<.xvg>]] [—eviscoi [<.xvg>]]
[-ravg [<.xvg>]] [—-odh [<.xvg>]] [-b <time>] [—-e <time>]
[-[no]lw] [-xvg <enum>] [—[no]fee] [-fetemp <real>]
[-zero <real>] [—-[no]lsum] [-[no]ldp] [-nbmin <int>]
[-nbmax <int>] [—-[no]lmutot] [-[no]laver] [—nmol <int>]

[-[no] fluct_props] [—[noldriftcorr] [-[no]fluc]
[-[no]orinst] [—-[no]ovec] [—einstein_restarts <int>]
[-einstein_blocks <int>] [—acflen <int>] [-[no]lnormalize]
[-P <enum>] [—-fitfn <enum>] [-beginfit <real>]

[-endfit <real>]

3.11. Command-line reference 182

GROMACS Documentation, Release 2026-rc

Description

gmx energy extracts energy components from an energy file. The user is prompted to interactively select the
desired energy terms.

Average, RMSD, and drift are calculated with full precision from the simulation (see printed manual). Drift is
calculated by performing a least-squares fit of the data to a straight line. The reported total drift is the difference
of the fit at the first and last point. An error estimate of the average is given based on a block averages over 5
blocks using the full-precision averages. The error estimate can be performed over multiple block lengths with the
options —nbmin and —nbmax. Nete that in most cases the energy files contains averages over all MD steps, or
over many more points than the number of frames in energy file. This makes the gmx energy statistics output
more accurate than the .xvg (page 506) output. When exact averages are not present in the energy file, the statistics
mentioned above are simply over the single, per-frame energy values.

The term fluctuation gives the RMSD around the least-squares fit.

Some fluctuation-dependent properties can be calculated provided the correct energy terms are selected, and that
the command line option —fluct_props is given. The following properties will be computed:

Property Energy terms needed

Heat capacity C_p (NPT sims): Enthalpy, Temp
Heat capacity C_v (NVT sims): Etot, Temp

Thermal expansion coeff. (NPT): Enthalpy, Vol, Temp
Isothermal compressibility: Vol, Temp
Adiabatic bulk modulus: Vol, Temp

You always need to set the number of molecules —nmol. The C_p/C_v computations do not include any correc-
tions for quantum effects. Use the gmx dos (page 170) program if you need that (and you do).

Option -odh extracts and plots the free energy data (Hamiltoian differences and/or the Hamiltonian derivative
dhdl) from the ener . edr file.

With —fee an estimate is calculated for the free-energy difference with an ideal gas state:

Delta A = A(N,V,T) - A_idealgas(N,V,T) = kT
1n (<exp (U_pot/kT) >)
Delta G = G(N,p,T) - G_idealgas(N,p,T) = kT

1n (<exp (U_pot/kT) >)

where k is Boltzmann’s constant, T is set by —fetemp and the average is over the ensemble (or time in a trajec-
tory). Note that this is in principle only correct when averaging over the whole (Boltzmann) ensemble and using
the potential energy. This also allows for an entropy estimate using:

Delta S(N,V,T) = S(N,V,T) - S_idealgas(N,V,T) =
(<U_pot> — Delta A)/T

Delta S(N,p,T) = S(N,p,T) - S_idealgas(N,p,T) =
(<U_pot> + pV — Delta G)/T

When a second energy file is specified (-£2), a free energy difference is calculated:

dF = —kT
1n (<exp (- (E_B-E_A) /
kT)>_A),

where E_A and E_B are the energies from the first and second energy files, and the average is over the ensemble
A. The running average of the free energy difference is printed to a file specified by —ravg. Note that the energies
must both be calculated from the same trajectory.

For liquids, viscosities can be calculated by integrating the auto-correlation function of, or by using the Einstein
formula for, the off-diagonal pressure elements. The option —vis turns calculation of the shear and bulk vis-
cosity through integration of the auto-correlation function. For accurate results, this requires extremely frequent

3.11. Command-line reference 183

GROMACS Documentation, Release 2026-rc

computation and output of the pressure tensor. The Einstein formula does not require frequent output and is
therefore more convenient. Note that frequent pressure calculation (nstcalcenergy mdp parameter) is still needed.
Option —evicso gives this shear viscosity estimate and option —eviscoi the integral. Using one of these
two options also triggers the other. The viscosity is computed from integrals averaged over uniformly distributed
—einstein_restarts starting points, which are sampled over one block out of ~einstein_blocks of
the trajectory.

Options

Options to specify input files:

—f [<.edr>] (ener.edr)
Energy file

—-£2 [<.edr>] (ener.edr) (Optional)
Energy file

-s [<.tpr>] (topol.tpr) (Optional)
Portable xdr run input file

Options to specify output files:

—o [<.xvg>] (energy.xvg)
xvgr/xmgr file

-viol [<.xvg>] (violaver.xvg) (Optional)
xvgr/xmgr file

—-pairs [<.xvg>] (pairs.xvg) (Optional)
xvgr/xmgr file

—corr [<.xvg>] (enecorr.xvg) (Optional)
xvgr/xmgr file

-vis [<.xvg>] (visco.xvg) (Optional)
xvgr/xmgr file

—-evisco [<.xvg>] (evisco.xvg) (Optional)
xvgr/xmgr file

—eviscoi [<.xvg>] (eviscoi.xvg) (Optional)
xvgr/xmgr file

—-ravg [<.xvg>] (runavgdf.xvg) (Optional)
xvgr/xmgr file

—odh [<.xvg>] (dhdl.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xXvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no] fee (no)
Do a free energy estimate

3.11. Command-line reference 184

GROMACS Documentation, Release 2026-rc

—-fetemp <real> (300)
Reference temperature for free energy calculation

—zero <real> (0)
Subtract a zero-point energy

—[no] sum (no)
Sum the energy terms selected rather than display them all

—[no]dp (no)
Print energies in high precision
—nbmin <int> (5)
Minimum number of blocks for error estimate

—nbmax <int> (5)
Maximum number of blocks for error estimate

—[no]mutot (no)
Compute the total dipole moment from the components

—[no]aver (no)
Also print the exact average and rmsd stored in the energy frames (only when 1 term is requested)

—nmol <int> (1)
Number of molecules in your sample: the energies are divided by this number

—[no] fluct_props (no)
Compute properties based on energy fluctuations, like heat capacity

—[noldriftcorr (no)
Useful only for calculations of fluctuation properties. The drift in the observables will be subtracted before
computing the fluctuation properties.

—[no] £1luc (no)
Calculate autocorrelation of energy fluctuations rather than energy itself

—[no]orinst (no)
Analyse instantaneous orientation data

- [no]ovec (no)
Also plot the eigenvectors with —oten

—-einstein_restarts <int> (100)
Number of restarts for computing the viscosity using the Einstein relation

—einstein_blocks <int> (4)
Number of averaging windows for computing the viscosity using the Einstein relation

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]normalize (yes)
Normalize ACF

=P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—-fit£fn <enum> (none)
Fit function: none, exp, aexp, exp_exp, expJ, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11. Command-line reference 185

GROMACS Documentation, Release 2026-rc

3.11.32 gmx extract-cluster
Synopsis

gmx extract-cluster [-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [—-clusters [<.ndx>]]
[0 [<.xtc/.trr/...>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [—-fgroup <selection>]
[-xvg <enum>] [—[no]rmpbc] [—-[nolpbc] [-sf <file>]
[-selrpos <enum>] [—-select <selection>] [-vel <enum>]
[-force <enum>] [—atoms <enum>] [-precision <int>]
[-starttime <time>] [-timestep <time>] [-box <vector>]

Description

gmx extract-cluster can be used to extract trajectory frames that correspond to clusters obtained from
running gmx cluster with the -clndx option. The module supports writing all GROMACS supported trajectory file
formats.

Included is also a selection of possible options to change additional information.

It is possible to write only a selection of atoms to the output trajectory files for each cluster.

Options

Options to specify input files:

—-£f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xzc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) tng (page 501) h5md

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

—clusters [<.ndx>] (cluster.ndx)
Name of index file containing frame indices for each cluster, obtained from gmx cluster -clndx.

Options to specify output files:

—o [<.xte/.trr/...>] (trajout.xtc)
Prefix for the name of the trajectory file written for each cluster.: xfc (page 505) trr (page 503) cpt (page 494)
gro (page 495) g96 (page 495) pdb (page 499) mg (page 501) hSmd

Other options:

=b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

3.11. Command-line reference 186

GROMACS Documentation, Release 2026-rc

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

- [nolpbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-select <selection>
Selection of atoms to write to the file

—vel <enum> (preserved-if-present)
Save velocities from frame if possible: preserved-if-present, always, never

—-force <enum> (preserved-if-present)
Save forces from frame if possible: preserved-if-present, always, never

—atoms <enum> (preserved-if-present)
Decide on providing new atom information from topology or using current frame atom information:
preserved-if-present, always-from-structure, never, always

-precision <int> (3)
Set output precision to custom value

—-starttime <time> (0)
Change start time for first frame

—-timestep <time> (0)
Change time between different frames

—box <vector>
New diagonal box vector for output frame

3.11.33 gmx filter
Synopsis

[-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-0l [<.xtc/.trr/...>]] [-oh [<.xtc/.trr/...>]]

[-b <time>] [—-e <time>] [-dt <time>] [—-[no]lw] [-nf <int>]
[-[no]lall] [-[no]lnojump] [—-[no]fit]

gmx filter

Description

gmx filter performs frequency filtering on a trajectory. The filter shape is cos(pi t/A) + 1 from -A to +A,
where A is given by the option —nf times the time step in the input trajectory. This filter reduces fluctuations with
period A by 85%, with period 2*A by 50% and with period 3*A by 17% for low-pass filtering. Both a low-pass
and high-pass filtered trajectory can be written.

Option —o1l writes a low-pass filtered trajectory. A frame is written every —nf input frames. This ratio of filter
length and output interval ensures a good suppression of aliasing of high-frequency motion, which is useful for
making smooth movies. Also averages of properties which are linear in the coordinates are preserved, since all
input frames are weighted equally in the output. When all frames are needed, use the —all option.

3.11. Command-line reference 187

GROMACS Documentation, Release 2026-rc

Option —oh writes a high-pass filtered trajectory. The high-pass filtered coordinates are added to the coordinates
from the structure file. When using high-pass filtering use —£it or make sure you use a trajectory that has been
fitted on the coordinates in the structure file.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-ol [<.xtc/.trr/...>] (lowpass.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) gro (page 495) g96 (page 495) pdb (page 499) ng (page 501)
h5md

—oh [<.xtc/.trr/...>] (highpass.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) gro (page 495) g96 (page 495) pdb (page 499) tng (page 501)
h5md

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-nf <int> (10)
Sets the filter length as well as the output interval for low-pass filtering

-[nolall (no)
Write all low-pass filtered frames

—[no]lnojump (yes)
Remove jumps of atoms across the box

-[no] £it (no)
Fit all frames to a reference structure

3.11. Command-line reference 188

GROMACS Documentation, Release 2026-rc

3.11.34 gmx freevolume

Synopsis
gmx freevolume [-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [—[no]rmpbc] [-sf <file>]
[-selrpos <enum>] [—-select <selection>] [-radius <real>]
[-seed <int>] [-ninsert <int>]
Description

gmx freevolume calculates the free volume in a box as a function of time. The free volume is plotted as a
fraction of the total volume. The program tries to insert a probe with a given radius, into the simulations box and
if the distance between the probe and any atom is less than the sums of the van der Waals radii of both atoms,
the position is considered to be occupied, i.e. non-free. By using a probe radius of 0, the true free volume is
computed. By using a larger radius, e.g. 0.14 nm, roughly corresponding to a water molecule, the free volume for
a hypothetical particle with that size will be produced. Note however, that since atoms are treated as hard-spheres
these number are very approximate, and typically only relative changes are meaningful, for instance by doing a
series of simulations at different temperature.

The group specified by the selection is considered to delineate non-free volume. The number of insertions per unit
of volume is important to get a converged result. About 1000/nm”3 yields an overall standard deviation that is
determined by the fluctuations in the trajectory rather than by the fluctuations due to the random numbers.

The results are critically dependent on the van der Waals radii; we recommend to use the values due to Bondi
(1964).

The Fractional Free Volume (FFV) that some authors like to use is given by 1 - 1.3*(1-Free Volume). This value
is printed on the terminal.

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) g (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (freevolume.xvg) (Optional)
Computed free volume

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

3.11. Command-line reference 189

GROMACS Documentation, Release 2026-rc

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-select <selection>
Atoms that are considered as part of the excluded volume

—radius <real> (0)
Radius of the probe to be inserted (nm, 0 yields the true free volume)

-seed <int> (0)
Seed for random number generator (0 means generate).

-ninsert <int> (1000)
Number of probe insertions per cubic nm to try for each frame in the trajectory.

3.11.35 gmx gangle

Synopsis

gmx gangle [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-oav [<.xvg>]] [=-oall [<.xvg>]] [-oh [<.xvg>]]
[-b <time>] [-e <time>] [-dt <time>] [-tu <enum>]
[-fgroup <selection>] [-xvg <enum>] [—[no]rmpbc]
[-[nolpbc] [-sf <file>] [—-selrpos <enum>]
[-seltype <enum>] [—-gl <enum>] [—-g2 <enum>] [-binw <real>]
[-groupl <selection>] [—-group2 <selection>]

Description

gmx gangle computes different types of angles between vectors. It supports both vectors defined by two posi-
tions and normals of planes defined by three positions. The z axis or the local normal of a sphere can also be used
as one of the vectors. There are also convenience options ‘angle’ and ‘dihedral’ for calculating bond angles and
dihedrals defined by three/four positions.

The type of the angle is specified with —g1 and —g2. If —gl is angle or dihedral, —g2 should not be
specified. In this case, —groupl should specify one or more selections, and each should contain triplets or
quartets of positions that define the angles to be calculated.

If —g1l is vector or plane, —groupl should specify selections that contain either pairs (vector) or triplets
(plane) of positions. For vectors, the positions set the endpoints of the vector, and for planes, the three positions
are used to calculate the normal of the plane. In both cases, —g2 specifies the other vector to use (see below).

With -g2 vectoror -g2 plane, —~group?2 should specify another set of vectors. ~-groupl and ~group?2
should specify the same number of selections. It is also allowed to only have a single selection for one of the
options, in which case the same selection is used with each selection in the other group. Similarly, for each

3.11. Command-line reference 190

GROMACS Documentation, Release 2026-rc

selection in —groupl, the corresponding selection in ~group?2 should specify the same number of vectors or a
single vector. In the latter case, the angle is calculated between that single vector and each vector from the other
selection.

With ~g2 sphnorm, each selection in ~group2 should specify a single position that is the center of the
sphere. The second vector is calculated as the vector from the center to the midpoint of the positions specified by
—groupl.

With —g2 z, —group?2 is not necessary, and angles between the first vectors and the positive Z axis are calcu-
lated.

With —-g2 t0, —group? is not necessary, and angles are calculated from the vectors as they are in the first frame.

There are three options for output: —oav writes an xvg file with the time and the average angle for each frame.
—oall writes all the individual angles. —oh writes a histogram of the angles. The bin width can be set with
-binw. For —oav and —oh, separate average/histogram is computed for each selection in ~group1.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) ing (page 501) h5Smd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: #pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

—-oav [<.xvg>] (angaver.xvg) (Optional)
Average angles as a function of time

-oall [<.xvg>] (angles.xvg) (Optional)
All angles as a function of time

—oh [<.xvg>] (anghist.xvg) (Optional)
Histogram of the angles

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[nolpbc (yes)
Use periodic boundary conditions for distance calculation

3.11. Command-line reference 191

GROMACS Documentation, Release 2026-rc

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-gl <enum> (angle)
Type of analysis/first vector group: angle, dihedral, vector, plane

—g2 <enum> (none)
Type of second vector group: none, vector, plane, t0, z, sphnorm

=binw <real> (1)
Binwidth for -oh in degrees

—groupl <selection>
First analysis/vector selection

—group2 <selection>
Second analysis/vector selection

3.11.36 gmx genconf

Synopsis

gmx genconf [-f [<.gro/.g96/...>]] [-tr] [<.xtc/.trr/...>]]
[-o [<.gro/.g96/...>]] [-nbox <vector>] [-dist <vector>]
[-seed <int>] [—-[no]rot] [—-maxrot <vector>]
[

—[no] renumber]

Description

gmx genconf multiplies a given coordinate file by simply stacking them on top of each other, like a small child
playing with wooden blocks. The program makes a grid of user-defined proportions (-nbox), and interspaces the
grid point with an extra space —dist.

When option —rot is used the program does not check for overlap between molecules on grid points. It is
recommended to make the box in the input file at least as big as the coordinates + van der Waals radius.

If the optional trajectory file is given, conformations are not generated, but read from this file and translated
appropriately to build the grid.

Options

Options to specify input files:

—-f [<.gro/.g96/...>] (conf.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp tpr (page 503)

—trj [<xte/trr/...>] (traj.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

Options to specify output files:

3.11. Command-line reference 192

GROMACS Documentation, Release 2026-rc

-o [<.gro/.g96/...>] (out.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

Other options:

-nbox <vector> (111)
Number of boxes

—dist <vector> (0 0 0)
Distance between boxes

—-seed <int> (0)
Random generator seed (0 means generate)

—[no] rot (no)
Randomly rotate conformations

-maxrot <vector> (180 180 180)
Maximum random rotation

—[no] renumber (yes)
Renumber residues

Known Issues

* The program should allow for random displacement of lattice points.

3.11.37 gmx genion

Synopsis

gmx genion [-s [<.tpr>]] [-n [<.ndx>]] [-p [<.top>]]
[-o [<.gro/.g96/...>]] [-np <int>] [-pname <string>]
[-pg <int>] [-nn <int>] [-nname <string>] [-nq <int>]
[-rmin <real>] [-seed <int>] [-conc <real>] [—-[no]lneutral]

Description

gmx genion randomly replaces solvent molecules with monoatomic ions. The group of solvent molecules
should be continuous and all molecules should have the same number of atoms. The user should add the ion
molecules to the topology file or use the —p option to automatically modify the topology.

The ion molecule type, residue and atom names in all force fields are the capitalized element names without sign.
This molecule name should be given with —pname or —nname, and the [molecules] section of your topology
updated accordingly, either by hand or with —p. Do not use an atom name instead!

Ions which can have multiple charge states get the multiplicity added, without sign, for the uncommon states only.

For larger ions, e.g. sulfate we recommended using gmx insert-molecules (page 213).

3.11. Command-line reference 193

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify input/output files:

-p [<.top>] (topol.top) (Optional)
Topology file

Options to specify output files:

-o [<.gro/.g96/...>] (out.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

Other options:

—np <int> (0)
Number of positive ions

—pname <string> (NA)
Name of the positive ion

-pq <int> (1)
Charge of the positive ion

—nn <int> (0)
Number of negative ions

—-nname <string> (CL)
Name of the negative ion

-nqg <int> (-1)
Charge of the negative ion

—rmin <real> (0.6)
Minimum distance between ions and non-solvent

—-seed <int> (0)
Seed for random number generator (0 means generate)

—conc <real> (0)
Specify salt concentration (mol/liter). This will add sufficient ions to reach up to the specified concentration
as computed from the volume of the cell in the input .7pr (page 503) file. Overrides the —np and —nn
options.

—[no]lneutral (no)
This option will add enough ions to neutralize the system. These ions are added on top of those specified
with —np/-nn or —conc.

Known Issues

* If you specify a salt concentration existing ions are not taken into account. In effect you therefore specify
the amount of salt to be added.

3.11. Command-line reference 194

GROMACS Documentation, Release 2026-rc

3.11.38 gmx genrestr
Synopsis

-f [<.gro/.g9%96/...>]]1 [-n [<.ndx>]] [=-o [<.itp>]]
—-0of [<.ndx>]] [-fc <vector>] [—-freeze <real>]
—[noldisre] [-disre_dist <real>] [-disre_frac <real>]
—disre_up2 <real>] [—cutoff <real>] [—-[no]constr]

gmx genrestr

— — — —

Description

gmx genrestr produces an #include file for a topology containing a list of atom numbers and three force
constants for the x-, y-, and z-direction based on the contents of the —£ file. A single isotropic force constant may
be given on the command line instead of three components.

WARNING: Position restraints are interactions within molecules, therefore they must be included within the cor-
rect [moleculetype] block in the topology. The atom indices within the [position_restraints
] block must be within the range of the atom indices for that molecule type. Since the atom numbers in every
moleculetype in the topology start at 1 and the numbers in the input file for gmx genrestr number consecu-
tively from 1, gmx genrestr will only produce a useful file for the first molecule. You may wish to edit the
resulting index file to remove the lines for later atoms, or construct a suitable index group to provide as input to
gmx genrestr.

The —of option produces an index file that can be used for freezing atoms. In this case, the input file must be a
.pdb (page 499) file.

With the —disre option, half a matrix of distance restraints is generated instead of position restraints. With this
matrix, that one typically would apply to Calpha atoms in a protein, one can maintain the overall conformation of
a protein without tieing it to a specific position (as with position restraints).

Options

Options to specify input files:

-f [<.gro/.g96/...>] (conf.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.itp>] (posre.itp)
Include file for topology

—of [<.ndx>] (freeze.ndx) (Optional)
Index file

Other options:

—fc <vector> (1000 1000 1000)
Force constants (kJ/mol nm”2)

-freeze <real> (0)
If the —o £ option or this one is given an index file will be written containing atom numbers of all atoms that
have a B-factor less than the level given here

—[no]ldisre (no)
Generate a distance restraint matrix for all the atoms in index

—-disre_dist <real> (0.1)
Distance range around the actual distance for generating distance restraints

3.11. Command-line reference 195

GROMACS Documentation, Release 2026-rc

—disre_frac <real> (0)
Fraction of distance to be used as interval rather than a fixed distance. If the fraction of the distance that you
specify here is less than the distance given in the previous option, that one is used instead.

—disre_up2 <real> (1)
Distance between upper bound for distance restraints, and the distance at which the force becomes constant
(see manual)

—cutoff <real> (-1)
Only generate distance restraints for atoms pairs within cutoff (nm)

—[no]constr (no)
Generate a constraint matrix rather than distance restraints. Constraints of type 2 will be generated that do
generate exclusions.

3.11.39 gmx grompp

Synopsis
gmx grompp [—f [<.mdp>]] [-e¢ [<.gro/.g96/...>]]1 [-r [<.gro/.g96/...>]]
[-rb [<.gro/.g96/...>]]1 [-n [<.ndx>]] [-p [<.top>]]
[-t [<.trr/.cpt/...>]] [-e [<.edr>]] [=ami [<.inp>]]
[-ref [<.trr/.cpt/...>]] [-po [<.mdp>]] [-pp [<.top>]]
[—o [<.tpr>]] [-imd [<.gro>]] [-[no]lv] [-time <real>]
[-[no]rmvsbds] [-maxwarn <int>] [—-[no]zero] [-[no]renum]
Description

gmx grompp (the gromacs preprocessor) reads a molecular topology file, checks the validity of the file, expands
the topology from a molecular description to an atomic description. The topology file contains information about
molecule types and the number of molecules, the preprocessor copies each molecule as needed. There is no
limitation on the number of molecule types. Bonds and bond-angles can be converted into constraints, separately
for hydrogens and heavy atoms. Then a coordinate file is read and velocities can be generated from a Maxwellian
distribution if requested. gmx grompp also reads parameters for gmx mdrun (page 221) (eg. number of MD
steps, time step, cut-off). Eventually a binary file is produced that can serve as the sole input file for the MD
program.

gmx grompp uses the atom names from the topology file. The atom names in the coordinate file (option —c) are
only read to generate warnings when they do not match the atom names in the topology. Note that the atom names
are irrelevant for the simulation as only the atom types are used for generating interaction parameters.

gmx grompp uses a built-in preprocessor to resolve includes, macros, etc. The preprocessor supports the fol-
lowing keywords:

#ifdef VARIABLE
#ifndef VARIABLE
#else

#endif

#define VARIABLE
#undef VARIABLE
#include "filename"
#include <filename>

The functioning of these statements in your topology may be modulated by using the following two flags in your
.mdp (page 497) file:

define = -DVARIABLE1l -DVARIABLE2
include = -I/home/john/doe

3.11. Command-line reference 196

GROMACS Documentation, Release 2026-rc

For further information a C-programming textbook may help you out. Specifying the —pp flag will get the pre-
processed topology file written out so that you can verify its contents.

When using position restraints, a file with restraint coordinates must be supplied with —r (can be the same file as
supplied for —c). For free energy calculations, separate reference coordinates for the B topology can be supplied
with —rb, otherwise they will be equal to those of the A topology.

Starting coordinates can be read from trajectory with —t. The last frame with coordinates and velocities will be
read, unless the —t ime option is used. Only if this information is absent will the coordinates in the —c file be
used. Note that these velocities will not be used when gen_vel = yes inyour.mdp (page 497) file. An energy
file can be supplied with —e to read Nose-Hoover and/or Parrinello-Rahman coupling variables.

gmx grompp can be used to restart simulations (preserving continuity) by supplying just a checkpoint file with
—t. However, for simply changing the number of run steps to extend a run, using gmx convert-tpr (page 151) is
more convenient than gmx grompp. You then supply the old checkpoint file directly to gmx mdrun (page 221)
with —cpi. If you wish to change the ensemble or things like output frequency, then supplying the checkpoint
file to gmx grompp with —t along with a new .mdp (page 497) file with —£ is the recommended procedure.
Actually preserving the ensemble (if possible) still requires passing the checkpoint file to gmx mdrun (page 221)
-cpi.

By default, all bonded interactions which have constant energy due to virtual site constructions will be removed.
If this constant energy is not zero, this will result in a shift in the total energy. All bonded interactions can be kept
by turning off —rmvsbds. Additionally, all constraints for distances which will be constant anyway because of
virtual site constructions will be removed. If any constraints remain which involve virtual sites, a fatal error will
result.

To verify your run input file, please take note of all warnings on the screen, and correct where necessary. Do also
look at the contents of the mdout . mdp file; this contains comment lines, as well as the input that gmx grompp
has read. If in doubt, you can start gmx grompp with the —debug option which will give you more information
in a file called grompp . 1og (along with real debug info). You can see the contents of the run input file with the
gmx dump (page 174) program. gmx check (page 139) can be used to compare the contents of two run input files.

The —maxwarn option can be used to override warnings printed by gmx grompp that otherwise halt output. In
some cases, warnings are harmless, but usually they are not. The user is advised to carefully interpret the output
messages before attempting to bypass them with this option.

Options

Options to specify input files:

—-£f [<.mdp>] (grompp.mdp)
grompp input file with MD parameters

—-c [<.gro/.g96/...>] (conf.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

-r [<.gro/.g96/...>] (restraint.gro) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

—-rb [<.gro/.g96/...>] (restraint.gro) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

-n [<.ndx>] (index.ndx) (Optional)
Index file

-p [<.top>] (topol.top)
Topology file

-t [<.trr/.cpt/...>] (traj.trr) (Optional)
Full precision trajectory: frr (page 503) cpt (page 494) g (page 501) hSmd

—e [<.edr>] (ener.edr) (Optional)
Energy file

3.11. Command-line reference 197

GROMACS Documentation, Release 2026-rc

—gmi [<.inp>] (topol-qmmm.inp) (Optional)
Input file for QM program

Options to specify input/output files:

—ref [<.trr/.cpt/...>] (rotref.trr) (Optional)
Full precision trajectory: frr (page 503) cpt (page 494) tng (page 501) hSmd

Options to specify output files:

—-po [<.mdp>] (mdout.mdp)
grompp input file with MD parameters

-pp [<.top>] (processed.top) (Optional)
Topology file

-o [<.tpr>] (topol.tpr)
Portable xdr run input file

—imd [<.gro>] (imdgroup.gro) (Optional)
Coordinate file in Gromos-87 format

Other options:

—[no]lv (no)
Be loud and noisy

—time <real> (-1)
Take frame at or first after this time.

—[no] rmvsbds (yes)
Remove constant bonded interactions with virtual sites

-maxwarn <int> (0)

Number of allowed warnings during input processing. Not for normal use and may generate unstable sys-

tems

—[no] zero (no)

Set parameters for bonded interactions without defaults to zero instead of generating an error

—[no] renum (yes)
Renumber atomtypes and minimize number of atomtypes

3.11.40 gmx gyrate

Synopsis

gmx gyrate [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]
[—tu <enum>] [—-fgroup <selection>] [—-xvg <enum>]
[-[no]lrmpbec] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-sel <selection>] [-mode <enum>]

3.11. Command-line reference

GROMACS Documentation, Release 2026-rc

Description

gmx gyrate computes the radius of gyration of a molecule and the radii of gyration about the x-, y- and z-axes,
as a function of time. The atoms are explicitly mass weighted.

The axis components corresponds to the mass-weighted root-mean-square of the radii components orthogonal to
each axis, for example:

Rg(x) = sqrt((sum_i w_i (R_i(y)"2 + R_i(2)"2))/(sum_i w_1i)).
where w_i is the weight value in the given situation (mass, charge, unit)

Note that this is a new implementation of the gyrate utility added in GROMACS 2024. If you need the old one,
use gmx gyrate-legacy.

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xzc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) tng (page 501) h5md

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (gyrate-taf.xvg)
Filename for gyrate plot output

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

3.11. Command-line reference 199

GROMACS Documentation, Release 2026-rc

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-sel <selection>
Select group to compute gyrate radius

-mode <enum> (Mass)
Atom weighting mode: mass, charge, geometry

3.11.41 gmx gyrate-legacy

Synopsis
gmx gyrate-legacy [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xvg>]] [—acf [<.xvg>]] [-b <time>]
[—e <time>] [-dt <time>] [—[nolw] [—-xvg <enum>]
[-nmol <int>] [-[nolq] [-[nolp] [-[no]lmoi] [-nz <int>]
[-acflen <int>] [-[no]lnormalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [—-endfit <real>]
Description

gmx gyrate-legacy computes the radius of gyration of a molecule and the radii of gyration about the x-, y-
and z-axes, as a function of time. The atoms are explicitly mass weighted.

The axis components corresponds to the mass-weighted root-mean-square of the radii components orthogonal to
each axis, for example:

Rg(x) = sqrt((sum_i m_i (R_i(y)"2 + R_i(z)"2))/(sum_i m_i)).

With the —-nmo1 option the radius of gyration will be calculated for multiple molecules by splitting the analysis
group in equally sized parts.

With the option —nz 2D radii of gyration in the x-y plane of slices along the z-axis are calculated.

Options

Options to specify input files:

—-£ [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (gyrate.xvg)
xvgr/xmgr file

—acf [<.xvg>] (moi-acf.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

3.11. Command-line reference 200

GROMACS Documentation, Release 2026-rc

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—nmol <int> (1)
The number of molecules to analyze

—[no]lq(no)
Use absolute value of the charge of an atom as weighting factor instead of mass

—[no]p (no)
Calculate the radii of gyration about the principal axes.

- [no]lmoi (no)
Calculate the moments of inertia (defined by the principal axes).

-nz <int> (0)
Calculate the 2D radii of gyration of this number of slices along the z-axis

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]lnormalize (yes)
Normalize ACF

=P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, expJ, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.42 gmx h2order

Synopsis

gmx h2order [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-nm [<.ndx>]]
[-s [<.tpr>]] [-o [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-[no]lw] [—-xvg <enum>] [-d <enum>]
[=s81l <int>]

3.11. Command-line reference 201

GROMACS Documentation, Release 2026-rc

Description

gmx h2order computes the orientation of water molecules with respect to the normal of the box. The program
determines the average cosine of the angle between the dipole moment of water and an axis of the box. The box
is divided in slices and the average orientation per slice is printed. Each water molecule is assigned to a slice, per
time frame, based on the position of the oxygen. When —nm is used, the angle between the water dipole and the
axis from the center of mass to the oxygen is calculated instead of the angle between the dipole and a box axis.

Options

Options to specify input files:
—-£f [<.xte/.trr/. .. >] (traj.xtc)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng

(page 501) h5md

—n [<.ndx>] (index.ndx)
Index file

—nm [<.ndx>] (index.ndx) (Optional)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (order.xvg)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-d <enum> (Z)
Take the normal on the membrane in direction X, YorZ.: Z, Y, X

-sl <int> (0)

Calculate order parameter as function of boxlength, dividing the box in this number of slices.

3.11. Command-line reference

202

GROMACS Documentation, Release 2026-rc

Known Issues

* The program assigns whole water molecules to a slice, based on the first atom of three in the index file
group. It assumes an order O,H,H. Name is not important, but the order is. If this demand is not met,
assigning molecules to slices is different.

3.11.43 gmx hbond
Synopsis

gmx hbond [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-0 [<.ndx>]] [-num [<.xvg>]] [-dist [<.xvg>]]

[-ang [<.xvg>]] [-dan [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [—-fgroup <selection>]

[-xvg <enum>] [—[no]lrmpbc] [—[no]lpbc] [-sf <file>]
[-selrpos <enum>] [—-seltype <enum>] [-r <selection>]

[-t <selection>] [—[no]lm] [-[no]pf] [—-cutoff <real>]

[-hbr <real>] [-hba <real>] [-de <string>] [—ae <string>]

Description

gmx hbond allows using geometric definition of hydrogen bonds to define them throughout the structure.

—r specifies reference selection, relative to which the search for hydrogen bonds in target selection will develop.
Note that all atoms in reference and target selections should be either absolutely identical or non-overlapping at
all. Accepts dynamic selection.

-t specifies target selection, relative to which the search for hydrogen bonds in reference selection will develop.
Note that all atoms in reference and target selections should be either absolutely identical or non-overlapping at
all. Accepts dynamic selection.

—m forces to merge together information in output index file about hydrogen bonds if they differ only in hydrogen
indices. This also means that information about hydrogen atoms in the hydrogen bonds would not be written in
output index file at all.

—-pf forces to write hydrogen bonds for each frame separately instead of writing hydrogen bonds for the whole
system. Each information about hydrogen bonds in new frame will be stored in its own section of the output index
file.

—cutoff isareal value that defines distance from donor to acceptor (and vice versa) that used in neighbor search.
Minimum (and also recommended) value is 0.35.

—hbr Sets the cutoff that is used when calculating hydrogen bond distances. Recommended value: 0.35.
—~hba Sets the cutoff that is used when calculating hydrogen bond angles. Recommended value: 30.

—de Specifies the atomic elements that will be selected from the topology to check if a given element is a potential
hydrogen bond donor.

—ae Specifies the atomic elements that will be selected from the topology to check if a given element is a potential
hydrogen bond acceptor.

—num allows you to get a plot of the number of hydrogen bonds as a function of time at the output.

—-dist allows you to get a plot of the distance distribution of all hydrogen bonds at the output.

—ang allows you to get a plot of the angular distribution of all hydrogen bonds at the output.

—dan allows you to get a plot of the number of analyzed donors and acceptors for each frame at the output.

Note that this is a new implementation of the hbond utility added in GROMACS 2024. If you need the old one,
use gmx hbond-legacy.

3.11. Command-line reference 203

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:
-f [<.xte/.trr/...>] (traj.xtc) (Optional)

Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) g (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.ndx>] (hbond.ndx)
Index file that contains selected groups’, acceptors’, donors’ and hydrogens’ indices and hydrogen bond
pairs between or within selected groups.

—num [<.xvg>] (hbnum.xvg) (Optional)
Number of hydrogen bonds as a function of time.

—dist [<.xvg>] (hbdist.xvg) (Optional)
Distance distribution of all hydrogen bonds.

—ang [<.xvg>] (hbang.xvg) (Optional)
Angle distribution of all hydrogen bonds.

—dan [<.xvg>] (hbdan.xvg) (Optional)
Number of donors and acceptors analyzed for each frame.

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

3.11. Command-line reference 204

GROMACS Documentation, Release 2026-rc

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-r <selection>
Reference selection, relative to which the search for hydrogen bonds in target selection will develop.

-t <selection>
Target selection, relative to which the search for hydrogen bonds in reference selection will develop.

—[no]lm (no)
Merge together information about hydrogen bonds if they differ only in hydrogen indices.

—[no]p£ (no)
Write hydrogen bonds for each frame separately instead of writing hydrogen bonds for the whole system.

—cutoff <real> (0.35)
Distance from donor to acceptor (and vice versa) that used in neighbor search (nm). Must be > 0.

=hbr <real> (0.35)
Hydrogen bond cutoff distance, between donor and acceptor (nm). The value must not exceed the neighbor
search cutoff and must be > 0.

—hba <real> (30)
A-D-H hydrogen bond cutoff angle (degrees). Must be > 0.

—de <string> (N O)
Donor elements. Default elements: N, O.

—ae <string> (N O)
Acceptor elements. Default elements: N, O.

3.11.44 gmx hbond-legacy

Synopsis

gmx hbond-legacy [-f [<.xtc/.trr/...>]] [=s [<.tpr>]] [-n [<.ndx>]]
[-num [<.xvg>]] [-g [<.log>]] [-ac [<.xvg>]]
[-dist [<.xvg>]] [-ang [<.xvg>]] [-hx [<.xvg>]]
[-hbn [<.ndx>]] [-hbm [<.xpm>]] [-don [<.xvg>]]
[-dan [<.xvg>]] [-life [<.xvg>]] [—-nhbdist [<.xvg>]]
[-b <time>] [—-e <time>] [-dt <time>] [-tu <enum>]
[-xvg <enum>] [—-a <real>] [-r <real>] [-[no]dal]
[-r2 <real>] [-abin <real>] [-rbin <real>] [-[nolnitacc]
[-[no]lcontact] [-shell <real>] [—-fitstart <real>]
[-fitend <real>] [-temp <real>] [—dump <int>]
[-max_hb <real>] [—-[no]merge] [-nthreads <int>]
[-acflen <int>] [-[no]lnormalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [—-endfit <real>]

3.11. Command-line reference 205

GROMACS Documentation, Release 2026-rc

Description

gmx hbond-legacy computes and analyzes hydrogen bonds. Hydrogen bonds are determined based on cutoffs
for the angle Hydrogen - Donor - Acceptor (zero is extended) and the distance Donor - Acceptor (or Hydrogen -
Acceptor using —noda). OH and NH groups are regarded as donors, O is an acceptor always, N is an acceptor by
default, but this can be switched using —nitacc. Dummy hydrogen atoms are assumed to be connected to the
first preceding non-hydrogen atom.

You need to specify two groups for analysis, which must be either identical or non-overlapping. All hydrogen
bonds between the two groups are analyzed.

If you set —shell, you will be asked for an additional index group which should contain exactly one atom. In
this case, only hydrogen bonds between atoms within the shell distance from the one atom are considered.

With option -ac, rate constants for hydrogen bonding can be derived with the model of Luzar and Chandler (Nature
379:55, 1996; J. Chem. Phys. 113:23, 2000). If contact kinetics are analyzed by using the -contact option, then
n(t) can be defined as either all pairs that are not within contact distance r at time t (corresponding to leaving the
-r2 option at the default value 0) or all pairs that are within distance r2 (corresponding to setting a second cut-off
value with option -r2). See mentioned literature for more details and definitions.

QOutput:
e —num: number of hydrogen bonds as a function of time.
* —ac: average over all autocorrelations of the existence functions (either O or 1) of all hydrogen bonds.
e —dist: distance distribution of all hydrogen bonds.
* —ang: angle distribution of all hydrogen bonds.

e —hx: the number of n-n+i hydrogen bonds as a function of time where n and n+i stand for residue numbers
and i ranges from O to 6. This includes the n-n+3, n-n+4 and n-n+5 hydrogen bonds associated with helices
in proteins.

* —hbn: all selected groups, donors, hydrogens and acceptors for selected groups, all hydrogen bonded atoms
from all groups and all solvent atoms involved in insertion. Output is limited unless ~-nomerge is set.

e —hbm: existence matrix for all hydrogen bonds over all frames, this also contains information on solvent
insertion into hydrogen bonds. Ordering is identical to that in ~hbn index file.

* —dan: write out the number of donors and acceptors analyzed for each timeframe. This is especially useful
when using —shell.

e —nhbdist: compute the number of HBonds per hydrogen in order to compare results to Raman Spec-
troscopy.

Note: options —ac, —11ife, ~hbn and —hbm require an amount of memory proportional to the total numbers of
donors times the total number of acceptors in the selected group(s).

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) h5md

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—num [<.xvg>] (hbnum.xvg)
xvgr/xmgr file

3.11. Command-line reference 206

GROMACS Documentation, Release 2026-rc

—-g [<.log>] (hbond.log) (Optional)
Log file

—ac [<.xvg>] (hbac.xvg) (Optional)
xvgr/xmgr file

—dist [<.xvg>] (hbdist.xvg) (Optional)
xvgr/xmgr file

—ang [<.xvg>] (hbang.xvg) (Optional)
xvgr/xmgr file

-hx [<.xvg>] (hbhelix.xvg) (Optional)
xvgr/xmgr file

—=hbn [<.ndx>] (hbond.ndx) (Optional)
Index file

—hbm [<.xpm>] (hbmap.xpm) (Optional)
X PixMap compatible matrix file

—don [<.xvg>] (donor.xvg) (Optional)
xvgr/xmgr file

—dan [<.xvg>] (danum.xvg) (Optional)
xvgr/xmgr file

-1life [<.xvg>] (hblife.xvg) (Optional)
xvgr/xmgr file

-nhbdist [<.xvg>] (nhbdist.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—a <real> (30)
Cutoff angle (degrees, Hydrogen - Donor - Acceptor)

—r <real> (0.35)
Cutoff radius (nm, X - Acceptor, see next option)

—[no]da (yes)

Use distance Donor-Acceptor (if TRUE) or Hydrogen-Acceptor (FALSE)

-r2 <real> (0)

Second cutoff radius. Mainly useful with —~contact and —ac

—abin <real> (1)
Binwidth angle distribution (degrees)

—rbin <real> (0.005)
Binwidth distance distribution (nm)

—[nolnitacc (yes)
Regard nitrogen atoms as acceptors

3.11. Command-line reference

207

GROMACS Documentation, Release 2026-rc

—[no] contact (no)
Do not look for hydrogen bonds, but merely for contacts within the cut-off distance

—-shell <real> (-1)
when > 0, only calculate hydrogen bonds within # nm shell around one particle

—-fitstart <real> (1)
Time (ps) from which to start fitting the correlation functions in order to obtain the forward and backward
rate constants for HB breaking and formation. With —gemfit we suggest ~-fitstart O

-fitend <real> (60)
Time (ps) to which to stop fitting the correlation functions in order to obtain the forward and backward rate
constants for HB breaking and formation (only with —gemfit)

—temp <real> (298.15)
Temperature (K) for computing the Gibbs energy corresponding to HB breaking and reforming

—dump <int> (0)
Dump the first N hydrogen bond ACFs in a single .xvg (page 506) file for debugging

-max_hb <real> (0)
Theoretical maximum number of hydrogen bonds used for normalizing HB autocorrelation function. Can
be useful in case the program estimates it wrongly

- [no]merge (yes)
H-bonds between the same donor and acceptor, but with different hydrogen are treated as a single H-bond.
Mainly important for the ACF. Not compatible with options that depend on knowing a specific hydrogen:
—noad, —ang.

-nthreads <int> (0)
Number of threads used for the parallel loop over autocorrelations. nThreads <= 0 means maximum number
of threads. Requires linking with OpenMP. The number of threads is limited by the number of cores (before
OpenMP v.3) or environment variable OMP_THREAD_LIMIT (OpenMP v.3)

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]lnormalize (yes)
Normalize ACF

=P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—fit£fn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.45 gmx helix

Synopsis

gmx helix [=-s [<.tpr>]] [-n [<.ndx>]] [-f [<.xtc/.trr/...>]]
[-ez [<.gro/.g96/...>]] [-b <time>] [-e <time>]
[-dt <time>] [—-[no]lw] [-r0 <int>] [-[nolq] [-[no]F]
[-[no]db] [—-[nol]ev] [—ahxstart <int>] [—ahxend <int>]

3.11. Command-line reference 208

GROMACS Documentation, Release 2026-rc

Description

gmx helix computes all kinds of helix properties. First, the peptide is checked to find the longest helical part,
as determined by hydrogen bonds and phi/psi angles. That bit is fitted to an ideal helix around the z-axis and
centered around the origin. Then the following properties are computed:

¢ Helix radius (file radius.xvg). This is merely the RMS deviation in two dimensions for all Calpha
atoms. it is calculated as sqrt((sum_i (x"2(i)+y”2(i)))/N) where N is the number of backbone atoms. For an
ideal helix the radius is 0.23 nm.

» Twist (file twist .xvg). The average helical angle per residue is calculated. For an alpha-helix it is 100
degrees, for 3-10 helices it will be smaller, and for 5-helices it will be larger.

* Rise per residue (file rise.xvg). The helical rise per residue is plotted as the difference in z-coordinate
between Calpha atoms. For an ideal helix, this is 0.15 nm.

¢ Total helix length (file Len—ahx . xvg). The total length of the helix in nm. This is simply the average rise
(see above) times the number of helical residues (see below).

 Helix dipole, backbone only (file dip—ahx.xvg).

* RMS deviation from ideal helix, calculated for the Calpha atoms only (file rms-ahx . xvg).
* Average Calpha - Calpha dihedral angle (file phi-ahx.xvg).

* Average phi and psi angles (file phipsi . xvg).

* Ellipticity at 222 nm according to Hirst and Brooks.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—n [<.ndx>] (index.ndx)
Index file

—-£f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

Options to specify output files:

—-cz [<.gro/.g96/...>] (zconf.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-r0 <int> (1)
The first residue number in the sequence

- [no]qgq(no)
Check at every step which part of the sequence is helical

3.11. Command-line reference 209

GROMACS Documentation, Release 2026-rc

- [no]F (yes)
Toggle fit to a perfect helix

-[no]ldb (no)
Print debug info

—[no]ev (no)
Write a new ‘trajectory’ file for ED

—ahxstart <int> (0)
First residue in helix

—ahxend <int> (0)
Last residue in helix

3.11.46 gmx helixorient
Synopsis

gmx helixorient [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-oaxis [<.dat>]] [—ocenter [<.dat>]] [—-orise [<.xvg>]]
[-oradius [<.xvg>]] [—otwist [<.xvg>]]
[-obending [<.xvg>]] [—-otilt [<.xvg>]] [—-orot [<.xvg>]]
[-b <time>] [-e <time>] [—-dt <time>] [—-xvg <enum>]
[-[no]lsidechain] [-[no]incremental]

Description
gmx helixorient calculates the coordinates and direction of the average axis inside an alpha helix, and the
direction/vectors of both the Calpha and (optionally) a sidechain atom relative to the axis.

As input, you need to specify an index group with Calpha atoms corresponding to an alpha-helix of continuous
residues. Sidechain directions require a second index group of the same size, containing the heavy atom in each
residue that should represent the sidechain.

Note that this program does not do any fitting of structures.
We need four Calpha coordinates to define the local direction of the helix axis.

The tilt/rotation is calculated from Euler rotations, where we define the helix axis as the local x-axis, the
residues/Calpha vector as y, and the z-axis from their cross product. We use the Euler Y-Z-X rotation, meaning we
first tilt the helix axis (1) around and (2) orthogonal to the residues vector, and finally apply the (3) rotation around
it. For debugging or other purposes, we also write out the actual Euler rotation angles as theta [1-3] .xvg

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) h5md

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—oaxis [<.dat>] (helixaxis.dat)
Generic data file

3.11. Command-line reference 210

GROMACS Documentation, Release 2026-rc

—ocenter [<.dat>] (center.dat)
Generic data file

—-orise [<.xvg>] (rise.xvg)
xvgr/xmgr file

—oradius [<.xvg>] (radius.xvg)
xvgr/xmgr file

—-otwist [<.xvg>] (twist.xvg)
xvgr/xmgr file

—-obending [<.xvg>] (bending.xvg)
xvgr/xmgr file

—-otilt [<.xvg>] (tilt.xvg)
xvgr/xmgr file

—orot [<.xvg>] (rotation.xvg)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no]sidechain (no)
Calculate sidechain directions relative to helix axis too.

—[no]incremental (no)
Calculate incremental rather than total rotation/tilt.

3.11.47 gmx help

3.11.48 gmx hydorder

Synopsis

gmx hydorder [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-s [<.tpr>]]
[0 [<.xpm> [...]]] [-or [<.out> [...]]]
[-Spect [<.out> [...]]] [-b <time>] [-e <time>]
[-dt <time>] [—-[no]lw] [-d <enum>] [-bw <real>]
[-sgangl <real>] [-sgang2 <real>] [-tblock <int>]
[

-nlevel <int>]

3.11. Command-line reference

211

GROMACS Documentation, Release 2026-rc

Description

gmx hydorder computes the tetrahedrality order parameters around a given atom. Both angle an distance order
parameters are calculated. See P.-L. Chau and A.J. Hardwick, Mol. Phys., 93, (1998), 511-518. for more details.

gmx hydorder calculates the order parameter in a 3d-mesh in the box, and with 2 phases in the box gives
the user the option to define a 2D interface in time separating the faces by specifying parameters —~sgangl and

—-sgang? (it is important to select these judiciously).

Options

Options to specify input files:
-f [<.xte/.trr/...>] (traj.xtc)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng

(page 501) hSmd

—n [<.ndx>] (index.ndx)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

—o [<.xpm> [...]] (intf.xpm)
X PixMap compatible matrix file

—or [<.out> [...]] (raw.out) (Optional)
Generic output file

—-Spect [<.out> [...]] (intfspect.out) (Optional)
Generic output file

Other options:

—b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-d <enum> (z)
Direction of the normal on the membrane: z, X, y

-bw <real> (1)
Binwidth of box mesh

—-sgangl <real> (1)
tetrahedral angle parameter in Phase 1 (bulk)

—-sgang2 <real> (1)
tetrahedral angle parameter in Phase 2 (bulk)

—-tblock <int> (1)
Number of frames in one time-block average

-nlevel <int> (100)
Number of Height levels in 2D - XPixMaps

3.11. Command-line reference

212

GROMACS Documentation, Release 2026-rc

3.11.49 gmx insert-molecules
Synopsis

gmx insert-molecules [-f [<.gro/.g96/...>]] [=-eci [<.gro/.g96/...>]]
[-ip [<.dat>]] [-n [<.ndx>]] [-o [<.gro/.g96/...>]]
[-replace <selection>] [—-sf <file>] [—-selrpos <enum>]
[-box <vector>] [-nmol <int>] [—-conc <real>]
[-try <int>] [-seed <int>] [-radius <real>]
[-scale <real>] [-dr <vector>] [-rot <enum>]

Description

gmx insert-molecules inserts —-nmol copies of the system specified in the —ci input file. The number
of copies can also be determined by the concentration —conc in mol/liter and box volume. The insertions take
place either into vacant space in the solute conformation given with —£f, or into an empty box given by —box.
Specifying both —f and —~box behaves like — £, but places a new box around the solute before insertions. Any
velocities present are discarded.

It is possible to also insert into a solvated configuration and replace solvent atoms with the inserted atoms. To do
this, use —replace to specify a selection that identifies the atoms that can be replaced. The tool assumes that
all molecules in this selection consist of single residues: each residue from this selection that overlaps with the
inserted molecules will be removed instead of preventing insertion.

By default, the insertion positions are random (with initial seed specified by —seed). The program iterates until
-nmol molecules have been inserted in the box. Molecules are not inserted where the distance between any
existing atom and any atom of the inserted molecule is less than the sum based on the van der Waals radii of both
atoms. A database (vdwradii.dat) of van der Waals radii is read by the program, and the resulting radii scaled
by —scale. If radii are not found in the database, those atoms are assigned the (pre-scaled) distance ~radius.
Note that the usefulness of those radii depends on the atom names, and thus varies widely with force field.

A total of —-nmol * —try insertion attempts are made before giving up. Increase —try if you have several
small holes to fill. Option —rot specifies whether the insertion molecules are randomly oriented before insertion
attempts.

Alternatively, the molecules can be inserted only at positions defined in positions.dat (-ip). That file should
have 3 columns (X,y,z), that give the displacements compared to the input molecule position (-ci). Hence,
if that file should contain the absolute positions, the molecule must be centered on (0,0,0) before using gmx
insert-molecules (e.g. from gmx editconf (page 176) —center). Comments in that file starting with # are
ignored. Option —dr defines the maximally allowed displacements during insertial trials. —try and -rot work
as in the default mode (see above).

Options

Options to specify input files:

—f [<.gro/.g96/...>] (protein.gro) (Optional)
Existing configuration to insert into: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp tpr
(page 503)

—-ci [<.gro/.g96/...>] (insert.gro)
Configuration to insert: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp tpr (page 503)

-ip [<.dat>] (positions.dat) (Optional)
Predefined insertion trial positions

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

3.11. Command-line reference 213

GROMACS Documentation, Release 2026-rc

-o [<.gro/.g96/...>] (out.gro)
Output configuration after insertion: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

Other options:

-replace <selection>
Atoms that can be removed if overlapping

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-box <vector> (0 0 0)
Box size (in nm)

—nmol <int> (0)
Number of extra molecules to insert

—conc <real> (0)
Concentration (in mol/liter) of extra molecules to insert. This overrides —nmo1

-try <int> (10)
Try inserting —nmol times —t ry times

-seed <int> (0)
Random generator seed (0 means generate)

—radius <real> (0.105)
Default van der Waals distance

—-scale <real> (0.57)
Scale factor to multiply Van der Waals radii from the database in share/gromacs/top/vdwradii.dat. The
default value of 0.57 yields density close to 1000 g/l for proteins in water.

—dr <vector> (0 0 0)
Allowed displacement in x/y/z from positions in —ip file

—-rot <enum> (xyz)
Rotate inserted molecules randomly: xyz, z, none

3.11.50 gmx lie

Synopsis

gnx lie [-f [<.edr>]] [-o [<.xvg>]] [-b <time>] [—-e <time>] [—-dt <time>]
[-[nolw] [-xvg <enum>] [-Elj <real>] [-Eqq <real>]
[-Clj <real>] [-Cqq <real>] [-ligand <string>]

Description

gmx lie computes a free energy estimate based on an energy analysis from nonbonded energies. One needs an
energy file with the following components: Coul-(A-B) LJ-SR (A-B) etc.

To utilize g_1ie correctly, two simulations are required: one with the molecule of interest bound to its receptor
and one with the molecule in water. Both need to utilize energygrps such that Coul-SR(A-B), LJ-SR(A-B),
etc. terms are written to the .edr (page 494) file. Values from the molecule-in-water simulation are necessary for
supplying suitable values for -Elj and -Eqq.

3.11. Command-line reference 214

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

—f [<.edr>] (ener.edr)
Energy file

Options to specify output files:

-o [<.xvg>] (lie.xvg)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[nolw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-E17j <real> (0)
Lennard-Jones interaction between ligand and solvent

-Eqq <real> (0)
Coulomb interaction between ligand and solvent

—C17j <real> (0.181)
Factor in the LIE equation for Lennard-Jones component of energy

—-Cqq <real> (0.5)
Factor in the LIE equation for Coulomb component of energy

—-ligand <string> (none)
Name of the ligand in the energy file

3.11.51 gmx make_edi

Synopsis

gmx make_edi [-f [<.trr/.cpt/...>]] [—-eig [<.xvg>]]
[-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-tar [<.gro/.g96/...>]] [-orxri [<.gro/.g9%6/...>]]
[-o [<.edi>]] [=xvg <enum>] [-mon <string>]
[-1linfix <string>] [-linacc <string>] [-radfix <string>]
[-radacc <string>] [—-radcon <string>] [—-flood <string>]
[-outfrq <int>] [—-slope <real>] [—-linstep <string>]
[—accdir <string>] [-radstep <real>] [—-maxedsteps <int>]
[-egsteps <int>] [—-deltaF0 <real>] [-deltaF <real>]
[-tau <real>] [-Eflnull <real>] [-T <real>]
[-alpha <real>] [—[no]restrain] [-[no]lhessian]
[-[no]lharmonic] [—constF <string>]

3.11. Command-line reference

215

GROMACS Documentation, Release 2026-rc

Description

gmx make_edi generates an essential dynamics (ED) sampling input file to be used with mdrun based on
eigenvectors of a covariance matrix (gmx covar (page 153)) or from a normal modes analysis (gmx nmeig
(page 230)). ED sampling can be used to manipulate the position along collective coordinates (eigenvectors)
of (biological) macromolecules during a simulation. Particularly, it may be used to enhance the sampling effi-
ciency of MD simulations by stimulating the system to explore new regions along these collective coordinates. A
number of different algorithms are implemented to drive the system along the eigenvectors (-1infix, -1inacc,
-radfix, —radacc, —radcon), to keep the position along a certain (set of) coordinate(s) fixed (-1infix),
or to only monitor the projections of the positions onto these coordinates (—mon).

References:

A. Amadei, A.B.M. Linssen, B.L. de Groot, D.M.F. van Aalten and H.J.C. Berendsen; An efficient method for
sampling the essential subspace of proteins., J. Biomol. Struct. Dyn. 13:615-626 (1996)

B.L. de Groot, A. Amadei, D.M.F. van Aalten and H.J.C. Berendsen; Towards an exhaustive sampling of the
configurational spaces of the two forms of the peptide hormone guanylin, J. Biomol. Struct. Dyn. 13 : 741-751
(1996)

B.L. de Groot, A.Amadei, R.M. Scheek, N.A.J. van Nuland and H.J.C. Berendsen; An extended sampling of the
configurational space of HPr from E. coli Proteins: Struct. Funct. Gen. 26: 314-322 (1996)

You will be prompted for one or more index groups that correspond to the eigenvectors, reference structure, target
positions, etc.

—mon: monitor projections of the coordinates onto selected eigenvectors.
—-linfix: perform fixed-step linear expansion along selected eigenvectors.

—-linacc: perform acceptance linear expansion along selected eigenvectors. (steps in the desired directions will
be accepted, others will be rejected).

-radfix: perform fixed-step radius expansion along selected eigenvectors.

—-radacc: perform acceptance radius expansion along selected eigenvectors. (steps in the desired direction will
be accepted, others will be rejected). Note: by default the starting MD structure will be taken as origin of the first
expansion cycle for radius expansion. If —or1i is specified, you will be able to read in a structure file that defines
an external origin.

—-radcon: perform acceptance radius contraction along selected eigenvectors towards a target structure specified
with —-tar.

NOTE: each eigenvector can be selected only once.
—out frq: frequency (in steps) of writing out projections etc. to .xvg (page 506) file

—-slope: minimal slope in acceptance radius expansion. A new expansion cycle will be started if the spontaneous
increase of the radius (in nm/step) is less than the value specified.

-maxedsteps: maximum number of steps per cycle in radius expansion before a new cycle is started.

Note on the parallel implementation: since ED sampling is a ‘global’ thing (collective coordinates etc.), at least
on the ‘protein’ side, ED sampling is not very parallel-friendly from an implementation point of view. Because
parallel ED requires some extra communication, expect the performance to be lower as in a free MD simulation,
especially on a large number of ranks and/or when the ED group contains a lot of atoms.

Please also note that if your ED group contains more than a single protein, then the .zpr (page 503) file must
contain the correct PBC representation of the ED group. Take a look on the initial RMSD from the reference
structure, which is printed out at the start of the simulation; if this is much higher than expected, one of the ED
molecules might be shifted by a box vector.

All ED-related output of mdrun (specify with —eo) is written to a .xvg (page 506) file as a function of time in
intervals of OUTFRQ steps.

Note that you can impose multiple ED constraints and flooding potentials in a single simulation (on different
molecules) if several .edi (page 494) files were concatenated first. The constraints are applied in the order they

3.11. Command-line reference 216

GROMACS Documentation, Release 2026-rc

appear in the .edi (page 494) file. Depending on what was specified in the .edi (page 494) input file, the output file
contains for each ED dataset

» the RMSD of the fitted molecule to the reference structure (for atoms involved in fitting prior to calculating
the ED constraints)

* projections of the positions onto selected eigenvectors
FLOODING:

with —~f1lood, you can specify which eigenvectors are used to compute a flooding potential, which will lead to
extra forces expelling the structure out of the region described by the covariance matrix. If you switch -restrain
the potential is inverted and the structure is kept in that region.

The origin is normally the average structure stored in the eigvec.trr file. It can be changed with —ori to
an arbitrary position in configuration space. With —tau, —deltaFO0, and ~-Ef1null you control the flooding
behaviour. Efl is the flooding strength, it is updated according to the rule of adaptive flooding. Tau is the time
constant of adaptive flooding, high tau means slow adaption (i.e. growth). DeltaFO0 is the flooding strength you
want to reach after tau ps of simulation. To use constant Efl set —tau to zero.

—alpha is a fudge parameter to control the width of the flooding potential. A value of 2 has been found to give
good results for most standard cases in flooding of proteins. alpha basically accounts for incomplete sampling,
if you sampled further the width of the ensemble would increase, this is mimicked by alpha > 1. For restraining,
alpha < 1 can give you smaller width in the restraining potential.

RESTART and FLOODING: If you want to restart a crashed flooding simulation please find the values deltaF and
Efl in the output file and manually put them into the .edi (page 494) file under DELTA_FO and EFL_NULL.

Options

Options to specify input files:

-£f [<.trr/.cpt/...>] (eigenvec.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

—-eig [<.xvg>] (eigenval.xvg) (Optional)
xvgr/xmgr file

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

—-tar [<.gro/.g96/...>] (target.gro) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp tpr (page 503)

—ori [<.gro/.g96/...>] (origin.gro) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp tpr (page 503)

Options to specify output files:

-o [<.edi>] (sam.edi)
ED sampling input

Other options:

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—mon <string>
Indices of eigenvectors for projections of x (e.g. 1,2-5,9) or 1-100:10 means 1 11 21 31 ... 91

-linfix <string>
Indices of eigenvectors for fixed increment linear sampling

3.11. Command-line reference 217

GROMACS Documentation, Release 2026-rc

-linacc <string>
Indices of eigenvectors for acceptance linear sampling

—radfix <string>
Indices of eigenvectors for fixed increment radius expansion

—-radacc <string>
Indices of eigenvectors for acceptance radius expansion

—radcon <string>
Indices of eigenvectors for acceptance radius contraction

—-flood <string>
Indices of eigenvectors for flooding

—-out frqg <int> (100)
Frequency (in steps) of writing output in .xvg (page 500) file

—-slope <real> (0)
Minimal slope in acceptance radius expansion

-linstep <string>
Stepsizes (nm/step) for fixed increment linear sampling (put in quotes! “1.0 2.3 5.1 -3.1”)

—accdir <string>
Directions for acceptance linear sampling - only sign counts! (put in quotes! “-1 +1 -1.17)

—radstep <real> (0)
Stepsize (nm/step) for fixed increment radius expansion

-maxedsteps <int> (0)
Maximum number of steps per cycle

—-egsteps <int> (0)
Number of steps to run without any perturbations

—deltaFO0 <real> (150)
Target destabilization energy for flooding

—deltaF <real> (0)
Start deltaF with this parameter - default 0, nonzero values only needed for restart

—tau <real> (0.1)
Coupling constant for adaption of flooding strength according to deltaF0, O = infinity i.e. constant flooding
strength

-Eflnull <real> (0)
The starting value of the flooding strength. The flooding strength is updated according to the adaptive
flooding scheme. For a constant flooding strength use —tau 0.

—-T <real> (300)
T is temperature, the value is needed if you want to do flooding

—alpha <real> (1)
Scale width of gaussian flooding potential with alpha’2

—[no]restrain (no)
Use the flooding potential with inverted sign -> effects as quasiharmonic restraining potential

-[no]lhessian (no)
The eigenvectors and eigenvalues are from a Hessian matrix

—[nolharmonic (no)
The eigenvalues are interpreted as spring constant

—constF <string>
Constant force flooding: manually set the forces for the eigenvectors selected with -flood (put in quotes!
“1.0 2.3 5.1 -3.1”). No other flooding parameters are needed when specifying the forces directly.

3.11. Command-line reference 218

GROMACS Documentation, Release 2026-rc

3.11.52 gmx make_ndx

Synopsis

gmx make_ndx [-f [<.gro/.g96/...>]] [-n [<.ndx> [...]]] [-o [<.ndx>]]
[-natoms <int>] [-[no]ltwin]

Description

Index groups are necessary for almost every GROMACS program. All these programs can generate default index
groups. You ONLY have to use gmx make_ndx when you need SPECIAL index groups. There is a default
index group for the whole system, 9 default index groups for proteins, and a default index group is generated for
every other residue name.

When no index file is supplied, also gmx make_ndx will generate the default groups. With the index editor you
can select on atom, residue and chain names and numbers. When a run input file is supplied you can also select
on atom type. You can use boolean operations, you can split groups into chains, residues or atoms. You can delete
and rename groups. Type ‘h’ in the editor for more details.

The atom numbering in the editor and the index file starts at 1.

The —twin switch duplicates all index groups with an offset of —natoms, which is useful for Computational
Electrophysiology double-layer membrane setups.

See also gmx select (page 268) —on, which provides an alternative way for constructing index groups. It covers
nearly all of gmx make_ndx functionality, and in many cases much more.

Options

Options to specify input files:

—£f [<.gro/.g96/...>] (conf.gro) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

-n [<.ndx> [...]] (index.ndx) (Optional)
Index file

Options to specify output files:

-0 [<.ndx>] (index.ndx)
Index file

Other options:

—-natoms <int> (0)
set number of atoms (default: read from coordinate or index file)

—[no]ltwin (no)
Duplicate all index groups with an offset of -natoms

3.11.53 gmx mdmat

Synopsis

gmx mdmat [-f [<.xtc/.trr/...>]] [=s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-mean [<.xpm>]] [—frames [<.xpm>]] [-no [<.xvg>]]
[-b <time>] [-e <time>] [-dt <time>] [—-xvg <enum>]
[-t <real>] [-nlevels <int>]

3.11. Command-line reference 219

GROMACS Documentation, Release 2026-rc

Description

gmx mdmat makes distance matrices consisting of the smallest distance between residue pairs. With —frames,
these distance matrices can be stored in order to see differences in tertiary structure as a function of time. If you
choose your options unwisely, this may generate a large output file. By default, only an averaged matrix over
the whole trajectory is output. Also a count of the number of different atomic contacts between residues over the
whole trajectory can be made. The output can be processed with gmx xpm2ps (page 306) to make a PostScript
(tm) plot.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-mean [<.xpm>] (dm.xpm)
X PixMap compatible matrix file

—frames [<.xpm>] (dmf.xpm) (Optional)
X PixMap compatible matrix file

—-no [<.xvg>] (num.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-t <real> (1.5)
trunc distance

-nlevels <int> (40)
Discretize distance in this number of levels

3.11. Command-line reference 220

GROMACS Documentation, Release 2026-rc

3.11.54 gmx mdrun

Synopsis

gmx mdrun [-s [<.tpr>]] [-cpi [<.cpt>]] [-table [<.xvg>]]
[-tablep [<.xvg>]] [-tableb [<.xvg> [...]]]
[-rerun [<.xtc/.trr/...>]] [-ei [<.edi>]]
[-multidir [<dir> [.]]] [—awh [<.xvg>]]
[-plumed [<.dat>]] [—membed [<.dat>]] [-mp [<.top>]]
[-mn [<.ndx>]] [-o [<.trr/.cpt/...>]] [=-x [<.xtc/.tng>]]
[-cpo [<.cpt>]] [-e [<.gro/.g96/...>]] [-e [<.edr>]]
[-g [<.log>]] [-dhdl [<.xvg>]] [-field [<.xvg>]]
[-tpi [<.xvg>]] [-tpid [<.xvg>]] [—-eo [<.xvg>]]
[-px [<.xvg>]] [-pf [<.xvg>]] [-ro [<.xvg>]] [-ra [<.log>]]
[-rs [<.log>]] [-rt [<.log>]] [-mtx [<.mtx>]]
[-if [<.xvg>]] [-swap [<.xvg>]] [-deffnm <string>]
[-xvg <enum>] [-dd <vector>] [-ddorder <enum>]
[-npme <int>] [-nt <int>] [-ntmpi <int>] [—-ntomp <int>]
[-ntomp_pme <int>] [—pin <enum>] [—-pinoffset <int>]
[-pinstride <int>] [—-gpu_id <string>] [—gputasks <string>]
[-[no]lddcheck] [-rdd <real>] [-recon <real>] [-dlb <enum>]
[-dds <real>] [-nb <enum>] [—-nbfe <enum>] [-nstlist <int>]
[-[no]ltunepme] [-pme <enum>] [—-pmefft <enum>]
[-bonded <enum>] [—update <enum>] [—-[no]v] [—-pforce <real>]
[-[no]lreprod] [-cpt <real>] [—-[nolcpnum] [-[no]append]
[-nsteps <int>] [-maxh <real>] [-replex <int>] [—-nex <int>]
[

—-reseed <int>]

Description

gmx mdrun is the main computational chemistry engine within GROMACS. Obviously, it performs Molecular
Dynamics simulations, but it can also perform Stochastic Dynamics, Energy Minimization, test particle insertion
or (re)calculation of energies. Normal mode analysis is another option. In this case mdrun builds a Hessian
matrix from single conformation. For usual Normal Modes-like calculations, make sure that the structure provided
is properly energy-minimized. The generated matrix can be diagonalized by gmx nmeig (page 230).

The mdrun program reads the run input file (-s) and distributes the topology over ranks if needed. mdrun
produces at least four output files. A single log file (—g) is written. The trajectory file (-o), contains coordinates,
velocities and optionally forces. The structure file (—c) contains the coordinates and velocities of the last step.
The energy file (—e) contains energies, the temperature, pressure, etc, a lot of these things are also printed in the
log file. Optionally coordinates can be written to a compressed trajectory file (—x).

The option —~dhd1 is only used when free energy calculation is turned on.

Running mdrun efficiently in parallel is a complex topic, many aspects of which are covered in the online User
Guide. You should look there for practical advice on using many of the options available in mdrun.

ED (essential dynamics) sampling and/or additional flooding potentials are switched on by using the —ei flag
followed by an .edi (page 494) file. The .edi (page 494) file can be produced with the make_edi tool or by using
options in the essdyn menu of the WHAT IF program. mdrun produces a .xvg (page 506) output file that contains
projections of positions, velocities and forces onto selected eigenvectors.

When user-defined potential functions have been selected in the .mdp (page 497) file the —table option is used
to pass mdrun a formatted table with potential functions. The file is read from either the current directory or from
the GMXLIB directory. A number of pre-formatted tables are presented in the GMXLIB dir, for 6-8, 6-9, 6-10,
6-11, 6-12 Lennard-Jones potentials with normal Coulomb. When pair interactions are present, a separate table
for pair interaction functions is read using the ~tablep option.

When tabulated bonded functions are present in the topology, interaction functions are read using the —tableb
option. For each different tabulated interaction type used, a table file name must be given. For the topology to

3.11. Command-line reference 221

GROMACS Documentation, Release 2026-rc

work, a file name given here must match a character sequence before the file extension. That sequence is: an
underscore, then a ‘b’ for bonds, an ‘a’ for angles or a ‘d’ for dihedrals, and finally the matching table number
index used in the topology. Note that, these options are deprecated, and in future will be available via grompp.

The options —px and —pf are used for writing pull COM coordinates and forces when pulling is selected in the
.mdp (page 497) file.

The option —-membed does what used to be g_membed, i.e. embed a protein into a membrane. This module
requires a number of settings that are provided in a data file that is the argument of this option. For more details
in membrane embedding, see the documentation in the user guide. The options —mn and —mp are used to provide
the index and topology files used for the embedding.

The option —pforce is useful when you suspect a simulation crashes due to too large forces. With this option
coordinates and forces of atoms with a force larger than a certain value will be printed to stderr. It will also
terminate the run when non-finite forces are present.

Checkpoints containing the complete state of the system are written at regular intervals (option —cpt) to the file
—-cpo, unless option —cpt is set to -1. The previous checkpoint is backed up to state_prev.cpt to make
sure that a recent state of the system is always available, even when the simulation is terminated while writing
a checkpoint. With —cpnum all checkpoint files are kept and appended with the step number. A simulation can
be continued by reading the full state from file with option —cpi. This option is intelligent in the way that if no
checkpoint file is found, GROMACS just assumes a normal run and starts from the first step of the .7pr (page 503)
file. By default the output will be appending to the existing output files. The checkpoint file contains checksums
of all output files, such that you will never loose data when some output files are modified, corrupt or removed.
There are three scenarios with —cpi:

+ no files with matching names are present: new output files are written
= all files are present with names and checksums matching those stored in the checkpoint file: files are appended
x otherwise no files are modified and a fatal error is generated

With —noappend new output files are opened and the simulation part number is added to all output file names.
Note that in all cases the checkpoint file itself is not renamed and will be overwritten, unless its name does not
match the —cpo option.

With checkpointing the output is appended to previously written output files, unless ~-noappend is used or none
of the previous output files are present (except for the checkpoint file). The integrity of the files to be appended is
verified using checksums which are stored in the checkpoint file. This ensures that output can not be mixed up or
corrupted due to file appending. When only some of the previous output files are present, a fatal error is generated
and no old output files are modified and no new output files are opened. The result with appending will be the
same as from a single run. The contents will be binary identical, unless you use a different number of ranks or
dynamic load balancing or the FFT library uses optimizations through timing.

With option —-maxh a simulation is terminated and a checkpoint file is written at the first neighbor search step
where the run time exceeds —maxh*0.99 hours. This option is particularly useful in combination with setting
nsteps to -1 either in the mdp or using the similarly named command line option (although the latter is depre-
cated). This results in an infinite run, terminated only when the time limit set by —maxh is reached (if any) or
upon receiving a signal.

Interactive molecular dynamics (IMD) can be activated by using at least one of the three IMD switches: The
—imdterm switch allows one to terminate the simulation from the molecular viewer (e.g. VMD). With
—imdwait, mdrun pauses whenever no IMD client is connected. Pulling from the IMD remote can be turned
on by —imdpull. The port mdrun listens to can be altered by —imdport.The file pointed to by —1i f contains
atom indices and forces if IMD pulling is used.

3.11. Command-line reference 222

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—cpi [<.cpt>] (state.cpt) (Optional)
Checkpoint file

—table [<.xvg>] (table.xvg) (Optional)
xvgr/xmgr file

—tablep [<.xvg>] (tablep.xvg) (Optional)
xvgr/xmgr file

—tableb [<.xvg> [...]] (table.xvg) (Optional)
xvgr/xmgr file

—rerun [<.xtc/.trr/...>] (rerun.xtc) (Optional)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng

(page 501) h5md

—ei [<.edi>] (sam.edi) (Optional)
ED sampling input

-multidir [<dir> [...]] (rundir) (Optional)
Run directory

—awh [<.xvg>] (awhinit.xvg) (Optional)
xvgr/xmgr file

—-plumed [<.dat>] (plumed.dat) (Optional)
Generic data file

-membed [<.dat>] (membed.dat) (Optional)
Generic data file

-mp [<.top>] (membed.top) (Optional)
Topology file

—-mn [<.ndx>] (membed.ndx) (Optional)
Index file

Options to specify output files:

-o [<.trr/.cpt/...>] (traj.trr)
Full precision trajectory: frr (page 503) cpt (page 494) tng (page 501) hSmd

-x [<.xte/.tng>] (traj_comp.xtc) (Optional)
Compressed trajectory (tng format or portable xdr format)

—cpo [<.cpt>] (state.cpt) (Optional)
Checkpoint file

—c [<.gro/.g96/...>] (confout.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

—e [<.edr>] (ener.edr)
Energy file

—-g [<.]log>] (md.log)
Log file

—dhdl [<.xvg>] (dhdl.xvg) (Optional)
xvgr/xmgr file

-field [<.xvg>] (field.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference

223

GROMACS Documentation, Release 2026-rc

-tpi [<.xvg>] (tpi.xvg) (Optional)
xvgr/xmgr file

—-tpid [<.xvg>] (tpidist.xvg) (Optional)
xvgr/xmgr file

—eo [<.xvg>] (edsam.xvg) (Optional)
xvgr/xmgr file

-px [<.xvg>] (pullx.xvg) (Optional)
xvgr/xmgr file

-pf£ [<.xvg>] (pullf.xvg) (Optional)
xvgr/xmgr file

—ro [<.xvg>] (rotation.xvg) (Optional)
xvgr/xmgr file

—-ra [<.log>] (rotangles.log) (Optional)
Log file

-rs [<.log>] (rotslabs.log) (Optional)
Log file

-rt [<.log>] (rottorque.log) (Optional)
Log file

-mtx [<.mtx>] (nm.mtx) (Optional)
Hessian matrix

-if [<.xvg>] (imdforces.xvg) (Optional)
xvgr/xmgr file

—-swap [<.xvg>] (swapions.xvg) (Optional)
xvgr/xmgr file

Other options:

—def fnm <string>
Set the default filename for all file options

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—dd <vector> (0 0 0)

Domain decomposition grid, O is optimize
—ddorder <enum> (interleave)

DD rank order: interleave, pp_pme, cartesian

—-npme <int> (-1)
Number of separate ranks to be used for PME, -1 is guess

—nt <int> (0)
Total number of threads to start (0 is guess)

-ntmpi <int> (0)
Number of thread-MPI ranks to start (0 is guess)

—ntomp <int> (0)
Number of OpenMP threads per MPI rank to start (0 is guess)

—-ntomp_pme <int> (0)
Number of OpenMP threads per MPI rank to start (0 is -ntomp)

-pin <enum> (auto)
Whether mdrun should try to set thread affinities: auto, on, inherit, off

-pinoffset <int> (0)
The lowest logical core number to which mdrun should pin the first thread

3.11. Command-line reference 224

GROMACS Documentation, Release 2026-rc

-pinstride <int> (0)
Pinning distance in logical cores for threads, use 0 to minimize the number of threads per physical core

—gpu_id <string>
List of unique GPU device IDs available to use

—-gputasks <string>
List of GPU device IDs, mapping each task on a node to a device. Tasks include PP and PME (if present).

—[no]ddcheck (yes)
Check for all bonded interactions with DD

—rdd <real> (0)
The maximum distance for bonded interactions with DD (nm), O is determine from initial coordinates

—rcon <real> (0)
Maximum distance for P-LINCS (nm), O is estimate

—-dlb <enum> (auto)
Dynamic load balancing (with DD): auto, no, yes

—dds <real> (0.8)
Fraction in (0,1) by whose reciprocal the initial DD cell size will be increased in order to provide a margin
in which dynamic load balancing can act while preserving the minimum cell size.

—nb <enum> (auto)
Calculate non-bonded interactions on: auto, cpu, gpu

-nbfe <enum> (auto)
Perform non-bonded FE calculations on: auto, cpu, gpu

-nstlist <int> (0)
Set nstlist when using a Verlet buffer tolerance (0 is guess)

—[no]tunepme (yes)
Optimize PME load between PP/PME ranks or GPU/CPU

—pme <enum> (auto)
Perform PME calculations on: auto, cpu, gpu

-pmefft <enum> (auto)
Perform PME FFT calculations on: auto, cpu, gpu

-bonded <enum> (auto)
Perform bonded calculations on: auto, cpu, gpu

—update <enum> (auto)
Perform update and constraints on: auto, cpu, gpu

—[no]lv (no)
Be loud and noisy

-pforce <real> (-1)
Print all forces larger than this (kJ/mol nm)

—[no] reprod (no)
Avoid optimizations that affect binary reproducibility; this can significantly reduce performance

—-cpt <real> (15)
Checkpoint interval (minutes)

- [no] cpnum (no)
Keep and number checkpoint files

—[no] append (yes)
Append to previous output files when continuing from checkpoint instead of adding the simulation part
number to all file names

3.11. Command-line reference 225

GROMACS Documentation, Release 2026-rc

-nsteps <int> (-2)
Run this number of steps (-1 means infinite, -2 means use mdp option, smaller is invalid)

-maxh <real> (-1)
Terminate after 0.99 times this time (hours)

-replex <int> (0)
Attempt replica exchange periodically with this period (steps)

—nex <int> (0)
Number of random exchanges to carry out each exchange interval (N3 is one suggestion). -nex zero or not
specified gives neighbor replica exchange.

-reseed <int> (-1)
Seed for replica exchange, -1 is generate a seed

3.11.55 gmx mindist
Synopsis

gmx mindist [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-od [<.xvg>]] [-on [<.xvg>]] [-o [<.out>]]

[-ox [<.xtc/.trr/...>]] [=-or [<.xvg>]] [-b <time>]

[-e <time>] [-dt <time>] [-tu <enum>] [—-[no]lw]

[-xvg <enum>] [-[no]lmatrix] [—-[no]lmax] [-d <real>]
[-[no]lgroup] [-[no]lpi] [—-[nolsplit] [—-ng <int>]

[-[no]lpbc] [-[no]respertime] [-[no]printresname]

Description

gmx mindist computes the distance between one group and a number of other groups. Both the minimum
distance (between any pair of atoms from the respective groups) and the number of contacts within a given distance
are written to two separate output files. With the ~group option a contact of an atom in another group with
multiple atoms in the first group is counted as one contact instead of as multiple contacts. With —or, minimum
distances to each residue in the first group are determined and plotted as a function of residue number.

With option —pi the minimum distance of a group to its periodic image is plotted. This is useful for checking if
a protein has seen its periodic image during a simulation. Only one shift in each direction is considered, giving a
total of 26 shifts. Note that periodicity information is required from the file supplied with with —s, either as a .tpr
file or a .pdb file with CRYST1 fields. It also plots the maximum distance within the group and the lengths of the
three box vectors.

Also gmx distance (page 168) and gmx pairdist (page 239) calculate distances.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

3.11. Command-line reference 226

GROMACS Documentation, Release 2026-rc

—od [<.xvg>] (mindist.xvg)
xvgr/xmgr file

—on [<.xvg>] (numcont.xvg) (Optional)
xvgr/xmgr file

-o [<.out>] (atm-pair.out) (Optional)
Generic output file

—ox [<.xte/.trr/...>] (mindist.xtc) (Optional)

Trajectory: xtc (page 505) trr (page 503) gro (page 495) g96 (page 495) pdb (page 499) g (page 501)

h5md

—or [<.xvg>] (mindistres.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—[no]w (no)

View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no]lmatrix (no)
Calculate half a matrix of group-group distances

—[no]max (no)
Calculate maximum distance instead of minimum

—d <real> (0.6)
Distance for contacts

—[no]group (no)
Count contacts with multiple atoms in the first group as one

—[no]pi (no)
Calculate minimum distance with periodic images

—[no]split (no)
Split graph where time is zero

—-ng <int> (1)
Number of secondary groups to compute distance to a central group

- [no]lpbc (yes)
Take periodic boundary conditions into account

—[no] respertime (no)
When writing per-residue distances, write distance for each time point

- [no]printresname (no)
Write residue names

3.11. Command-line reference

227

GROMACS Documentation, Release 2026-rc

3.11.56 gmx mk_angndx

Synopsis

gmx mk_angndx [=s [<.tpr>]] [-n [<.ndx>]] [-type <enum>] [-[no]lhyd]
[-hg <real>]

Description

gmx mk_angndx makes an index file for calculation of angle distributions etc. It uses a run input file (.tpx) for
the definitions of the angles, dihedrals etc.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

—-n [<.ndx>] (angle.ndx)
Index file

Other options:

—-type <enum> (angle)
Type of angle: angle, dihedral, improper, ryckaert-bellemans

—[no]hyd (yes)
Include angles with atoms with mass < 1.5

=hqg <real> (-1)
Ignore angles with atoms with mass < 1.5 and magnitude of their charge less than this value

3.11.57 gmx msd

Synopsis

gmx msd [-f [<.xtc/.trr/...>]]1 [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o0 [<.xvg>]] [-mol [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>] [-xvg <enum>]
[-[no]lrmpbc] [-[no]lpbc] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-sel <selection>] [-type <enum>]
[-lateral <enum>] [-trestart <real>] [-maxtau <real>]
[-beginfit <real>] [—endfit <real>]

Description

gmx msd computes the mean square displacement (MSD) of atoms from a set of initial positions. This provides
an easy way to compute the diffusion constant using the Einstein relation. The time between the reference points
for the MSD calculation is set with —trestart. The diffusion constant is calculated by least squares fitting a
straight line (D*t + ¢) through the MSD(t) from ~beginfit to —endfit (note that t is time from the reference
positions, not simulation time). An error estimate given, which is the difference of the diffusion coefficients
obtained from fits over the two halves of the fit interval.

There are three, mutually exclusive, options to determine different types of mean square displacement: -type,
—lateral and -ten. Option —ten writes the full MSD tensor for each group, the order in the output is: trace
XX VY ZZ YX ZX Zy.

3.11. Command-line reference 228

GROMACS Documentation, Release 2026-rc

If -mol is set, gmx msd plots the MSD for individual molecules (including making molecules whole across
periodic boundaries): for each individual molecule a diffusion constant is computed for its center of mass. The
chosen index group will be split into molecules. With -mol, only one index group can be selected.

The diffusion coefficient is determined by linear regression of the MSD. When ~-beginfit is -1, fitting starts
at 10% and when —endfit is -1, fitting goes to 90%. Using this option one also gets an accurate error estimate
based on the statistics between individual molecules. Note that this diffusion coefficient and error estimate are
only accurate when the MSD is completely linear between -beginfit and —endfit.

By default, gmx msd compares all trajectory frames against every frame stored at ~trestart intervals, so
the number of frames stored scales linearly with the number of frames processed. This can lead to long analysis
times and out-of-memory errors for long/large trajectories, and often the data at higher time deltas lacks sufficient
sampling, often manifesting as a wobbly line on the MSD plot after a straighter region at lower time deltas.
The —maxtau option can be used to cap the maximum time delta for frame comparison, which may improve
performance and can be used to avoid out-of-memory issues.

Options

Options to specify input files:

—f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) ing (page 501) h5Smd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: #pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (msdout.xvg) (Optional)
MSD output

-mol [<.xvg>] (diff_mol.xvg) (Optional)
Report diffusion coefficients for each molecule in selection

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[no]lpbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

3.11. Command-line reference 229

GROMACS Documentation, Release 2026-rc

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-sel <selection>
Selections to compute MSDs for from the reference

-type <enum> (unused)
! X, Y, z, unused

-lateral <enum> (unused)
: X, Y, z, unused

—-trestart <real> (10)
Time between restarting points in trajectory (ps)

-maxtau <real> (1.79769¢e+308)
Maximum time delta between frames to calculate MSDs for (ps)

-beginfit <real> (-1)
Time point at which to start fitting.

—endfit <real> (-1)
End time for fitting.

3.11.58 gmx nmeig

Synopsis

gmx nmeig [—-f [<.mtx>]] [-s [<.tpr>]] [—-of [<.xvg>]] [-0l [<.xvg>]]
[mos [<.xvg>]] [-qc [<.xvg>]] [-v [<.trr/.cpt/...>]]
[-xvg <enum>] [—[no]lm] [-first <int>] [-last <int>]
[-maxspec <int>] [-T <real>] [-P <real>] [-sigma <int>]
[-scale <real>] [-linear_ toler <real>] [-[no]constr]
[

—width <real>]

Description

gmx nmeig calculates the eigenvectors/values of a (Hessian) matrix, which can be calculated with gmx mdrun
(page 221). The eigenvectors are written to a trajectory file (—v). The structure is written first with t=0. The
eigenvectors are written as frames with the eigenvector number and eigenvalue written as step number and times-
tamp, respectively. The eigenvectors can be analyzed with gmx anaeig (page 127). An ensemble of structures
can be generated from the eigenvectors with gmx nmens (page 232). When mass weighting is used, the generated
eigenvectors will be scaled back to plain Cartesian coordinates before generating the output. In this case, they will
no longer be exactly orthogonal in the standard Cartesian norm, but in the mass-weighted norm they would be.

This program can be optionally used to compute quantum corrections to heat capacity and enthalpy by providing an
extra file argument —gcorr. See the GROMACS manual, Chapter 1, for details. The result includes subtracting
a harmonic degree of freedom at the given temperature. The total correction is printed on the terminal screen. The
recommended way of getting the corrections out is:

gmx nmeig -s topol.tpr -f nm.mtx —-first 7 -last 10000 -T 300 —-gc [-constr]

The —constr option should be used when bond constraints were used during the simulation for all the covalent
bonds. If this is not the case, you need to analyze the quant_corr. xvg file yourself.

3.11. Command-line reference 230

GROMACS Documentation, Release 2026-rc

To make things more flexible, the program can also take virtual sites into account when computing quantum
corrections. When selecting —constr and —gc, the —begin and —end options will be set automatically as
well.

Based on a harmonic analysis of the normal mode frequencies, thermochemical properties SO (Standard Entropy),
Cv (Heat capacity at constant volume), Zero-point energy and the internal energy are computed, much in the same
manner as popular quantum chemistry programs.

Options

Options to specify input files:
—f [<.mtx>] (hessian.mtx)

Hessian matrix

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

—-of [<.xvg>] (eigenfreq.xvg)
xvgr/xmgr file

-0l [<.xvg>] (eigenval.xvg)
xvgr/xmgr file

—-os [<.xvg>] (spectrum.xvg) (Optional)
xvgr/xmgr file

—gc [<.xvg>] (quant_corr.xvg) (Optional)
xvgr/xmgr file

-v [<.trr/.cpt/...>] (eigenvec.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

Other options:

—-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no]m (yes)
Divide elements of Hessian by product of sqrt(mass) of involved atoms prior to diagonalization. This should
be used for ‘Normal Modes’ analysis

—-first <int> (1)
First eigenvector to write away

-last <int> (50)
Last eigenvector to write away. -1 is use all dimensions.

-maxspec <int> (4000)
Highest frequency (1/cm) to consider in the spectrum

-T <real> (298.15)
Temperature for computing entropy, quantum heat capacity and enthalpy when using normal mode calcula-
tions to correct classical simulations

-P <real> (1)
Pressure (bar) when computing entropy

—-sigma <int> (1)
Number of symmetric copies used when computing entropy. E.g. for water the number is 2, for NH3 it is 3
and for methane it is 12.

—-scale <real> (1)
Factor to scale frequencies before computing thermochemistry values

3.11. Command-line reference 231

GROMACS Documentation, Release 2026-rc

—-linear_toler <real> (1e-05)
Tolerance for determining whether a compound is linear as determined from the ration of the moments
inertion Ix/ly and Ix/Iz.

—[no]constr (no)
If constraints were used in the simulation but not in the normal mode analysis you will need to set this for
computing the quantum corrections.

-width <real> (1)
Width (sigma) of the gaussian peaks (1/cm) when generating a spectrum

3.11.59 gmx nmens
Synopsis

-v [<.trr/.cpt/...>]] [-e [<.xvg>]] [-s [<.tpr/.gro/...>]]

gmx nmens [
[-n [<.ndx>]] [-o [<.xtc/.trr/...>]] [—xvg <enum>]
[
[

-temp <real>] [-seed <int>] [-num <int>] [—-first <int>]
—-last <int>]

Description

gmx nmens generates an ensemble around an average structure in a subspace that is defined by a set of normal
modes (eigenvectors). The eigenvectors are assumed to be mass-weighted. The position along each eigenvector is
randomly taken from a Gaussian distribution with variance kT/eigenvalue.

By default the starting eigenvector is set to 7, since the first six normal modes are the translational and rotational
degrees of freedom.

Options

Options to specify input files:

-v [<.trr/.cpt/...>] (eigenvec.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

—-e [<.xvg>] (eigenval.xvg)
xvgr/xmgr file

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—o [<.xtc/.trr/...>] (ensemble.xtc)
Trajectory: xtc (page 505) trr (page 503) gro (page 495) g96 (page 495) pdb (page 499) tng (page 501)
h5md

Other options:

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—temp <real> (300)
Temperature in Kelvin

—-seed <int> (0)
Random seed (0 means generate)

3.11. Command-line reference 232

GROMACS Documentation, Release 2026-rc

—num <int> (100)
Number of structures to generate

-first <int> (7)
First eigenvector to use (-1 is select)

-last <int> (-1)
Last eigenvector to use (-1 is till the last)

3.11.60 gmx nmr
Synopsis

gmx nmr [—-f [<.edr>]] [-£f2 [<.edr>]] [-s [<.tpr>]] [-viol [<.xvg>]]
[-pairs [<.xvg>]] [-ora [<.xvg>]] [—-ort [<.xvg>]]

[-oda [<.xvg>]] [=odr [<.xvg>]] [—-odt [<.xvg>]]

[-oten [<.xvg>]] [-b <time>] [—-e <time>] [—-[no]lw]

[-xvg <enum>] [—[no]ldp] [-skip <int>] [—-[no]laver]
[-[no]orinst] [-[no]ovec]

Description

gmx nmr extracts distance or orientation restraint data from an energy file. The user is prompted to interactively
select the desired terms.

When the —viol option is set, the time averaged violations are plotted and the running time-averaged and in-
stantaneous sum of violations are recalculated. Additionally running time-averaged and instantaneous distances
between selected pairs can be plotted with the ~-pairs option.

Options —ora, —ort, —oda, —odr and —odt are used for analyzing orientation restraint data. The first two
options plot the orientation, the last three the deviations of the orientations from the experimental values. The
options that end on an ‘a’ plot the average over time as a function of restraint. The options that end on a ‘t” prompt
the user for restraint label numbers and plot the data as a function of time. Option —odr plots the RMS deviation
as a function of restraint. When the run used time or ensemble averaged orientation restraints, option —orinst
can be used to analyse the instantaneous, not ensemble-averaged orientations and deviations instead of the time
and ensemble averages.

Option —oten plots the eigenvalues of the molecular order tensor for each orientation restraint experiment. With
option —ovec also the eigenvectors are plotted.

Options

Options to specify input files:

—f [<.edr>] (ener.edr)
Energy file

—-£2 [<.edr>] (ener.edr) (Optional)
Energy file

-s [<.tpr>] (topol.tpr) (Optional)
Portable xdr run input file

Options to specify output files:

-viol [<.xvg>] (violaver.xvg) (Optional)
xvgr/xmgr file

—-pairs [<.xvg>] (pairs.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 233

GROMACS Documentation, Release 2026-rc

—ora [<.xvg>] (orienta.xvg) (Optional)
xvgr/xmgr file

—ort [<.xvg>] (orientt.xvg) (Optional)
xvgr/xmgr file

—oda [<.xvg>] (orideva.xvg) (Optional)
xvgr/xmgr file

—odr [<.xvg>] (oridevr.xvg) (Optional)
xvgr/xmgr file

—odt [<.xvg>] (oridevt.xvg) (Optional)
xvgr/xmgr file

—oten [<.xvg>] (oriten.xvg) (Optional)
xvgr/xmgr file

Other options:
-b <time> (0)

Time of first frame to read from trajectory (default unit ps)

—e <time> (0)

Time of last frame to read from trajectory (default unit ps)

—[no]w (no)

View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—-xvg <enum> (xmgrace)

xvg plot formatting: xmgrace, xmgr, none

—[no]dp (no)
Print energies in high precision

-skip <int> (0)

Skip number of frames between data points

—[no]aver (no)

Also print the exact average and rmsd stored in the energy frames (only when 1 term is requested)

-[no]orinst (no)

Analyse instantaneous orientation data

—[no]ovec (no)

Also plot the eigenvectors with —oten

3.11.61 gmx nmtraj
Synopsis

gmx nmtraj

-nframes <int>]

-s [<.tpr/.gro/...>]]
-0 [<.xtc/.trr/...>]]
—-phases <string>]

[-v [<.trr/.cpt/...>]]
[—eignr <string>]
[-temp <real>] [—amplitude <real>]

3.11. Command-line reference

234

GROMACS Documentation, Release 2026-rc

Description

gmx nmtraj generates an virtual trajectory from an eigenvector, corresponding to a harmonic Cartesian os-
cillation around the average structure. The eigenvectors should normally be mass-weighted, but you can use
non-weighted eigenvectors to generate orthogonal motions. The output frames are written as a trajectory file cov-
ering an entire period, and the first frame is the average structure. If you write the trajectory in (or convert to) PDB
format you can view it directly in PyMol and also render a photorealistic movie. Motion amplitudes are calculated
from the eigenvalues and a preset temperature, assuming equipartition of the energy over all modes. To make
the motion clearly visible in PyMol you might want to amplify it by setting an unrealistically high temperature.
However, be aware that both the linear Cartesian displacements and mass weighting will lead to serious structure
deformation for high amplitudes - this is is simply a limitation of the Cartesian normal mode model. By default
the selected eigenvector is set to 7, since the first six normal modes are the translational and rotational degrees of
freedom.

Options

Options to specify input files:
-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-v [<.trr/.cpt/...>] (eigenvec.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

Options to specify output files:

—o [<.xte/.trr/. .. >] (nmtraj.xtc)
Trajectory: xtc (page 505) trr (page 503) gro (page 495) g96 (page 495) pdb (page 499) tng (page 501)
h5md

Other options:

—eignr <string> (7)
String of eigenvectors to use (first is 1)

—-phases <string> (0.0)
String of phases (default is 0.0)

—temp <real> (300)
Temperature (K)

—amplitude <real> (0.25)
Amplitude for modes with eigenvalue<=0

-nframes <int> (30)
Number of frames to generate

3.11.62 gmx nonbonded-benchmark
Synopsis

gmx nonbonded-benchmark [-o [<.csv>]] [—-size <int>] [-nt <int>]
[=simd <enum>] [—-coulomb <enum>]
[-interactmodifier <enum>] [—-[no]table]
[-combrule <enum>] [—[nolhalflj] [-[no]energy]
[-[no]lall] [-cutoff <real>] [-iter <int>]
[-warmup <int>] [—[no]lcycles] [-[no]time]

3.11. Command-line reference 235

GROMACS Documentation, Release 2026-rc

Description

gmx nonbonded-benchmark runs benchmarks for one or more so-called Nbnxm non-bonded pair kernels.
The non-bonded pair kernels are the most compute intensive part of MD simulations and usually comprise 60 to
90 percent of the runtime. For this reason they are highly optimized and several different setups are available to
compute the same physical interactions. In addition, there are different physical treatments of Coulomb interac-
tions and optimizations for atoms without Lennard-Jones interactions. There are also different physical treatments
of Lennard-Jones interactions, but only a plain cut-off is supported in this tool, as that is by far the most common
treatment. And finally, while force output is always necessary, energy output is only required at certain steps. In
total there are 36 relevant combinations of options. The combinations double to 72 when two different SIMD se-
tups are supported. These combinations can be run with a single invocation using the —al1 option. The behavior
of each kernel is affected by caching behavior, which is determined by the hardware used together with the system
size and the cut-off radius. The larger the number of atoms per thread, the more L1 cache is needed to avoid
L1 cache misses. The cut-off radius mainly affects the data reuse: a larger cut-off results in more data reuse and
makes the kernel less sensitive to cache misses.

OpenMP parallelization is used to utilize multiple hardware threads within a compute node. In these benchmarks
there is no interaction between threads, apart from starting and closing a single OpenMP parallel region per
iteration. Additionally, threads interact through sharing and evicting data from shared caches. The number of
threads to use is set with the —nt option. Thread affinity is important, especially with SMT and shared caches.
Affinities can be set through the OpenMP library using the GOMP_CPU_AFFINITY environment variable.

The benchmark tool times one or more kernels by running them repeatedly for a number of iterations set by the
—iter option. An initial kernel call is done to avoid additional initial cache misses. Times are recording in cycles
read from efficient, high accuracy counters in the CPU. Note that these often do not correspond to actual clock
cycles. For each kernel, the tool reports the total number of cycles, cycles per iteration, and (total and useful) pair
interactions per cycle. Because a cluster pair list is used instead of an atom pair list, interactions are also computed
for some atom pairs that are beyond the cut-off distance. These pairs are not useful (except for additional buffering,
but that is not of interest here), only a side effect of the cluster-pair setup. The SIMD 2xMM kernel has a higher
useful pair ratio then the 4xM kernel due to a smaller cluster size, but a lower total pair throughput. It is best to
run this, or for that matter any, benchmark with locked CPU clocks, as thermal throttling can significantly affect
performance. If that is not an option, the ~warmup option can be used to run initial, untimed iterations to warm
up the processor.

The most relevant regime is between 0.1 to 1 millisecond per iteration. Thus it is useful to run with system sizes
that cover both ends of this regime.

The -simd and —table options select different implementations to compute the same physics. The choice of
these options should ideally be optimized for the target hardware. Historically, we only found tabulated Ewald
correction to be useful on 2-wide SIMD or 4-wide SIMD without FMA support. As all modern architectures
are wider and support FMA, we do not use tables by default. The only exceptions are kernels without SIMD,
which only support tables. Options —coulomb, —combrule, —interactmodifier and ~~-halflj]
depend on the force field and composition of the simulated system. The optimization of computing Lennard-
Jones interactions for only half of the atoms in a cluster is useful for water, which does not use Lennard-Jones
on hydrogen atoms in most water models. In the MD engine, any clusters where at most half of the atoms have
LJ interactions will automatically use this kernel. And finally, the —energy option selects the computation of
energies, which are usually only needed infrequently.

Options

Options to specify output files:

-o [<.csv>] (nonbonded-benchmark.csv) (Optional)
Also output results in csv format

Other options:

—-size<int> (1)
The system size is 3000 atoms times this value

3.11. Command-line reference 236

GROMACS Documentation, Release 2026-rc

—-nt <int> (1)
The number of OpenMP threads to use

—simd <enum> (auto)
SIMD type, auto runs all supported SIMD setups or no SIMD when SIMD is not supported: auto, no, 4xm,
2xmm

—coulomb <enum> (ewald)
The functional form for the Coulomb interactions: ewald, reaction-field

—-interactmodifier <enum> (PotShift)
The Coulomb / VAW interaction modifier. Reported under the ‘intmod.” column: PotShift, PotSwitch,
ForceSwitch

-[no]ltable (no)
Use lookup table for Ewald correction instead of analytical

—combrule <enum> (geometric)
The LJ combination rule. Reported under the ‘comb.” column: geometric, 1b, none

—[no]lhalflj (no)
Use optimization for LJ on half of the atoms. Reported under the ‘L]’ column

—[no]energy (no)
Compute energies in addition to forces

-[nolall (no)
Run all 36 combinations of options for coulomb, halflj, combrule, interactmodifier

—cutoff <real> (1)
Pair-list and interaction cut-off distance

—-iter <int> (100)
The number of iterations for each kernel

—-warmup <int> (0)
The number of iterations for initial warmup

—[no]cycles (no)
Report cycles/pair instead of pairs/cycle

—[no]time (no)
Report micro-seconds instead of cycles

3.11.63 gmx order

Synopsis

gmx order [—-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-nr [<.ndx>]]
[-s [<.tpr>]] [-o [<.xvg>]] [-od [<.xvg>]] [—-ob [<.pdb>]]
[-os [<.xvg>]] [-Sg [<.xvg>]] [-Sk [<.xvg>]]
[-Sgsl [<.xvg>]] [-Sksl [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]lw] [—-xvg <enum>] [-d <enum>] [-sl <int>]
[-[no]lszonly] [-[no]permolecule] [—-[no]radial]
[

[no]caledist]

3.11. Command-line reference 237

GROMACS Documentation, Release 2026-rc

Description

gmx order computes the order parameter per atom for carbon tails. For atom i the vector i-1, i+1 is used
together with an axis. The index file should contain only the groups to be used for calculations, with each group
of equivalent carbons along the relevant acyl chain in its own group. There should not be any generic groups
(like System, Protein) in the index file to avoid confusing the program (this is not relevant to tetrahedral order
parameters however, which only work for water anyway).

gmx order can also give all diagonal elements of the order tensor and even calculate the deuterium order
parameter Scd (default). If the option —szonly is given, only one order tensor component (specified by the —d
option) is given and the order parameter per slice is calculated as well. If —szonly is not selected, all diagonal
elements and the deuterium order parameter is given.

The tetrahedrality order parameters can be determined around an atom. Both angle an distance order parameters
are calculated. See P.-L. Chau and A.J. Hardwick, Mol. Phys., 93, (1998), 511-518. for more details.

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

—-n [<.ndx>] (index.ndx)
Index file

—nr [<.ndx>] (index.ndx) (Optional)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (order.xvg)
xvgr/xmgr file

—-od [<.xvg>] (deuter.xvg)
xvgr/xmgr file

—-ob [<.pdb>] (eiwit.pdb) (Optional)
Protein data bank file

—-os [<.xvg>] (sliced.xvg)
xvgr/xmgr file

-Sg [<.xvg>] (sg-ang.xvg) (Optional)
xvgr/xmgr file

—-Sk [<.xvg>] (sk-dist.xvg) (Optional)
xvgr/xmgr file

—-Sgsl [<.xvg>] (sg-ang-slice.xvg) (Optional)
xvgr/xmgr file

—-Sksl [<.xvg>] (sk-dist-slice.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

3.11. Command-line reference 238

GROMACS Documentation, Release 2026-rc

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—d <enum> (z)
Direction of the normal on the membrane: z, X, y

-sl<int> (1)
Calculate order parameter as function of box length, dividing the box into this number of slices.

—[no]szonly (no)
Only give Sz element of order tensor. (axis can be specified with —d)

- [no]permolecule (no)
Compute per-molecule Scd order parameters

—[no]radial (no)
Compute a radial membrane normal

—-[no]caledist (no)
Compute distance from a reference

Known Issues

* This tool only works for saturated carbons and united atom force fields. For anything else, it is highly
recommended to use a different analysis method!

* The option —unsat claimed to do analysis for unsaturated carbons but this hasn’t worked ever since it was
added and has thus been removed.

3.11.64 gmx pairdist
Synopsis

-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
-0 [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]

—tu <enum>] [—-fgroup <selection>] [—-xvg <enum>]

[no]rmpbc] [—-[no]lpbc] [-sf <file>] [-selrpos <enum>]
seltype <enum>] [-cutoff <real>] [-type <enum>]
-refgrouping <enum>] [-selgrouping <enum>]

-ref <selection>] [-sel <selection>]

gmx pairdist

[
[
[
[
[
[
[

Description

gmx pairdist calculates pairwise distances between one reference selection (given with —ref) and one or
more other selections (given with —sel). It can calculate either the minimum distance (the default), or the maxi-
mum distance (with —type max). Distances to each selection provided with —sel are computed independently.

By default, the global minimum/maximum distance is computed. To compute more distances (e.g., minimum
distances to each residue in —ref), use ~-refgrouping and/or —selgrouping to specify how the positions
within each selection should be grouped.

Computed distances are written to the file specified with —o. If there are N groups in —~ref and M groups in
the first selection in —sel, then the output contains N*M columns for the first selection. The columns contain
distances like this: r1-s1, 12-s1, ..., rl1-s2, 12-s2, ..., where rn is the n’th group in —ref and sn is the n’th group
in the other selection. The distances for the second selection comes as separate columns after the first selection,

3.11. Command-line reference 239

GROMACS Documentation, Release 2026-rc

and so on. If some selections are dynamic, only the selected positions are used in the computation but the same
number of columns is always written out. If there are no positions contributing to some group pair, then the cutoff
value is written (see below).

—cutoff sets a cutoff for the computed distances. If the result would contain a distance over the cutoff, the
cutoff value is written to the output file instead. By default, no cutoff is used, but if you are not interested in values
beyond a cutoff, or if you know that the minimum distance is smaller than a cutoff, you should set this option to
allow the tool to use grid-based searching and be significantly faster.

If you want to compute distances between fixed pairs, gmx distance (page 168) may be a more suitable tool.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) ing (page 501) h5Smd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: #pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (dist.xvg)
Distances as function of time

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

3.11. Command-line reference 240

GROMACS Documentation, Release 2026-rc

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—cutoff <real> (0)
Maximum distance to consider

-type <enum> (min)
Type of distances to calculate: min, max

-refgrouping <enum> (all)
Grouping of -ref positions to compute the min/max over: all, res, mol, none

—-selgrouping <enum> (all)
Grouping of -sel positions to compute the min/max over: all, res, mol, none

—-ref <selection>
Reference positions to calculate distances from

-sel <selection>
Positions to calculate distances for

3.11.65 gmx pdb2gmx

Synopsis

gmx pdb2gmx [-f [<.gro/.g96/...>]]1 [-o [<.gro/.g96/...>]]1 [-p [<.top>]]
[-i [<.itp>]] [-n [<.ndx>]] [-q [<.gro/.g96/...>]]
[-chainsep <enum>] [-merge <enum>] [—-ff <string>]
[-water <enum>] [—-[no]linter] [-[no]lss] [—-[no]ter]
[-[no]llys] [-[nolarg] [—-[nolasp] [-[no]lglu] [-[no]lgln]
[-[no]lhis] [-angle <real>] [-dist <real>] [—-[no]una]
[-[no]lignh] [-[no]lmissing] [—-[no]v] [—-posrefc <real>]
[-vsite <enum>] [—-[no]lheavyh] [-[no]deuterate]
[-[no]lcmap] [-[no]renum] [-rtpres <enum>]

Description

gmx pdb2gmx reads a .pdb (page 499) (or .gro (page 495)) file, reads some database files, adds hydrogens to
the molecules and generates coordinates in GROMACS (GROMOS), or optionally .pdb (page 499), format and a
topology in GROMACS format. These files can subsequently be processed to generate a run input file.

gmx pdb2gmx will search for force fields by looking for a forcefield.itp file in subdirectories
<forcefield>. ff of the current working directory and of the GROMACS library directory as inferred from
the path of the binary or the GMXLIB environment variable. By default the forcefield selection is interactive, but
you can use the —f £ option to specify one of the short names in the list on the command line instead. In that case
gmx pdb2gmx just looks for the corresponding <forcefield>. ff directory.

After choosing a force field, all files will be read only from the corresponding force field directory. If you want
to modify or add a residue types, you can copy the force field directory from the GROMACS library direc-
tory to your current working directory. If you want to add new protein residue types, you will need to modify
residuetypes.dat in the library directory or copy the whole library directory to a local directory and set the
environment variable GMXLIB to the name of that directory. Check Chapter 5 of the manual for more information
about file formats.

Note that a .pdb (page 499) file is nothing more than a file format, and it need not necessarily contain a protein
structure. Every kind of molecule for which there is support in the database can be converted. If there is no support
in the database, you can add it yourself.

3.11. Command-line reference 241

GROMACS Documentation, Release 2026-rc

The program has limited intelligence, it reads a number of database files, that allow it to make special bonds
(Cys-Cys, Heme-His, etc.), if necessary this can be done manually. The program can prompt the user to select
which kind of LY'S, ASP, GLU, CYS or HIS residue is desired. For Lys the choice is between neutral (two protons
on NZ) or protonated (three protons, default), for Asp and Glu unprotonated (default) or protonated, for His the
proton can be either on ND1, on NE2 or on both. By default these selections are done automatically. For His, this
is based on an optimal hydrogen bonding conformation. Hydrogen bonds are defined based on a simple geometric
criterion, specified by the maximum hydrogen-donor-acceptor angle and donor-acceptor distance, which are set
by —angle and —dist respectively.

The protonation state of N- and C-termini can be chosen interactively with the —ter flag. Default termini are
ionized (NH3+ and COO-), respectively. Some force fields support zwitterionic forms for chains of one residue,
but for polypeptides these options should NOT be selected. The AMBER force fields have unique forms for
the terminal residues, and these are incompatible with the —ter mechanism. You need to prefix your N- or C-
terminal residue names with “N” or “C” respectively to use these forms, making sure you preserve the format of
the coordinate file. Alternatively, use named terminating residues (e.g. ACE, NME).

The separation of chains is not entirely trivial since the markup in user-generated PDB files frequently varies and
sometimes it is desirable to merge entries across a TER record, for instance if you want a disulfide bridge or
distance restraints between two protein chains or if you have a HEME group bound to a protein. In such cases
multiple chains should be contained in a single moleculetype definition. To handle this, gmx pdb2gmx
uses two separate options. First, —chainsep allows you to choose when a new chemical chain should start,
and termini added when applicable. This can be done based on the existence of TER records, when the chain id
changes, or combinations of either or both of these. You can also do the selection fully interactively. In addition,
there is a —merge option that controls how multiple chains are merged into one moleculetype, after adding all the
chemical termini (or not). This can be turned off (no merging), all non-water chains can be merged into a single
molecule, or the selection can be done interactively.

gmx pdb2gmx will also check the occupancy field of the .pdb (page 499) file. If any of the occupancies are
not one, indicating that the atom is not resolved well in the structure, a warning message is issued. When a .pdb
(page 499) file does not originate from an X-ray structure determination all occupancy fields may be zero. Either
way, it is up to the user to verify the correctness of the input data (read the article!).

During processing the atoms will be reordered according to GROMACS conventions. With —n an index file can
be generated that contains one group reordered in the same way. This allows you to convert a GROMOS trajectory
and coordinate file to GROMOS. There is one limitation: reordering is done after the hydrogens are stripped from
the input and before new hydrogens are added. This means that you should not use —ignh.

The .gro (page 495) and . g96 file formats do not support chain identifiers. Therefore it is useful to enter a .pdb
(page 499) file name at the —o option when you want to convert a multi-chain .pdb (page 499) file.

The option —vsite removes hydrogen and fast improper dihedral motions. Angular and out-of-plane motions
can be removed by changing hydrogens into virtual sites and fixing angles, which fixes their position relative to
neighboring atoms. Additionally, all atoms in the aromatic rings of the standard amino acids (i.e. PHE, TRP, TYR
and HIS) can be converted into virtual sites, eliminating the fast improper dihedral fluctuations in these rings (but
this feature is deprecated). Note that in this case all other hydrogen atoms are also converted to virtual sites. The
mass of all atoms that are converted into virtual sites, is added to the heavy atoms.

Also slowing down of dihedral motion can be done with —heavyh done by increasing the hydrogen-mass by a
factor of 4. This is also done for water hydrogens to slow down the rotational motion of water. The increase in mass
of the hydrogens is subtracted from the bonded (heavy) atom so that the total mass of the system remains the same.
As a special case, ring-closed (or cyclic) molecules are considered. gmx pdb2gmx automatically determines if a
cyclic molecule is present by evaluating the distance between the terminal atoms of a given chain. If this distance
is greater than the —sb (“Short bond warning distance”, default 0.05 nm) and less than the -1b (“Long bond
warning distance”, default 0.25 nm) the molecule is considered to be ring closed and will be processed as such.
Please note that this does not detect cyclic bonds over periodic boundaries.

3.11. Command-line reference 242

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

—£ [<.gro/.g96/...>] (protein.pdb)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

Options to specify output files:

-o [<.gro/.g96/...>] (conf.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

-p [<.top>] (topol.top)
Topology file

-i [<.itp>] (posre.itp)
Include file for topology

-n [<.ndx>] (index.ndx) (Optional)
Index file

—q [<.gro/.g96/...>] (clean.pdb) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

Other options:

—chainsep <enum> (id_or_ter)
Condition in PDB files when a new chain should be started (adding termini): id_or_ter, id_and_ter, ter, id,
interactive

-merge <enum> (no)
Merge multiple chains into a single [moleculetype]: no, all, interactive

—-£f <string> (select)
Force field, interactive by default. Use —h for information.

-water <enum> (select)
Water model to use: select, none, opc, opc3, spc, spce, tip3p, tip4p, tip4dpew, tipSp, tips3p

—[no]linter (no)
Set the next 8 options to interactive

—-[no]ss (no)
Interactive SS bridge selection

—-[no]lter (no)
Interactive termini selection, instead of charged (default)

—[no]lys (no)
Interactive lysine selection, instead of charged

—[no]arg (no)
Interactive arginine selection, instead of charged

—[no]asp (no)
Interactive aspartic acid selection, instead of charged

—[no]lglu (no)
Interactive glutamic acid selection, instead of charged

—[no]gln (no)
Interactive glutamine selection, instead of charged

—[no]lhis (no)
Interactive histidine selection, instead of checking H-bonds

—angle <real> (135)
Minimum hydrogen-donor-acceptor angle for a H-bond (degrees)

3.11. Command-line reference 243

GROMACS Documentation, Release 2026-rc

—dist <real> (0.3)
Maximum donor-acceptor distance for a H-bond (nm)

-[no]una (no)
Select aromatic rings with united CH atoms on phenylalanine, tryptophane and tyrosine

—[no]ignh (no)
Ignore hydrogen atoms that are in the coordinate file

- [no]missing (no)
Continue when atoms are missing and bonds cannot be made, dangerous

—[no]v (no)
Be slightly more verbose in messages

—-posrefc <real> (1000)
Force constant for position restraints

-vsite <enum> (none)
Convert atoms to virtual sites: none, hydrogens, aromatics

—[no]heavyh (no)
Make hydrogen atoms heavy

—[no]deuterate (no)
Change the mass of hydrogens to 2 amu

—[no] cmap (yes)
Use cmap torsions (if enabled in the .77p (page 500) file)

- [no] renum (no)
Renumber the residues consecutively in the output

—-rtpres <enum> (auto)
Use .7tp (page 500) entry names as residue names: auto, no, yes

3.11.66 gmx pme_error
Synopsis

gmx pme_error [—-s [<.tpr>]] [-o [<.out>]] [-so [<.tpr>]] [-beta <real>]
[-[no]tune] [-self <real>] [-seed <int>] [—-[no]v]

Description

gmx pme_error estimates the error of the electrostatic forces if using the sSPME algorithm. The flag —~tune
will determine the splitting parameter such that the error is equally distributed over the real and reciprocal space
part. The part of the error that stems from self interaction of the particles is computationally demanding. However,
a good a approximation is to just use a fraction of the particles for this term which can be indicated by the flag
-self.

3.11. Command-line reference 244

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.out>] (error.out)
Generic output file

-so [<.tpr>] (tuned.tpr) (Optional)
Portable xdr run input file

Other options:

-beta <real> (-1)
If positive, overwrite ewald_beta from .7pr (page 503) file with this value

- [no]tune (no)
Tune the splitting parameter such that the error is equally distributed between real and reciprocal space

-self <real> (1)
If between 0.0 and 1.0, determine self interaction error from just this fraction of the charged particles

-seed <int> (0)
Random number seed used for Monte Carlo algorithm when —se1f is set to a value between 0.0 and 1.0

—[no]lv (no)
Be loud and noisy

3.11.67 gmx polystat
Synopsis

gmx polystat [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]

[mo [<.xvg>]] [=v [<.xvg>]] [-p [<.xvg>]] [-1i [<.xvg>]]
[-b <time>] [—-e <time>] [-dt <time>] [-tu <enum>]

[

—-[no]lw] [—-xvg <enum>] [—-[no]lmw] [—[no]pc]

Description

gmx polystat plots static properties of polymers as a function of time and prints the average.

By default it determines the average end-to-end distance and radii of gyration of polymers. It asks for an index
group and split this into molecules. The end-to-end distance is then determined using the first and the last atom
in the index group for each molecules. For the radius of gyration the total and the three principal components
for the average gyration tensor are written. With option —v the eigenvectors are written. With option —pc also
the average eigenvalues of the individual gyration tensors are written. With option —1i the mean square internal
distances are written.

With option —p the persistence length is determined. The chosen index group should consist of atoms that are
consecutively bonded in the polymer mainchains. The persistence length is then determined from the cosine of
the angles between bonds with an index difference that is even, the odd pairs are not used, because straight polymer
backbones are usually all trans and therefore only every second bond aligns. The persistence length is defined as
number of bonds where the average cos reaches a value of 1/e. This point is determined by a linear interpolation
of log(<cos>).

3.11. Command-line reference 245

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—-£f [<.xte/.trr/...>] (traj.xtc)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng

(page 501) h5md

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (polystat.xvg)
xvgr/xmgr file

-v [<.xvg>] (polyvec.xvg) (Optional)
xvgr/xmgr file

-p [<.xvg>] (persist.xvg) (Optional)
xvgr/xmgr file

-1i [<.xvg>] (intdist.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—[nolw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

- [no]mw (yes)
Use the mass weighting for radii of gyration

—[no]pc (no)
Plot average eigenvalues

3.11.68 gmx potential

Synopsis

gmx potential [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-s [<.tpr>]]
[0 [<.xvg>]] [=-oc [<.xvg>]] [-of [<.xvg>]] [-b <time>]
[—e <time>] [-dt <time>] [—[nolw] [—-xvg <enum>]
[-d <string>] [-sl <int>] [-ecb <int>] [—-ce <int>]
[-tz <real>] [-[no]lspherical] [-ng <int>] [—[no]center]
[-[no]lsymm] [-[no]correct]

3.11. Command-line reference

246

GROMACS Documentation, Release 2026-rc

Description

gmx potential computes the electrostatical potential across the box. The potential is calculated by first sum-
ming the charges per slice and then integrating twice of this charge distribution. Periodic boundaries are not taken
into account. Reference of potential is taken to be the left side of the box. It is also possible to calculate the
potential in spherical coordinates as function of r by calculating a charge distribution in spherical slices and twice
integrating them. epsilon_r is taken as 1, but 2 is more appropriate in many cases.

Option —center performs the histogram binning and potential calculation relative to the center of an arbitrary
group, in absolute box coordinates. If you are calculating profiles along the Z axis box dimension bZ, output
would be from -bZ/2 to bZ/2 if you center based on the entire system. Option —symm symmetrizes the output
around the center. This will automatically turn on —center too.

Options

Options to specify input files:

—-£ [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-n [<.ndx>] (index.ndx)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (potential.xvg)
xvgr/xmgr file

—oc [<.xvg>] (charge.xvg)
xvgr/xmgr file

—-of [<.xvg>] (field.xvg)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—d <string> (Z)
Take the normal on the membrane in direction X, Y or Z.

-s1 <int> (10)
Calculate potential as function of boxlength, dividing the box in this number of slices.

—cb <int> (0)
Discard this number of first slices of box for integration

—ce <int> (0)
Discard this number of last slices of box for integration

3.11. Command-line reference 247

GROMACS Documentation, Release 2026-rc

-tz <real> (0)
Translate all coordinates by this distance in the direction of the box

—[no]spherical (no)
Calculate in spherical coordinates

—-ng <int> (1)
Number of groups to consider

- [no]center (no)
Perform the binning relative to the center of the (changing) box. Useful for bilayers.

—[no] symm (no)
Symmetrize the density along the axis, with respect to the center. Useful for bilayers.

-[no]correct (no)
Assume net zero charge of groups to improve accuracy

Known Issues

* Discarding slices for integration should not be necessary.

3.11.69 gmx principal

Synopsis

gmx principal [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [=al [<.xvg>]] [-a2 [<.xvg>]]
[-a3 [<.xvg>]] [-om [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [—-[nolw] [—-xvg <enum>]
[-[no] foo]

Description

gmx principal calculates the three principal axes of inertia for a group of atoms. NOTE: Old versions of
GROMACS wrote the output data in a strange transposed way. As of GROMACS 5.0, the output file paxisl.dat
contains the x/y/z components of the first (major) principal axis for each frame, and similarly for the middle and
minor axes in paxis2.dat and paxis3.dat.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-al [<.xvg>] (paxisl.xvg)
xvgr/xmgr file

—a2 [<.xvg>] (paxis2.xvg)
xvgr/xmgr file

3.11. Command-line reference 248

GROMACS Documentation, Release 2026-rc

-a3 [<.xvg>] (paxis3.xvg)
xvgr/xmgr file

—om [<.xvg>] (moi.xvg)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no] £oo (no)
Dummy option to avoid empty array

3.11.70 gmx rama

Synopsis

gmx rama [-f [<.xtc/.trr/...>]] [=s [<.tpr>]] [-0 [<.xvg>]] [=b <time>]
[-e <time>] [-dt <time>] [—-[nolw] [—-xvg <enum>]

Description

gmx rama selects the phi/psi dihedral combinations from your topology file and computes these as a function of
time. Using simple Unix tools such as grep you can select out specific residues.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (rama.xvg)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

3.11. Command-line reference 249

GROMACS Documentation, Release 2026-rc

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11.71 gmx rdf

Synopsis

gmx rdf [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-en [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [—-fgroup <selection>] [—-xvg <enum>]
[-[no]lrmpbc] [-[no]lpbec] [-sf <file>] [—-selrpos <enum>]
[-seltype <enum>] [-bin <real>] [-norm <enum>] [—[nolxy]
[-[no]excl] [—-cut <real>] [-rmax <real>] [-surf <enum>]
[-ref <selection>] [-sel <selection>]

Description

gmx rdf calculates radial distribution functions from one reference set of position (set with —ref) to one or
more sets of positions (set with —se1). To compute the RDF with respect to the closest position in a set in —ref
instead, use —surf: if set, then —ref is partitioned into sets based on the value of —surf, and the closest
position in each set is used. To compute the RDF around axes parallel to the z-axis, i.e., only in the x-y plane, use
-XY.

To set the bin width and maximum distance to use in the RDF, use ~bin and —rmax, respectively. The latter can
be used to limit the computational cost if the RDF is not of interest up to the default (half of the box size with
PBC, three times the box size without PBC).

To use exclusions from the topology (-s), set —exc1 and ensure that both —ref and —sel only select atoms. A
rougher alternative to exclude intra-molecular peaks is to set —cut to a non-zero value to clear the RDF at small
distances.

The RDFs are normalized by 1) average number of positions in —re £ (the number of groups with —surf), 2) vol-
ume of the bin, and 3) average particle density of —sel positions for that selection. To change the normalization,
use —norm:

e rdf: Use all factors for normalization. This produces a normal RDF.
e number_density: Use the first two factors. This produces a number density as a function of distance.

* none: Use only the first factor. In this case, the RDF is only scaled with the bin width to make the integral
of the curve represent the number of pairs within a range.

Note that exclusions do not affect the normalization: even if —excl is set, or —ref and —sel contain the same
selection, the normalization factor is still N*M, not N*(M-excluded).

For —surf, the selection provided to —ref must select atoms, i.e., centers of mass are not supported. Further,
—-nonorm is implied, as the bins have irregular shapes and the volume of a bin is not easily computable.

Option —cn produces the cumulative number RDF, i.e. the average number of particles within a distance r.

3.11. Command-line reference 250

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) g (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (rdf.xvg)
Computed RDFs

—cn [<.xvg>] (rdf_cn.xvg) (Optional)
Cumulative RDFs

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-bin <real> (0.002)
Bin width (nm)

—norm <enum> (rdf)
Normalization: rdf, number_density, none

- [nolxy (no)
Use only the x and y components of the distance

3.11. Command-line reference 251

GROMACS Documentation, Release 2026-rc

—[no]excl (no)
Use exclusions from topology

—cut <real> (0)
Shortest distance (nm) to be considered

—rmax <real> (0)
Largest distance (nm) to calculate

—-surf <enum> (no)

RDF with respect to the surface of the reference: no, mol, res

—ref <selection>
Reference selection for RDF computation

—-sel <selection>
Selections to compute RDFs for from the reference

3.11.72 gmx report-methods
Synopsis

gmx report-methods [-s [<.tpr/.gro/...>]]

Description

gmx report-methods reports basic system information
terminal, to a LaTeX formatted output file if run with the —m

[-m [<.tex>]] [-o0 [<.out>]]

for the run input file specified with —s either to the
option or to an unformatted file with the —o option.

The functionality has been moved here from its previous place in gmx check (page 139).

Options

Options to specify input files:

-s [<.tpr/.gro/...>] (topol.tpr)

Run input file for report: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

Options to specify output files:

-m [<.tex>] (report.tex) (Optional)
LaTeX formatted report output

—-o [<.out>] (report.out) (Optional)
Unformatted report output to file

3.11.73 gmx rms
Synopsis

-s [<.tpr/.gro/...>]]
-£f2 [<.xtc/.trr/...>]]
-mir [<.xvg>]] [—-a [<.xvg>]]
-bin [<.dat>]] [-bm [<.xpm>]]
-dt <time>] [-tu <enum>]
<enum>] [-[no]pbc]
—-[nolsplit] [-skip <int>]
-min <real>] [-bmax <real>]
-nlevels <int>] [—-ng <int>]

gmx rms

[
[
[
[
[
[
[
[
[

[-f [<.xtc/.trr/...>]]
[-n [<.ndx>]]
[-dist [<.xvg>]]
[-b <time>]
[-[no]w]
[-£it <enum>]
[-skip2 <int>]
[=bmin <real>]

[0 [<.xvg>]]

[-m [<.xpm>]]
[—e <time>]

[-xvg <enum>]

[-prev <int>]

[-max <real>]
[-[no]lmw]

3.11. Command-line reference

252

GROMACS Documentation, Release 2026-rc

Description

gmx rms compares two structures by computing the root mean square deviation (RMSD), the size-independent
rho similarity parameter (rho) or the scaled rho (rhosc), see Maiorov & Crippen, Proteins 22, 273 (1995). This
is selected by —what.

Each structure from a trajectory (—£) is compared to a reference structure. The reference structure is taken from
the structure file (-s).

With option —mir also a comparison with the mirror image of the reference structure is calculated. This is useful
as a reference for ‘significant’ values, see Maiorov & Crippen, Proteins 22, 273 (1995).

Option —prev produces the comparison with a previous frame the specified number of frames ago.

Option —m produces a matrix in .xpm (page 504) format of comparison values of each structure in the trajectory
with respect to each other structure. This file can be visualized with for instance xv and can be converted to
postscript with gmx xpm2ps (page 306).

Option —fit controls the least-squares fitting of the structures on top of each other: complete fit (rotation and
translation), translation only, or no fitting at all.

Option —mw controls whether mass weighting is done or not. If you select the option (default) and supply a valid
.tpr (page 503) file masses will be taken from there, otherwise the masses will be deduced from the at ommass .
dat file in GMXLIB (deprecated). This is fine for proteins, but not necessarily for other molecules. You can check
whether this happened by turning on the —debug flag and inspecting the log file.

With -£2, the ‘other structures’ are taken from a second trajectory, this generates a comparison matrix of one
trajectory versus the other.

Option —bin does a binary dump of the comparison matrix.

Option —-bm produces a matrix of average bond angle deviations analogously to the —m option. Only bonds
between atoms in the comparison group are considered.

Options

Options to specify input files:
-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) h5md

-£2 [<.xtc/.trr/. .. >] (traj.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (rmsd.xvg)
xvgr/xmgr file

-mir [<.xvg>] (rmsdmir.xvg) (Optional)
xvgr/xmgr file

—-a [<.xvg>] (avgrp.xvg) (Optional)
xvgr/xmgr file

—dist [<.xvg>] (rmsd-dist.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 253

GROMACS Documentation, Release 2026-rc

-m [<.xpm>] (rmsd.xpm) (Optional)
X PixMap compatible matrix file

-bin [<.dat>] (rmsd.dat) (Optional)
Generic data file

-bm [<.xpm>] (bond.xpm) (Optional)
X PixMap compatible matrix file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—[nolw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-what <enum> (rmsd)
Structural difference measure: rmsd, rho, rhosc

- [nolpbc (yes)
PBC check

-fit <enum> (rot+trans)
Fit to reference structure: rot+trans, translation, none

—-prev <int> (0)
Compare with previous frame

—[no]split (no)
Split graph where time is zero

-skip <int> (1)

Only write every nr-th frame to matrix
-skip2 <int> (1)

Only write every nr-th frame to matrix

-max <real> (-1)
Maximum level in comparison matrix

-min <real> (-1)
Minimum level in comparison matrix

-bmax <real> (-1)
Maximum level in bond angle matrix

-bmin <real> (-1)
Minimum level in bond angle matrix

- [no]mw (yes)
Use mass weighting for superposition

-nlevels <int> (80)
Number of levels in the matrices

—-ng <int> (1)
Number of groups to compute RMS between

3.11. Command-line reference 254

GROMACS Documentation, Release 2026-rc

3.11.74 gmx rmsdist
Synopsis

gmnx rmsdist [-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]]1 [-n [<.ndx>]]
[—equiv [<.dat>]] [-o [<.xvg>]] [-rms [<.xpm>]]

[-sel [<.xpm>]] [-mean [<.xpm>]] [-nmr3 [<.xpm>]]

[-nmr6 [<.xpm>]] [—-noe [<.dat>]] [-b <time>] [—-e <time>]
[-dt <time>] [-[no]lw] [—-xvg <enum>] [—-nlevels <int>]

[

-max <real>] [—[no]lsumh] [-[no]pbc]

Description

gmx rmsdist computes the root mean square deviation of atom distances, which has the advantage that no fit is
needed like in standard RMS deviation as computed by gmx rms (page 252). The reference structure is taken from
the structure file. The RMSD at time t is calculated as the RMS of the differences in distance between atom-pairs
in the reference structure and the structure at time t.

gmx rmsdist can also produce matrices of the rms distances, rms distances scaled with the mean distance and
the mean distances and matrices with NMR averaged distances (1/r*3 and 1/r"6 averaging). Finally, lists of atom
pairs with 1/r"3 and 1/r"6 averaged distance below the maximum distance (-max, which will default to 0.6 in this
case) can be generated, by default averaging over equivalent hydrogens (all triplets of hydrogens named *[123]).
Additionally a list of equivalent atoms can be supplied (—equiv), each line containing a set of equivalent atoms
specified as residue number and name and atom name; e.g.:

HBx 3 SER HB1 3 SER HB2

Residue and atom names must exactly match those in the structure file, including case. Specifying non-sequential
atoms is undefined.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

—-equiv [<.dat>] (equiv.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.xvg>] (distrmsd.xvg)
xvgr/xmgr file

—rms [<.xpm>] (rmsdist.xpm) (Optional)
X PixMap compatible matrix file

-scl [<.xpm>] (rmsscale.xpm) (Optional)
X PixMap compatible matrix file

-mean [<.xpm>] (rmsmean.xpm) (Optional)
X PixMap compatible matrix file

—nmr3 [<.xpm>] (nmr3.xpm) (Optional)
X PixMap compatible matrix file

3.11. Command-line reference 255

GROMACS Documentation, Release 2026-rc

—nmr6 [<.xpm>] (nmr6.xpm) (Optional)
X PixMap compatible matrix file

-noe [<.dat>] (noe.dat) (Optional)
Generic data file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[nolw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-nlevels <int> (40)
Discretize RMS in this number of levels

-max <real> (-1)
Maximum level in matrices

—[no] sumh (yes)
Average distance over equivalent hydrogens

- [nolpbc (yes)
Use periodic boundary conditions when computing distances

3.11.75 gmx rmsf
Synopsis

gnx rmsf [-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-q [<.pdb>]] [-oq [<.pdb>]] [-ox [<.pdb>]] [-o [<.xvg>]]
[-od [<.xvg>]] [=oc [<.xvg>]] [-dir [<.log>]] [-b <time>]
[—e <time>] [-dt <time>] [—[no]lw] [—-xvg <enum>] [—-[no]res]
[

—[nolaniso] [—-[no]fit]

Description

gmx rmsf computes the root mean square fluctuation (RMSEF, i.e. standard deviation) of atomic positions in the
trajectory (supplied with —£) after (optionally) fitting to a reference frame (supplied with —s).

With option —oq the RMSF values are converted to B-factor values, which are written to a .pdb (page 499) file. By
default, the coordinates in this output file are taken from the structure file provided with —s,although you can also
use coordinates read from a different .pdb (page 499) fileprovided with —q. There is very little error checking, so
in this caseit is your responsibility to make sure all atoms in the structure fileand .pdb (page 499) file correspond
exactly to each other.

Option —ox writes the B-factors to a file with the average coordinates in the trajectory.
With the option —od the root mean square deviation with respect to the reference structure is calculated.

With the option —aniso, gmx rmsf will compute anisotropic temperature factors and then it will also output
average coordinates and a .pdb (page 499) file with ANISOU records (corresponding to the —og or —ox option).
Please note that the U values are orientation-dependent, so before comparison with experimental data you should
verify that you fit to the experimental coordinates.

3.11. Command-line reference 256

GROMACS Documentation, Release 2026-rc

When a .pdb (page 499) input file is passed to the program and the —aniso flag is set a correlation plot of the Uij
will be created, if any anisotropic temperature factors are present in the .pdb (page 499) file.

With option —dir the average MSF (3x3) matrix is diagonalized. This shows the directions in which the atoms
fluctuate the most and the least.

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) h5md

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

—q [<.pdb>] (eiwit.pdb) (Optional)
Protein data bank file

Options to specify output files:

—oq [<.pdb>] (bfac.pdb) (Optional)
Protein data bank file

-ox [<.pdb>] (xaver.pdb) (Optional)
Protein data bank file

-o [<.xvg>] (rmsf.xvg)
xvgr/xmgr file

—od [<.xvg>] (rmsdev.xvg) (Optional)
xvgr/xmgr file

—oc [<.xvg>] (correl.xvg) (Optional)
xvgr/xmgr file

—dir [<.log>] (rmsf.log) (Optional)
Log file

Other options:

—b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no] res (no)
Calculate averages for each residue

—[no]aniso (no)
Compute anisotropic temperature factors

3.11. Command-line reference 257

GROMACS Documentation, Release 2026-rc

—[no] £it (yes)
Do a least squares superposition before computing RMSF. Without this you must make sure that the refer-
ence structure and the trajectory match.

3.11.76 gmx rotacf
Synopsis

gmx rotacf [-f [<.xtc/.trr/...>]] [=-s [<.tpr>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]
[-[no]lw] [-xvg <enum>] [-[no]d] [—-[no]aver]
[
[

—acflen <int>] [-[no]lnormalize] [-P <enum>]
-fitfn <enum>] [-beginfit <real>] [—-endfit <real>]

Description

gmx rotacft calculates the rotational correlation function for molecules. Atom triplets (i,j,k) must be given in
the index file, defining two vectors ij and jk. The rotational ACF is calculated as the autocorrelation function of
the vector n = ij X jk, i.e. the cross product of the two vectors. Since three atoms span a plane, the order of the
three atoms does not matter. Optionally, by invoking the —d switch, you can calculate the rotational correlation
function for linear molecules by specifying atom pairs (i,j) in the index file.

EXAMPLES

gmx rotacf -P 1 -nparm 2 -fft -n index -o rotacf-x-Pl -fa expfit-x-Pl
-beginfit 2.5 —-endfit 20.0

This will calculate the rotational correlation function using a first order Legendre polynomial of the angle of a
vector defined by the index file. The correlation function will be fitted from 2.5 ps until 20.0 ps to a two-parameter
exponential.

Options

Options to specify input files:

—-£f [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx)
Index file

Options to specify output files:

-o [<.xvg>] (rotacf.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

3.11. Command-line reference 258

GROMACS Documentation, Release 2026-rc

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—-[no]ld (no)
Use index doublets (vectors) for correlation function instead of triplets (planes)

—[no]aver (yes)
Average over molecules

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]normalize (yes)
Normalize ACF

—P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, expJ, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.77 gmx rotmat
Synopsis

-f [<.xtc/.trr/...>]] [=s [<.tpr/.gro/...>]] [-n [<.ndx>]]
-0 [<.xvg>]] [-b <time>] [—-e <time>] [-dt <time>]

[no]lw] [—-xvg <enum>] [-ref <enum>] [-skip <int>]

[no] fitxy] [—-[no]lmw]

gmx rotmat

[
[
[
[

Description

gmx rotmat plots the rotation matrix required for least squares fitting a conformation onto the reference con-
formation provided with —s. Translation is removed before fitting. The output are the three vectors that give the
new directions of the x, y and z directions of the reference conformation, for example: (zx,zy,zz) is the orientation
of the reference z-axis in the trajectory frame.

This tool is useful for, for instance, determining the orientation of a molecule at an interface, possibly on a
trajectory produced with gmx trjconv —-fit rotxy+transxy toremove the rotation in the x-y plane.

Option —ref determines a reference structure for fitting, instead of using the structure from —s. The structure
with the lowest sum of RMSD’s to all other structures is used. Since the computational cost of this procedure
grows with the square of the number of frames, the —skip option can be useful. A full fit or only a fit in the x-y
plane can be performed.

Option - fitxy fits in the x-y plane before determining the rotation matrix.

3.11. Command-line reference 259

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (rotmat.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—-ref <enum> (none)
Determine the optimal reference structure: none, Xyz, Xy

-skip <int> (1)
Use every nr-th frame for —re f

—[no] £itxy (no)
Fit the x/y rotation before determining the rotation

—[no]mw (yes)
Use mass weighted fitting

3.11.78 gmx saltbr
Synopsis

gmx saltbr [-f [<.xtc/.trr/...>]] [=-s [<.tpr>]] [-b <time>] [-e <time>]
[-dt <time>] [-t <real>] [—-[nolsep]

3.11. Command-line reference 260

GROMACS Documentation, Release 2026-rc

Description

gmx saltbr plots the distance between all combination of charged groups as a function of time. The groups
are combined in different ways. A minimum distance can be given (i.e. a cut-off), such that groups that are never
closer than that distance will not be plotted.

Output will be in a number of fixed filenames, min-min.xvg, plus-min.xvg and plus-plus.xvg,
or files for every individual ion pair if the —sep option is selected. In this case, files are named as
sb- (Resname) (Resnr) - (Atomnr) . There may be many such files.

Options

Options to specify input files:

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-t <real> (1000)
Groups that are never closer than this distance are not plotted

—[no]sep (no)
Use separate files for each interaction (may be MANY)

3.11.79 gmx sans-legacy

Synopsis

gmx sans—legacy [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-d [<.dat>]] [-pr [<.xvg>]] [-sq [<.xvg>]]
[-prframe [<.xvg>]] [-sqframe [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-tu <enum>] [—-xvg <enum>]
[-mode <enum>] [—-mcover <real>] [—[no]pbc]
[-startq <real>] [—-endq <real>] [—-gstep <real>]
[-seed <int>] [-nt <int>]

3.11. Command-line reference 261

GROMACS Documentation, Release 2026-rc

Description

gmx sans-legacy computes SANS spectra using Debye formula. It currently uses topology file (since it need
to assign element for each atom).

Parameters:

—pr Computes normalized g(r) function averaged over trajectory
-prframe Computes normalized g(r) function for each frame
—-sqg Computes SANS intensity curve averaged over trajectory
-sgframe Computes SANS intensity curve for each frame
-startqg Starting q value in nm

—endq Ending q value in nm

—gstep Stepping in q space

Note: When using Debye direct method computational cost increases as 1/2 * N * (N - 1) where N is atom number
in group of interest.

WARNING: If sq or pr specified this tool can produce large number of files! Up to two times larger than number
of frames!

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-n [<.ndx>] (index.ndx) (Optional)
Index file

—d [<.dat>] (nsfactor.dat) (Optional)
Generic data file

Options to specify output files:

-pr [<.xvg>] (pr.xvg)
xvgr/xmgr file

-sq [<.xvg>] (sq.xvg)
xvgr/xmgr file

—-prframe [<.xvg>] (prframe.xvg) (Optional)
xvgr/xmgr file

—-sqgframe [<.xvg>] (sqframe.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

3.11. Command-line reference 262

GROMACS Documentation, Release 2026-rc

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—xXvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-mode <enum> (direct)
Mode for sans spectra calculation: direct, mc

-mcover <real> (-1)
Monte-Carlo coverage should be -1(default) or (0,1]

- [no]lpbc (yes)
Use periodic boundary conditions for computing distances

—-startqg <real> (0)
Starting q (1/nm)

—endq <real> (2)
Ending q (1/nm)

—-gstep <real> (0.01)
Stepping in q (1/nm)

—-seed <int> (0)
Random seed for Monte-Carlo

-nt <int> (48)
Number of threads to start

3.11.80 gmx sasa
Synopsis

-f [<.xtc/.trr/...>]] [=s [<.tpr/.gro/...>]] [-n [<.ndx>]]
-0 [<.xvg>]] [-odg [<.xvg>]] [—-or [<.xvg>]] [-oa [<.xvg>]]
-tv [<.xvg>]] [-q [<.pdb>]] [-b <time>] [—-e <time>]
-dt <time>] [-tu <enum>] [—-fgroup <selection>]

-xvg <enum>] [—[no]lrmpbec] [-[no]lpbc] [-sf <file>]

-selrpos <enum>] [-probe <real>] [-ndots <int>] [-[no]prot]
—-dgs <real>] [-surface <selection>] [—output <selection>]

gmx sasa

[
[
[
[
[
[
[

Description

gmx sasa computes solvent accessible surface areas. See Eisenhaber F, Lijnzaad P, Argos P, Sander C, &
Scharf M (1995) J. Comput. Chem. 16, 273-284 for the algorithm used. With —g, the Connolly surface can be
generated as well in a .pdb (page 499) file where the nodes are represented as atoms and the edges connecting the
nearest nodes as CONECT records. —odg allows for estimation of solvation free energies from per-atom solvation
energies per exposed surface area.

The program requires a selection for the surface calculation to be specified with —~surface. This should always
consist of all non-solvent atoms in the system. The area of this group is always calculated. Optionally, —output
can specify additional selections, which should be subsets of the calculation group. The solvent-accessible areas
for these groups are also extracted from the full surface.

The average and standard deviation of the area over the trajectory can be calculated per residue and atom (options
—or and —oa).

With the —tv option the total volume and density of the molecule can be computed. With —pbc (the default),
you must ensure that your molecule/surface group is not split across PBC. Otherwise, you will get non-sensical
results. Please also consider whether the normal probe radius is appropriate in this case or whether you would
rather use, e.g., 0. It is good to keep in mind that the results for volume and density are very approximate. For

3.11. Command-line reference 263

GROMACS Documentation, Release 2026-rc

example, in ice Ih, one can easily fit water molecules in the pores which would yield a volume that is too low, and

surface area and density that are both too high.

Options

Options to specify input files:
—-£f [<.xte/.trr/. .. >] (traj.xtc) (Optional)

Input trajectory or single configuration: xzc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96

(page 495) pdb (page 499) tng (page 501) h5md
-s [<.tpr/.gro/...>] (topol.tpr) (Optional)

Input structure: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (area.xvg)
Total area as a function of time

—-odg [<.xvg>] (dgsolv.xvg) (Optional)
Estimated solvation free energy as a function of time

—or [<.xvg>] (resarea.xvg) (Optional)
Average area per residue

-oa [<.xvg>] (atomarea.xvg) (Optional)
Average area per atom

-tv [<.xvg>] (volume.xvg) (Optional)
Total volume and density as a function of time

—q [<.pdb>] (connolly.pdb) (Optional)
PDB file for Connolly surface

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>

Atoms stored in the trajectory file (if not set, assume first N atoms)

—-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

- [no]pbc (yes)

Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

3.11. Command-line reference

264

GROMACS Documentation, Release 2026-rc

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-probe <real> (0.14)
Radius of the solvent probe (nm)

-ndots <int> (24)
Number of dots per sphere, more dots means more accuracy

—[no]prot (yes)
Output the protein to the Connolly .pdb (page 499) file too

—-dgs <real> (0)
Default value for solvation free energy per area (kJ/mol/nm”?2)

—-surface <selection>
Surface calculation selection

—output <selection>
Output selection(s)

3.11.81 gmx saxs-legacy

Synopsis

gmx saxs—legacy [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-d [<.dat>]] [-sq [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-xvg <enum>] [-ng <int>]
[-startq <real>] [—endq <real>] [—-energy <real>]

Description

gmx saxs-—legacy calculates SAXS structure factors for given index groups based on Cromer’s method. Both
topology and trajectory files are required.

Options

Options to specify input files:

—-£ [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

—d [<.dat>] (sfactor.dat) (Optional)
Generic data file

Options to specify output files:

-sq [<.xvg>] (sq.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

3.11. Command-line reference 265

GROMACS Documentation, Release 2026-rc

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—ng <int> (1)
Number of groups to compute SAXS

—-startqg <real> (0)
Starting q (1/nm)

—endq <real> (60)
Ending q (1/nm)

—-energy <real> (12)
Energy of the incoming X-ray (keV)

3.11.82 gmx scattering
Synopsis

gmx scattering [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]

[-n [<.ndx>]] [-o [<.xvg>]] [-b <time>] [—e <time>]
-dt <time>] [-tu <enum>] [—-fgroup <selection>]
—-xvg <enum>] [—[no]lrmpbc] [—[no]lpbc] [-sf <file>]
—selrpos <enum>] [—-seltype <enum>] [—-sel <selection>]
—-startqg <real>] [—-endq <real>] [—gspacing <real>]
-binwidth <real>] [-mc-coverage <real>] [-seed <int>]
—[nolnorm] [-[no]lmc] [-scattering-type <enum>]

[
[
[
[
[
[

Description

gmx scattering calculates SANS and SAXS scattering curves using Debye method.
The scattering intensity, I(q), as a function of scattering angle q with averaging over frames.

Note that this is a new implementation of the SANS/SAXS utilities added in GROMACS 2024. If you need the
old ones, use gmx sans—legacy or gmx saxs—legacy.

Options

Options to specify input files:

—-f£ [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) tng (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: zpr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

—-o [<.xvg>] (scattering.xvg) (Optional)
scattering intensity as a function of q

Other options:

3.11. Command-line reference 266

GROMACS Documentation, Release 2026-rc

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

—dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[no]pbec (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)

Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-

res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)

Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,

dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—-sel <selection>
Selection for Scattering calculation

—-startqg <real> (0)
smallest q value (1/nm)

—endq <real> (2)
largest q value (1/nm)

—-gspacing <real> (0.01)
spacing of q values (1/nm)

-binwidth <real> (0.1)
Bin width (nm) for P(r)

-mc—-coverage <real> (0.2)
coverage of Monte Carlo (%)

—-seed <int> (2023)
random seed for Monte Carlo

—[no]lnorm (no)
normalize scattering intensities

—[no]mec (yes)
use Monte Carlo to scattering intensities

—-scattering-type <enum> (sans)
Scattering type: saxs, sans

3.11. Command-line reference

267

GROMACS Documentation, Release 2026-rc

3.11.83 gmx select
Synopsis
gmx select [-f [<.xtc/.trr/...>]]1 [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-os [<.xvg>]] [=-oc [<.xvg>]] [=-ol [<.dat>]]

[-on [<.ndx>]] [—-om [<.xvg>]] [—of [<.xvg>]]

[-ofpdb [<.pdb>]] [-olt [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [—-fgroup <selection>]

[-xvg <enum>] [—[no]lrmpbc] [-[no]lpbc] [-sf <file>]
[-selrpos <enum>] [-seltype <enum>] [-select <selection>]
[-[no]lnorm] [-[no]cfnorm] [—-resnr <enum>]

[-pdbatoms <enum>] [—-[no]cumlt]

Description

gmx select writes out basic data about dynamic selections. It can be used for some simple analyses, or the
output can be combined with output from other programs and/or external analysis programs to calculate more
complex things. For detailed help on the selection syntax, please use gmx help selections.

Any combination of the output options is possible, but note that —om only operates on the first selection. Also
note that if you provide no output options, no output is produced.

With -os, calculates the number of positions in each selection for each frame. With —norm, the output is between
0 and 1 and describes the fraction from the maximum number of positions (e.g., for selection ‘resname RA and
X < 5’ the maximum number of positions is the number of atoms in RA residues). With —cfnorm, the output
is divided by the fraction covered by the selection. ~norm and —cfnorm can be specified independently of one
another.

With —oc, the fraction covered by each selection is written out as a function of time.

With —o1i, the selected atoms/residues/molecules are written out as a function of time. In the output, the first col-
umn contains the frame time, the second contains the number of positions, followed by the atom/residue/molecule
numbers. If more than one selection is specified, the size of the second group immediately follows the last number
of the first group and so on.

With —on, the selected atoms are written as a index file compatible with make_ndx and the analyzing tools.
Each selection is written as a selection group and for dynamic selections a group is written for each frame.

For residue numbers, the output of —oi can be controlled with —resnr: number (default) prints the residue
numbers as they appear in the input file, while index prints unique numbers assigned to the residues in the order
they appear in the input file, starting with 1. The former is more intuitive, but if the input contains multiple residues
with the same number, the output can be less useful.

With -om, a mask is printed for the first selection as a function of time. Each line in the output corre-
sponds to one frame, and contains either 0/1 for each atom/residue/molecule possibly selected. 1 stands for
the atom/residue/molecule being selected for the current frame, O for not selected.

With -of, the occupancy fraction of each position (i.e., the fraction of frames where the position is selected) is
printed.

With —ofpdb, a PDB file is written out where the occupancy column is filled with the occupancy fraction of each
atom in the selection. The coordinates in the PDB file will be those from the input topology. ~pdbatoms can
be used to control which atoms appear in the output PDB file: with all all atoms are present, with maxsel all
atoms possibly selected by the selection are present, and with selected only atoms that are selected at least in
one frame are present.

With —olt, a histogram is produced that shows the number of selected positions as a function of the time the
position was continuously selected. —cumlt can be used to control whether subintervals of longer intervals are
included in the histogram.

—om, —of, and —olt only make sense with dynamic selections.

3.11. Command-line reference 268

GROMACS Documentation, Release 2026-rc

To plot coordinates for selections, use gmx trajectory (page 284).

Options

Options to specify input files:
—-£f [<.xte/.trr/...>] (traj.xtc) (Optional)

Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96

(page 495) pdb (page 499) tng (page 501) hSmd
-s [<.tpr/.gro/...>] (topol.tpr) (Optional)

Input structure: tpr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-os [<.xvg>] (size.xvg) (Optional)
Number of positions in each selection

—oc [<.xvg>] (cfrac.xvg) (Optional)
Covered fraction for each selection

—-oi [<.dat>] (index.dat) (Optional)
Indices selected by each selection

—on [<.ndx>] (index.ndx) (Optional)
Index file from the selection

—om [<.xvg>] (mask.xvg) (Optional)
Mask for selected positions

—of [<.xvg>] (occupancy.xvg) (Optional)
Occupied fraction for selected positions

—ofpdb [<.pdb>] (occupancy.pdb) (Optional)
PDB file with occupied fraction for selected positions

-olt [<.xvg>] (lifetime.xvg) (Optional)
Lifetime histogram

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

—[no]pbc (yes)
Use periodic boundary conditions for distance calculation

3.11. Command-line reference

269

GROMACS Documentation, Release 2026-rc

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—select <selection>
Selections to analyze

—[no]lnorm (no)
Normalize by total number of positions with -os

—[no] cfnorm (no)
Normalize by covered fraction with -os

—-resnr <enum> (number)
Residue number output type with -oi and -on: number, index

—-pdbatoms <enum> (all)
Atoms to write with -ofpdb: all, maxsel, selected

—[no] cumlt (yes)
Cumulate subintervals of longer intervals in -olt

3.11.84 gmx sham

-xmin <vector>] [—-xmax <vector>] [—pmax <real>]
—-gmax <real>] [—emin <real>] [—emax <real>]
-nlevels <int>]

Synopsis

gmx sham [-f [<.xvg>]] [—-ge [<.xvg>]] [—ene [<.xvg>]] [—-dist [<.xvg>]]
[-histo [<.xvg>]] [-bin [<.ndx>]] [-1p [<.xpm>]]
[-1s [<.xpm>]] [-1lsh [<.xpm>]] [-1lss [<.xpm>]]
[-1s3 [<.pdb>]] [-g [<.log>]] [-[nolw] [-xvg <enum>]
[-[noltime] [-b <real>] [—-e <real>] [-ttol <real>]
[-n <int>] [-[no]d] [-[no]lsham] [—-tsham <real>]
[-pmin <real>] [-dim <vector>] [-ngrid <vector>]
[
[
[

Description

gmx sham makes multi-dimensional free-energy, enthalpy and entropy plots. gmx sham reads one or more .xvg
(page 5006) files and analyzes data sets. The basic purpose of gmx sham is to plot Gibbs free energy landscapes
(option —-1s) by Bolzmann inverting multi-dimensional histograms (option —1p), but it can also make enthalpy
(option —1sh) and entropy (option —1ss) plots. The histograms can be made for any quantities the user supplies.
A line in the input file may start with a time (see option —t ime) and any number of y-values may follow. Multiple
sets can also be read when they are separated by & (option —n), in this case only one y-value is read from each
line. All lines starting with # and @ are skipped.

Option —ge can be used to supply a file with free energies when the ensemble is not a Boltzmann ensemble, but
needs to be biased by this free energy. One free energy value is required for each (multi-dimensional) data point
in the — £ input.

3.11. Command-line reference 270

GROMACS Documentation, Release 2026-rc

Option —ene can be used to supply a file with energies. These energies are used as a weighting function in the
single histogram analysis method by Kumar et al. When temperatures are supplied (as a second column in the
file), an experimental weighting scheme is applied. In addition the vales are used for making enthalpy and entropy
plots.

With option —dim, dimensions can be gives for distances. When a distance is 2- or 3-dimensional, the circum-
ference or surface sampled by two particles increases with increasing distance. Depending on what one would
like to show, one can choose to correct the histogram and free-energy for this volume effect. The probability is
normalized by r and "2 for dimensions of 2 and 3, respectively. A value of -1 is used to indicate an angle in
degrees between two vectors: a sin(angle) normalization will be applied. Note that for angles between vectors the
inner-product or cosine is the natural quantity to use, as it will produce bins of the same volume.

Options

Options to specify input files:

-f [<.xvg>] (graph.xvg)
xvgr/xmgr file

—ge [<.xvg>] (gibbs.xvg) (Optional)
xvgr/xmgr file

—ene [<.xvg>] (esham.xvg) (Optional)
xvgr/xmgr file

Options to specify output files:

—dist [<.xvg>] (ener.xvg) (Optional)
xvgr/xmgr file

-histo [<.xvg>] (edist.xvg) (Optional)
xvgr/xmgr file

-bin [<.ndx>] (bindex.ndx) (Optional)
Index file

-1p [<.xpm>] (prob.xpm) (Optional)
X PixMap compatible matrix file

-1s [<.xpm>] (gibbs.xpm) (Optional)
X PixMap compatible matrix file

—-1sh [<.xpm>] (enthalpy.xpm) (Optional)
X PixMap compatible matrix file

—-1ss [<.xpm>] (entropy.xpm) (Optional)
X PixMap compatible matrix file

-1s3 [<.pdb>] (gibbs3.pdb) (Optional)
Protein data bank file

—-g [<.Jog>] (shamlog.log) (Optional)
Log file

Other options:

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no]time (yes)
Expect a time in the input

=b <real> (-1)
First time to read from set

3.11. Command-line reference 271

GROMACS Documentation, Release 2026-rc

—e <real> (-1)
Last time to read from set

-ttol <real> (0)
Tolerance on time in appropriate units (usually ps)

-n <int> (1)
Read this number of sets separated by lines containing only an ampersand

-[nold (no)
Use the derivative

—[no] sham (yes)
Turn off energy weighting even if energies are given

—tsham <real> (298.15)
Temperature for single histogram analysis

—pmin <real> (0)
Minimum probability. Anything lower than this will be set to zero

—dim<vector>(111)
Dimensions for distances, used for volume correction (max 3 values, dimensions > 3 will get the same value
as the last)

-ngrid <vector> (32 32 32)
Number of bins for energy landscapes (max 3 values, dimensions > 3 will get the same value as the last)

—xmin <vector> (0 0 0)
Minimum for the axes in energy landscape (see above for > 3 dimensions)

—xmax <vector> (111)
Maximum for the axes in energy landscape (see above for > 3 dimensions)

—pmax <real> (0)
Maximum probability in output, default is calculate

—gmax <real> (0)
Maximum free energy in output, default is calculate

—emin <real> (0)
Minimum enthalpy in output, default is calculate

—emax <real> (0)
Maximum enthalpy in output, default is calculate

-nlevels <int> (25)
Number of levels for energy landscape

3.11.85 gmx sigeps

Synopsis

gmx sigeps [-o [<.xvg>]] [—[nolw] [—-xvg <enum>] [—-c6 <real>]
[-en <real>] [—-pow <int>] [-sig <real>] [—-eps <real>]
[-A <real>] [-B <real>] [-C <real>] [—-qi <real>]
[-9] <real>] [-sigfac <real>]

3.11. Command-line reference 272

GROMACS Documentation, Release 2026-rc

Description

gmx sigeps is a simple utility that converts C6/C12 or C6/Cn combinations to sigma and epsilon, or vice
versa. It can also plot the potential in file. In addition, it makes an approximation of a Buckingham potential to a
Lennard-Jones potential.

Options

Options to specify output files:

-o [<.xvg>] (potje.xvg)
xvgr/xmgr file

Other options:

—[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—c6 <real> (0.001)
C6

—cn <real> (1e-06)
Constant for repulsion

—pow <int> (12)
Power of the repulsion term

-sig <real> (0.3)
sigma

—-eps <real> (1)
epsilon

—A <real> (100000)
Buckingham A

-B <real> (32)
Buckingham B

—C <real> (0.001)
Buckingham C
—-qi <real> (0)
qi
—-q3j <real> (0)
qj

—-sigfac <real> (0.7)
Factor in front of sigma for starting the plot

3.11. Command-line reference 273

GROMACS Documentation, Release 2026-rc

3.11.86 gmx solvate
Synopsis
gnx solvate [-ep [<.gro/.g96/...>]] [-es [<.gro/.g96/...>]]

-p [<.top>]] [-o [<.gro/.g96/...>]] [-box <vector>]

—radius <real>] [-scale <real>] [-shell <real>]
—-maxsol <int>] [—[no]vel]

Description

gmx solvate can do one of 2 things:

1) Generate a box of solvent. Specify —cs and -box. Or specify —cs and —cp with a structure file with a box,
but without atoms.

2) Solvate a solute configuration, e.g. a protein, in a bath of solvent molecules. Specify —cp (solute) and —cs
(solvent). The box specified in the solute coordinate file (—cp) is used, unless —box is set. If you want the
solute to be centered in the box, the program gmx editconf (page 176) has sophisticated options to change the box
dimensions and center the solute. Solvent molecules are removed from the box where the distance between any
atom of the solute molecule(s) and any atom of the solvent molecule is less than the sum of the scaled van der
Waals radii of both atoms. A database (vdwradii.dat) of van der Waals radii is read by the program, and the
resulting radii scaled by —scale. If radii are not found in the database, those atoms are assigned the (pre-scaled)
distance —~radius. Note that the usefulness of those radii depends on the atom names, and thus varies widely
with force field.

The default solvent is Simple Point Charge water (SPC), with coordinates from $GMXLIB/spc216.gro. These
coordinates can also be used for other 3-site water models, since a short equibilibration will remove the small
differences between the models. Other solvents are also supported, as well as mixed solvents. The only restriction
to solvent types is that a solvent molecule consists of exactly one residue. The residue information in the coordinate
files is used, and should therefore be more or less consistent. In practice this means that two subsequent solvent
molecules in the solvent coordinate file should have different residue number. The box of solute is built by stacking
the coordinates read from the coordinate file. This means that these coordinates should be equlibrated in periodic
boundary conditions to ensure a good alignment of molecules on the stacking interfaces. The -maxsol option
simply adds only the first -maxsol solvent molecules and leaves out the rest that would have fitted into the box.
This can create a void that can cause problems later. Choose your volume wisely.

Setting —shell larger than zero will place a layer of water of the specified thickness (nm) around the solute.
Hint: it is a good idea to put the protein in the center of a box first (using gmx editconf (page 176)).

Finally, gmx solvate will optionally remove lines from your topology file in which a number of solvent
molecules is already added, and adds a line with the total number of solvent molecules in your coordinate file.

Options

Options to specify input files:

—cp [<.gro/.g96/...>] (protein.gro) (Optional)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp rpr (page 503)

—-cs [<.gro/.g96/...>] (spc216.gro) (Library)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

Options to specify input/output files:

-p [<.top>] (topol.top) (Optional)
Topology file

Options to specify output files:

-o [<.gro/.g96/...>] (out.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

3.11. Command-line reference 274

GROMACS Documentation, Release 2026-rc

Other options:

-box <vector> (0 0 0)
Box size (in nm)

—radius <real> (0.105)
Default van der Waals distance

-scale <real> (0.57)
Scale factor to multiply Van der Waals radii from the database in share/gromacs/top/vdwradii.dat. The
default value of 0.57 yields density close to 1000 g/1 for proteins in water.

—shell <real> (0)
Thickness of optional water layer around solute

-maxsol <int> (0)
Maximum number of solvent molecules to add if they fit in the box. If zero (default) this is ignored

—[no]vel (no)
Keep velocities from input solute and solvent

Known Issues

¢ Molecules must be whole in the initial configurations.

3.11.87 gmx sorient
Synopsis
gmx sorient [-f [<.xtc/.trr/...>]]1 [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[0 [<.xvg>]] [-no [<.xvg>]] [-ro [<.xvg>]]

[-co [<.xvg>]] [-rc [<.xvg>]] [-b <time>] [—-e <time>]

[-dt <time>] [-[no]lw] [—-xvg <enum>] [—-[no]lcom] [-[no]v23]
[=rmin <real>]

[-rbin <real>]

[-rmax <real>] [-cbin <real>]
[-[no]pbc]

Description
gmx sorient analyzes solvent orientation around solutes. It calculates two angles between the vector from one
or more reference positions to the first atom of each solvent molecule:

* theta_1: the angle with the vector from the first atom of the solvent molecule to the midpoint between atoms
2 and 3.

* theta_2: the angle with the normal of the solvent plane, defined by the same three atoms, or, when the option
—-v23 is set, the angle with the vector between atoms 2 and 3.

The reference can be a set of atoms or the center of mass of a set of atoms. The group of solvent atoms should
consist of 3 atoms per solvent molecule. Only solvent molecules between —rmin and —rmax are considered for
-o and —no each frame.

—o: distribution of cos(theta_1) for rmin<=r<=rmax.
—no: distribution of cos(theta_2) for rmin<=r<=rmax.
—ro: <cos(theta_1)> and <3cos("2theta_2)-1> as a function of the distance.

—co: the sum over all solvent molecules within distance r of cos(theta_1) and 3cos("2(theta_2)-1) as a function
of r.

—rc: the distribution of the solvent molecules as a function of r

3.11. Command-line reference 275

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)

Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing

(page 501) hSmd
-s [<.tpr/.gro/...>] (topol.tpr)

Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—-o [<.xvg>] (sori.xvg)
xvgr/xmgr file

—no [<.xvg>] (snor.xvg)
xvgr/xmgr file

-ro [<.xvg>] (sord.xvg)
xvgr/xmgr file

—co [<.xvg>] (scum.xvg)
xvgr/xmgr file

-rc [<.xvg>] (scount.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[nolw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no] com (no)
Use the center of mass as the reference position

—-[no]v23 (no)
Use the vector between atoms 2 and 3

—rmin <real> (0)
Minimum distance (nm)

—rmax <real> (0.5)
Maximum distance (nm)

—cbin <real> (0.02)
Binwidth for the cosine

—rbin <real> (0.02)
Binwidth for r (nm)

- [no]pbc (no)

Check PBC for the center of mass calculation. Only necessary when your reference group consists of several

molecules.

3.11. Command-line reference

276

GROMACS Documentation, Release 2026-rc

3.11.88 gmx spatial
Synopsis

gmx spatial [-s [<.tpr/.gro/...>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-b <time>] [-e <time>] [-dt <time>] [-[no]lw] [-[no]pbc]
[-[no]ldiv] [-ign <int>] [-bin <real>] [—-nab <int>]

Description

gmx spatial calculates the spatial distribution function and outputs it in a form that can be read by VMD
as Gaussian98 cube format. For a system of 32,000 atoms and a 50 ns trajectory, the SDF can be generated in
about 30 minutes, with most of the time dedicated to the two runs through t r jconv that are required to center
everything properly. This also takes a whole bunch of space (3 copies of the trajectory file). Still, the pictures are
pretty and very informative when the fitted selection is properly made. 3-4 atoms in a widely mobile group (like a
free amino acid in solution) works well, or select the protein backbone in a stable folded structure to get the SDF
of solvent and look at the time-averaged solvation shell. It is also possible using this program to generate the SDF
based on some arbitrary Cartesian coordinate. To do that, simply omit the preliminary gmx frjconv (page 287)
steps.

Usage:
1. Use gmx make_ndx (page 219) to create a group containing the atoms around which you want the SDF

2. gmx trjconv -s a.tpr -f a.tng -o b.tng -boxcenter tric -ur compact -pbc
none

3. gmx trjconv -s a.tpr -f b.tng -o c.tng -fit rot+trans
4. run gmx spatial onthe c.tng output of step #3.
5. Load grid. cube into VMD and view as an isosurface.

Note that systems such as micelles will require gmx trjconv -pbc cluster between steps 1 and 2.

Warnings

The SDF will be generated for a cube that contains all bins that have some non-zero occupancy. However, the
preparatory —fit rot+trans option to gmx trjconv (page 287) implies that your system will be rotating and
translating in space (in order that the selected group does not). Therefore the values that are returned will only be
valid for some region around your central group/coordinate that has full overlap with system volume throughout
the entire translated/rotated system over the course of the trajectory. It is up to the user to ensure that this is the
case.

Risky options

To reduce the amount of space and time required, you can output only the coords that are going to be used in the
first and subsequent run through gmx trjconv (page 287). However, be sure to set the —nab option to a sufficiently
high value since memory is allocated for cube bins based on the initial coordinates and the —nab option value.

3.11. Command-line reference 277

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:
-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-£f [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—[no]pbc (no)
Use periodic boundary conditions for computing distances

—[no]div (yes)
Calculate and apply the divisor for bin occupancies based on atoms/minimal cube size. Set as TRUE for
visualization and as FALSE (-nodiv) to get accurate counts per frame

—ign <int> (-1)
Do not display this number of outer cubes (positive values may reduce boundary speckles; -1 ensures outer
surface is visible)

-bin <real> (0.05)
Width of the bins (nm)

—nab <int> (16)
Number of additional bins to ensure proper memory allocation

Known Issues

* When the allocated memory is not large enough, an error may occur suggesting the use of the —nab (Num-
ber of Additional Bins) option or increasing the —nab value.

3.11.89 gmx spol
Synopsis

gmx spol [-f [<.xtc/.trr/...>]] [-s [<.tpr>]] [-n [<.ndx>]]

[-o [<.xvg>]] [-b <time>] [—-e <time>] [-dt <time>] [—[no]lw]
[-xvg <enum>] [—[no]lcom] [-refat <int>] [-rmin <real>]

[

-rmax <real>] [-dip <real>] [-bw <real>]

3.11. Command-line reference 278

GROMACS Documentation, Release 2026-rc

Description

gmx spol analyzes dipoles around a solute; it is especially useful for polarizable water. A group of reference
atoms, or a center of mass reference (option —com) and a group of solvent atoms is required. The program splits
the group of solvent atoms into molecules. For each solvent molecule the distance to the closest atom in reference
group or to the COM is determined. A cumulative distribution of these distances is plotted. For each distance
between —rmin and —rmax the inner product of the distance vector and the dipole of the solvent molecule is
determined. For solvent molecules with net charge (ions), the net charge of the ion is subtracted evenly from all
atoms in the selection of each ion. The average of these dipole components is printed. The same is done for the
polarization, where the average dipole is subtracted from the instantaneous dipole. The magnitude of the average
dipole is set with the option —dip, the direction is defined by the vector from the first atom in the selected solvent
group to the midpoint between the second and the third atom.

Options

Options to specify input files:

—-£ [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) h5md

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (scdist.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[no]w (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no] com (no)
Use the center of mass as the reference position

-refat <int> (1)
The reference atom of the solvent molecule

—rmin <real> (0)
Maximum distance (nm)

—rmax <real> (0.32)
Maximum distance (nm)

—dip <real> (0)
The average dipole (D)

-bw <real> (0.01)
The bin width

3.11. Command-line reference 279

GROMACS Documentation, Release 2026-rc

3.11.90 gmx tcaf

Synopsis

gmx tcaf [-f [<.trr/.cpt/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-ot [<.xvg>]] [=-oa [<.xvg>]] [=-o [<.xvg>]] [-of [<.xvg>]]
[moc [<.xvg>]] [-ov [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [—[no]lw] [—-xvg <enum>] [—[no]lmol] [—[no]lk34]
[-wt <real>] [—acflen <int>] [-[no]lnormalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [—endfit <real>]

Description

gmx tcaf computes tranverse current autocorrelations. These are used to estimate the shear viscosity, eta. For
details see: Palmer, Phys. Rev. E 49 (1994) pp 359-366.

Transverse currents are calculated using the k-vectors (1,0,0) and (2,0,0) each also in the y- and z-direction,
(1,1,0) and (1,-1,0) each also in the 2 other planes (these vectors are not independent) and (1,1,1) and the 3 other
box diagonals (also not independent). For each k-vector the sine and cosine are used, in combination with the
velocity in 2 perpendicular directions. This gives a total of 16%2%2=64 transverse currents. One autocorrelation is
calculated fitted for each k-vector, which gives 16 TCAFs. Each of these TCAFs is fitted to f(t) = exp(-v)(cosh(Wv)
+ 1/W sinh(Wv)), v = -t/(2 tau), W = sqrt(l - 4 tau eta/rho k”*2), which gives 16 values of tau and eta. The
fit weights decay exponentially with time constant w (given with —wt) as exp(-t/w), and the TCAF and fit are
calculated up to time 5*w. The eta values should be fitted to 1 - a eta(k) k*2, from which one can estimate the
shear viscosity at k=0.

When the box is cubic, one can use the option —oc, which averages the TCAFs over all k-vectors with the same
length. This results in more accurate TCAFs. Both the cubic TCAFs and fits are written to —oc The cubic eta
estimates are also written to —ov.

With option —mol, the transverse current is determined of molecules instead of atoms. In this case, the index
group should consist of molecule numbers instead of atom numbers.

The k-dependent viscosities in the —owv file should be fitted to eta(k) = eta_0 (1 - a k”2) to obtain the viscosity at
infinite wavelength.

Note: make sure you write coordinates and velocities often enough. The initial, non-exponential, part of the
autocorrelation function is very important for obtaining a good fit.

Options

Options to specify input files:

—-£f [<.trr/.cpt/...>] (traj.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—ot [<.xvg>] (transcur.xvg) (Optional)
xvgr/xmgr file

—oa [<.xvg>] (tcaf_all.xvg)
xvgr/xmgr file

-o [<.xvg>] (tcaf.xvg)
xvgr/xmgr file

3.11. Command-line reference 280

GROMACS Documentation, Release 2026-rc

—of [<.xvg>] (tcaf_fit.xvg)
xvgr/xmgr file

—oc [<.xvg>] (tcaf_cub.xvg) (Optional)
xvgr/xmgr file

—-ov [<.xvg>] (visc_k.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no]lmol (no)
Calculate TCAF of molecules

-[nolk34 (no)
Also use k=(3,0,0) and k=(4,0,0)

-wt <real> (5)
Exponential decay time for the TCAF fit weights

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]lnormalize (yes)
Normalize ACF

=P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—fit£fn <enum> (none)
Fit function: none, exp, aexp, exp_exp, expJ, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.91 gmx traj

Synopsis

gmx traj [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-ox [<.xvg>]] [-oxt [<.xtc/.trr/...>]] [-ov [<.xvg>]]
[-of [<.xvg>]] [=-ob [<.xvg>]] [—-ot [<.xvg>]] [—-ekt [<.xvg>]]
[-ekr [<.xvg>]] [=vd [<.xvg>]] [-cv [<.pdb>]] [-cf [<.pdb>]]
[mav [<.xvg>]] [—af [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-tu <enum>] [-[nolw] [-xvg <enum>] [—-[no]com]
[-[no]pbec] [-[no]mol] [-[no]nojump] [-[no]x] [-[no]y]
[-[nolz] [-ng <int>] [-[no]llen] [-[no]fp] [-bin <real>]
[-ctime <real>] [—-scale <real>]

3.11. Command-line reference

281

GROMACS Documentation, Release 2026-rc

Description

gmx traj plots coordinates, velocities, forces and/or the box. With —com the coordinates, velocities and forces
are calculated for the center of mass of each group. When —mo1 is set, the numbers in the index file are interpreted
as molecule numbers and the same procedure as with —com is used for each molecule.

Option —ot plots the temperature of each group, provided velocities are present in the trajectory file. No correc-
tions are made for constrained degrees of freedom! This implies —com.

Options —ekt and —ekr plot the translational and rotational kinetic energy of each group, provided velocities are
present in the trajectory file. This implies —com.

Options —cv and —cf write the average velocities and average forces as temperature factors to a .pdb (page 499)
file with the average coordinates or the coordinates at —~ct ime. The temperature factors are scaled such that the
maximum is 10. The scaling can be changed with the option —scale. To get the velocities or forces of one
frame set both —b and —e to the time of desired frame. When averaging over frames you might need to use the
—no jump option to obtain the correct average coordinates. If you select either of these option the average force
and velocity for each atom are written to an .xvg (page 506) file as well (specified with —av or —af).

Option —vd computes a velocity distribution, i.e. the norm of the vector is plotted. In addition in the same graph
the kinetic energy distribution is given.

See gmx trajectory (page 284) for plotting similar data for selections.

Options

Options to specify input files:

—-£ [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ng
(page 501) h5md

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—-ox [<.xvg>] (coord.xvg) (Optional)
xvgr/xmgr file

—oxt [<.xtc/.trr/...>] (coord.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

—ov [<.xvg>] (veloc.xvg) (Optional)
xvgr/xmgr file

—-of [<.xvg>] (force.xvg) (Optional)
xvgr/xmgr file

—-ob [<.xvg>] (box.xvg) (Optional)
xvgr/xmgr file

—ot [<.xvg>] (temp.xvg) (Optional)
xvgr/xmgr file

—ekt [<.xvg>] (ektrans.xvg) (Optional)
xvgr/xmgr file

—ekr [<.xvg>] (ekrot.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 282

GROMACS Documentation, Release 2026-rc

-vd [<.xvg>] (veldist.xvg) (Optional)
xvgr/xmgr file

—cv [<.pdb>] (veloc.pdb) (Optional)
Protein data bank file

—cf [<.pdb>] (force.pdb) (Optional)
Protein data bank file

—av [<.xvg>] (all_veloc.xvg) (Optional)
xvgr/xmgr file

—af [<.xvg>] (all_force.xvg) (Optional)
xvgr/xmgr file

Other options:

=b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no] com (no)
Plot data for the com of each group

- [nolpbc (yes)
Make molecules whole for COM

-[no]lmol (no)
Index contains molecule numbers instead of atom numbers

- [no]lnojump (no)
Remove jumps of atoms across the box

—[no]x (yes)
Plot X-component

—[noly (yes)
Plot Y-component

—[no] z (yes)

Plot Z-component
-ng <int> (1)

Number of groups to consider
—[no]len (no)

Plot vector length

—[no] £p (no)
Full precision output

=bin <real> (1)
Binwidth for velocity histogram (nm/ps)

—ctime <real> (-1)
Use frame at this time for x in —cv and —cf instead of the average x

3.11. Command-line reference

283

GROMACS Documentation, Release 2026-rc

—scale <real> (0)
Scale factor for .pdb (page 499) output, 0 is autoscale

3.11.92 gmx trajectory
Synopsis

gmx trajectory [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-ox [<.xvg>]] [-ov [<.xvg>]]
[—of [<.xvg>]] [-b <time>] [—-e <time>] [-dt <time>]
[-tu <enum>] [—-fgroup <selection>] [—-xvg <enum>]
[-[no]lrmpbec] [-[no]lpbc] [-sf <file>] [—-selrpos <enum>]
[-seltype <enum>] [-select <selection>] [—[no]x]
[-[no]y] [-[no]z] [-[no]len]

Description

gmx trajectory plots coordinates, velocities, and/or forces for provided selections. By default, the X, Y, and
Z components for the requested vectors are plotted, but specifying one or more of —1en, —x, -y, and —z overrides
this.

For dynamic selections, currently the values are written out for all positions that the selection could select.

Options

Options to specify input files:

—-f£ [<.xte/.trr/...>] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96
(page 495) pdb (page 499) g (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Input structure: 7pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

—ox [<.xvg>] (coord.xvg) (Optional)
Coordinates for each position as a function of time

—ov [<.xvg>] (veloc.xvg) (Optional)
Velocities for each position as a function of time

—of [<.xvg>] (force.xvg) (Optional)
Forces for each position as a function of time

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

—e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

3.11. Command-line reference 284

GROMACS Documentation, Release 2026-rc

—-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

—xXvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

—[no] rmpbc (yes)
Make molecules whole for each frame

- [no]pbec (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

—-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

—select <selection>
Selections to analyze

—[no]x (yes)
Plot X component

—[noly (yes)
Plot Y component

—[no] z (yes)
Plot Z component

—[no] len (no)
Plot vector length

3.11.93 gmx trjcat

Synopsis

gmx trjcat [-f [<.xtc/.trr/...> [...]]] [-n [<.ndx>]] [-demux [<.xvg>]]
[-o [<.xtc/.trr/...> [...]]] [-tu <enum>] [-xvg <enum>]
[-b <time>] [—e <time>] [-dt <time>] [—-[no]settime]
[-[no]lsort] [-[nolkeeplast] [—-[no]overwrite] [—-[no]cat]

Description

gmx trjcat concatenates several input trajectory files in sorted order. In case of double time frames the one in
the later file is used. By specifying —settime you will be asked for the start time of each file. The input files are
taken from the command line, such that a command like gmx trjcat —-f *.trr —-o fixed.trr should
do the trick. Using —cat, you can simply paste several files together without removal of frames with identical
time stamps.

One important option is inferred when the output file is amongst the input files. In that case that particular file will
be appended to which implies you do not need to store double the amount of data. Obviously the file to append to
has to be the one with lowest starting time since one can only append at the end of a file.

If the —~demux option is given, the N trajectories that are read, are written in another order as specified in the .xvg
(page 5006) file. The .xvg (page 506) file should contain something like:

3.11. Command-line reference 285

GROMACS Documentation, Release 2026-rc

The first number is the time, and subsequent numbers point to trajectory indices. The frames corresponding to the
numbers present at the first line are collected into the output trajectory. If the number of frames in the trajectory
does not match that in the .xvg (page 500) file then the program tries to be smart. Beware.

Options

Options to specify input files:

-f [<.xte/.trr/...>[...]] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) h5md

-n [<.ndx>] (index.ndx) (Optional)
Index file

—demux [<.xvg>] (remd.xvg) (Optional)
xvgr/xmgr file

Options to specify output files:

—-o [<.xte/.trr/...>[...]] (trajout.xtc)
Trajectory: xtc (page 505) trr (page 503) gro (page 495) g96 (page 495) pdb (page 499) tng (page 501)
h5md

Other options:

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-b <time> (-1)
First time to use (ps)

—e <time> (-1)
Last time to use (ps)

—dt <time> (0)
Only write frame when t MOD dt = first time (ps)

- [no] settime (no)
Change starting time interactively

—[no] sort (yes)
Sort trajectory files (not frames)

- [no]keeplast (no)
Keep overlapping frames at end of trajectory

—[no]overwrite (no)
Overwrite overlapping frames during appending

—[no]cat (no)
Do not discard double time frames

3.11. Command-line reference 286

GROMACS Documentation, Release 2026-rc

3.11.94 gmx trjconv
Synopsis

gmx trjconv [-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-fr [<.ndx>]] [-sub [<.ndx>]] [-drop [<.xvg>]]

[0 [<.xtc/.trr/...>]] [-b <time>] [—-e <time>]

[-tu <enum>] [—-[no]lw] [—-xvg <enum>] [-skip <int>]

[-dt <time>] [-[no]round] [—-dump <time>] [-t0 <time>]
[-timestep <time>] [-pbc <enum>] [-ur <enum>]

[-[no]center] [-boxcenter <enum>] [-box <vector>]

[-trans <vector>] [-shift <vector>] [—-fit <enum>]

[-ndec <int>] [—-[no]vel] [—-[no]force] [—-trunc <time>]
[-exec <string>] [-split <time>] [-[no]lsep]

[-nzero <int>] [-dropunder <real>] [-dropover <real>]
[-[no] conect]

Description

gmx trjconv can convert trajectory files in many ways:
* from one format to another
* select a subset of atoms
* change the periodicity representation
* keep multimeric molecules together
* center atoms in the box
« fit atoms to reference structure
¢ reduce the number of frames
* change the timestamps of the frames (-t 0 and —timestep)
* select frames within a certain range of a quantity given in an .xvg (page 500) file.

The option to write subtrajectories (-sub) based on the information obtained from cluster analysis has been re-
moved from gmx trjconv and is now part of [gmx extract-cluster]

gmx trjcat (page 285) is better suited for concatenating multiple trajectory files.

The following formats are supported for input and output: .xzc (page 505), .trr (page 503), .gro (page 495), .g96,
.pdb (page 499) and .tng (page 501). The file formats are detected from the file extension. The precision of the
.xtc (page 505) output is taken from the input file for .x7c (page 505), .gro (page 495) and .pdb (page 499), and
from the —ndec option for other input formats. The precision is always taken from —ndec, when this option is
set. All other formats have fixed precision. .77r (page 503) output can be single or double precision, depending
on the precision of the gmx trjconv binary. Note that velocities are only supported in .frr (page 503), .tng
(page 501), .gro (page 495) and . g96 files.

Option —sep can be used to write every frame to a separate .gro, .g96 or.pdb (page 499) file. By default,
all frames all written to one file. .pdb (page 499) files with all frames concatenated can be viewed with rasmol
—nmrpdb.

It is possible to select part of your trajectory and write it out to a new trajectory file in order to save disk space,
e.g. for leaving out the water from a trajectory of a protein in water. ALWAYS put the original trajectory on tape!
We recommend to use the portable .x7c (page 505) format for your analysis to save disk space and to have portable
files. When writing .7ng (page 501) output the file will contain one molecule type of the correct count if the
selection name matches the molecule name and the selected atoms match all atoms of that molecule. Otherwise
the whole selection will be treated as one single molecule containing all the selected atoms.

There are two options for fitting the trajectory to a reference either for essential dynamics analysis, etc. The
first option is just plain fitting to a reference structure in the structure file. The second option is a progressive fit

3.11. Command-line reference 287

GROMACS Documentation, Release 2026-rc

in which the first timeframe is fitted to the reference structure in the structure file to obtain and each subsequent
timeframe is fitted to the previously fitted structure. This way a continuous trajectory is generated, which might not
be the case when using the regular fit method, e.g. when your protein undergoes large conformational transitions.

Option —pbc sets the type of periodic boundary condition treatment:
* mol puts the center of mass of molecules in the box, and requires a run input file to be supplied with —s.
* res puts the center of mass of residues in the box.
* atom puts all the atoms in the box.

* nojump checks if atoms jump across the box and then puts them back. This has the effect that all molecules
will remain whole (provided they were whole in the initial conformation). Note that this ensures a contin-
uous trajectory but molecules may diffuse out of the box. The starting configuration for this procedure is
taken from the structure file, if one is supplied, otherwise it is the first frame.

* cluster clusters all the atoms in the selected index such that they are all closest to the center of mass of
the cluster, which is iteratively updated. Note that this will only give meaningful results if you in fact have
a cluster. Luckily that can be checked afterwards using a trajectory viewer. Note also that if your molecules
are broken this will not work either.

* whole only makes broken molecules whole.

Option —ur sets the unit cell representation for options mol, res and atom of —pbc. All three options give
different results for triclinic boxes and identical results for rectangular boxes. rect is the ordinary brick shape.
tric is the triclinic unit cell. compact puts all atoms at the closest distance from the center of the box. This
can be useful for visualizing e.g. truncated octahedra or trhombic dodecahedra. The center for options t ric and
compact is tric (see below), unless the option ~boxcenter is set differently.

Option —center centers the system in the box. The user can select the group which is used to determine the geo-
metrical center. Option ~boxcenter sets the location of the center of the box for options —pbc and —center.
The center options are: tric: half of the sum of the box vectors, rect: half of the box diagonal, zero: zero.
Use option —pbc mol in addition to —center when you want all molecules in the box after the centering.

Option -box sets the size of the new box. This option only works for leading dimensions and is thus generally
only useful for rectangular boxes. If you want to modify only some of the dimensions, e.g. when reading from a
trajectory, you can use -1 for those dimensions that should stay the same It is not always possible to use combina-
tions of —pbc, —fit, —ur and —center to do exactly what you want in one call to gmx trjconv. Consider
using multiple calls, and check out the GROMACS website for suggestions.

With —dt, it is possible to reduce the number of frames in the output. This option relies on the accuracy of the
times in your input trajectory, so if these are inaccurate use the —t imestep option to modify the time (this can
be done simultaneously). For making smooth movies, the program gmux filter (page 187) can reduce the number
of frames while using low-pass frequency filtering, this reduces aliasing of high frequency motions.

Using -t runc gmx trjconv can truncate .7rr (page 503) in place, i.e. without copying the file. This is useful
when a run has crashed during disk I/O (i.e. full disk), or when two contiguous trajectories must be concatenated
without having double frames.

Option —dump can be used to extract a frame at or near one specific time from your trajectory. If the frames in the
trajectory are not in temporal order, the result is unspecified.

Option —drop reads an .xvg (page 506) file with times and values. When options —dropunder and/or
—dropover are set, frames with a value below and above the value of the respective options will not be written.

3.11. Command-line reference 288

GROMACS Documentation, Release 2026-rc

Options

Options to specify input files:

—-f [<.xte/.trr/...>] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ing
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

—fr [<.ndx>] (frames.ndx) (Optional)
Index file

—sub [<.ndx>] (cluster.ndx) (Optional)
Index file

—drop [<.xvg>] (drop.xvg) (Optional)
xvgr/xmgr file

Options to specify output files:

—-o [<.xte/.trr/...>] (trajout.xtc)
Trajectory: xtc (page 505) trr (page 503) gro (page 495) g96 (page 495) pdb (page 499) tng (page 501)
h5Smd

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

- [no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—-xvg <enum> (xmgrace)

xvg plot formatting: xmgrace, xmgr, none
-skip <int> (1)

Only write every nr-th frame

-dt <time> (0)
Only write frame when t MOD dt = first time (ps)

- [no] round (no)

Round measurements to nearest picosecond
—dump <time> (-1)

Dump frame nearest specified time (ps)

-t 0 <time> (0)
Starting time (ps) (default: don’t change)

—-timestep <time> (0)
Change time step between input frames (ps)

—-pbc <enum> (none)
PBC treatment (see help text for full description): none, mol, res, atom, nojump, cluster, whole

—ur <enum> (rect)
Unit-cell representation: rect, tric, compact

3.11. Command-line reference 289

GROMACS Documentation, Release 2026-rc

—[no]center (no)
Center atoms in box

-boxcenter <enum> (tric)
Center for -pbc and -center: tric, rect, zero

—-box <vector> (0 0 0)
Size for new cubic box (default: read from input)

—trans <vector> (0 0 0)
All coordinates will be translated by trans. This can advantageously be combined with -pbc mol -ur compact.

—-shift <vector> (0 0 0)
All coordinates will be shifted by framenr*shift

-fit <enum> (none)
Fit molecule to ref structure in the structure file: none, rot+trans, rotxy+transxy, translation, transxy, pro-
gressive

—ndec <int> (3)
Number of decimal places to write to .xtc output

—[no]vel (yes)
Read and write velocities if possible

—[no] force (no)
Read and write forces if possible

—trunc <time> (-1)
Truncate input trajectory file after this time (ps)

—-exec <string>
Execute command for every output frame with the frame number as argument

-split <time> (0)
Start writing new file when t MOD split = first time (ps)

—[no]sep (no)
Write each frame to a separate .gro, .g96 or .pdb file

-nzero <int> (0)
If the -sep flag is set, use these many digits for the file numbers and prepend zeros as needed

—dropunder <real> (0)
Drop all frames below this value

—-dropover <real> (0)
Drop all frames above this value

—[no] conect (no)
Add CONECT PDB records when writing .pdb (page 499) files. Useful for visualization of non-standard
molecules, e.g. coarse grained ones. Can only be done when a topology (tpr) file is present

3.11.95 gmx trjorder

Synopsis

gnmx trjorder [-f [<.xtc/.trr/...>]]1 [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xtc/.trr/...>]] [-nshell [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-xvg <enum>] [-na <int>]
[-da <int>] [-[no]lcom] [-r <real>] [—-[no]z]

3.11. Command-line reference 290

GROMACS Documentation, Release 2026-rc

Description

gmx trjorder orders molecules according to the smallest distance to atoms in a reference group or on z-
coordinate (with option —z). With distance ordering, it will ask for a group of reference atoms and a group of
molecules. For each frame of the trajectory the selected molecules will be reordered according to the shortest
distance between atom number —da in the molecule and all the atoms in the reference group. The center of mass
of the molecules can be used instead of a reference atom by setting —da to 0. All atoms in the trajectory are
written to the output trajectory.

gmx trjorder can be useful for e.g. analyzing the n waters closest to a protein. In that case the reference
group would be the protein and the group of molecules would consist of all the water atoms. When an index group
of the first n waters is made, the ordered trajectory can be used with any GROMACS program to analyze the n
closest waters.

If the output file is a .pdb (page 499) file, the distance to the reference target will be stored in the B-factor field in
order to color with e.g. Rasmol.

With option —-nshel1 the number of molecules within a shell of radius —r around the reference group are printed.

Options

Options to specify input files:

—-£f [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—-o [<.xte/.trr/...>] (ordered.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) gro (page 495) g96 (page 495) pdb (page 499) tng (page 501)
h5md

-nshell [<.xvg>] (nshell.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

—-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—na <int> (3)
Number of atoms in a molecule

—da <int> (1)
Atom used for the distance calculation, 0 is COM

—[no] com (no)
Use the distance to the center of mass of the reference group

3.11. Command-line reference 291

GROMACS Documentation, Release 2026-rc

—r <real> (0)
Cutoff used for the distance calculation when computing the number of molecules in a shell around e.g. a
protein

—[no]z (no)
Order molecules on z-coordinate

3.11.96 gmx tune_pme

Synopsis
gmx tune_pme s [<.tpr>]] [-cpi [<.cpt>]] [-table [<.xvg>]]
—-tablep [<.xvg>]] [-tableb [<.xvg>]]
-rerun [<.xtc/.trr/...>]] [-ei [<.edi>]] [-p [<.out>]]
—-err [<.log>]] [-so [<.tpr>]1 [-o [<.trr/.cpt/...>]]
-x [<.xtc/.tng>]] [-epo [<.cpt>]]
c [<.gro/.g96/...>]] [—-e [<.edr>]] [-g [<.log>]]
—dhdl [<.xvg>]] [-field [<.xvg>]] [-tpi [<.xvg>]]
-tpid [<.xvg>]] [-eo [<.xvg>]] [-px [<.xvg>]]
-pf [<.xvg>]] [-ro [<.xvg>]] [-ra [<.log>]]
rs [<.log>]] [-rt [<.log>]] [-mtx [<.mtx>]]
swap [<.xvg>]] [-bo [<.trr/.cpt/...>]] [-bx [<.xtc>]]
-bcpo [<.cpt>]] [-be [<.gro/.g96/...>]] [-be [<.edr>]]

(-
[
[
[
[
(-
(-
[
[
[=
(-
[
[-bg [<.log>]] [-beo [<.xvg>]] [-bdhdl [<.xvg>]]
[-bfield [<.xvg>]] [-btpi [<.xvg>]] [-btpid [<.xvg>]]
[
[
[
[=
[
[
[
(-
(-
[=
[
[

-bdevout [<.xvg>]] [-brunav [<.xvg>]] [-bpx [<.xvg>]]
-bpf [<.xvg>]] [-bro [<.xvg>]] [-bra [<.log>]]
-brs [<.log>]] [-brt [<.log>]] [-bmtx [<.mtx>]]

-bdn [<.ndx>]] [-bswap [<.xvg>]] [—-xvg <enum>]
-mdrun <string>] [-np <int>] [-npstring <enum>]
-ntmpi <int>] [-r <int>] [-max <real>] [-min <real>]
-npme <enum>] [—fix <int>] [-rmax <real>]

rmin <real>] [—[nolscalevdw] [—-ntpr <int>]

steps <int>] [—resetstep <int>] [-nsteps <int>]

[no]launch] [-[no]lbench] [-[no]check]

-gpu_id <str1ng>] [-[no]append] [-[no]cpnum]

—deffnm <string>]

Description

For a given number —np or —ntmp1i of ranks, gmx tune_pme systematically times gmx mdrun (page 221) with
various numbers of PME-only ranks and determines which setting is fastest. It will also test whether performance
can be enhanced by shifting load from the reciprocal to the real space part of the Ewald sum. Simply pass your
.tpr (page 503) file to gmx tune_pme together with other options for gmx mdrun (page 221) as needed.

gmx tune_pme needs to call gmx mdrun (page 221) and so requires that you specify how to call mdrun with the
argument to the —mdrun parameter. Depending how you have built GROMACS, values such as ‘gmx mdrun’,
‘gmx_d mdrun’, or ‘gmx_mpi mdrun’ might be needed.

The program that runs MPI programs can be set in the environment variable MPIRUN (defaults to ‘mpirun’).
Note that for certain MPI frameworks, you need to provide a machine- or hostfile. This can also be passed via the
MPIRUN variable, e.g.

export MPIRUN="/usr/local/mpirun -machinefile hosts" Note that in such cases it is nor-
mally necessary to compile and/or run gmx tune_pme without MPI support, so that it can call the MPIRUN
program.

Before doing the actual benchmark runs, gmx tune_pme will do a quick check whether gmx mdrun (page 221)
works as expected with the provided parallel settings if the —check option is activated (the default). Please call

3.11. Command-line reference 292

GROMACS Documentation, Release 2026-rc

gmx tune_pme with the normal options you would pass to gmx mdrun (page 221) and add —np for the number
of ranks to perform the tests on, or —ntmpi for the number of threads. You can also add —r to repeat each test
several times to get better statistics.

gmx tune_pme can test various real space / reciprocal space workloads for you. With —ntpr you control
how many extra .zpr (page 503) files will be written with enlarged cutoffs and smaller Fourier grids respectively.
Typically, the first test (number 0) will be with the settings from the input .7pr (page 503) file; the last test (number
ntpr) will have the Coulomb cutoff specified by —rmax with a somewhat smaller PME grid at the same time. In
this last test, the Fourier spacing is multiplied with rmax/rcoulomb. The remaining .zpr (page 503) files will have
equally-spaced Coulomb radii (and Fourier spacings) between these extremes. Note that you can set —ntpr to
1 if you just seek the optimal number of PME-only ranks; in that case your input .zpr (page 503) file will remain
unchanged.

For the benchmark runs, the default of 1000 time steps should suffice for most MD systems. The dynamic load
balancing needs about 100 time steps to adapt to local load imbalances, therefore the time step counters are by
default reset after 100 steps. For large systems (>1M atoms), as well as for a higher accuracy of the measurements,
you should set —~resetstep to a higher value. From the ‘DD’ load imbalance entries in the md.log output file
you can tell after how many steps the load is sufficiently balanced. Example call:

gmx tune_pme -np 64 -s protein.tpr -launch

After calling gmx mdrun (page 221) several times, detailed performance information is available in the output file
perf.out. Note that during the benchmarks, a couple of temporary files are written (options ~b+), these will
be automatically deleted after each test.

If you want the simulation to be started automatically with the optimized parameters, use the command line option
—launch.

Basic support for GPU-enabled mdrun exists. Give a string containing the IDs of the GPUs that you wish to use
in the optimization in the —~gpu_1id command-line argument. This works exactly like mdrun -gpu_id, does
not imply a mapping, and merely declares the eligible set of GPU devices. gmx—tune_pme will construct calls
to mdrun that use this set appropriately. gmx—tune_pme does not support —gputasks.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

—cpi [<.cpt>] (state.cpt) (Optional)
Checkpoint file

—table [<.xvg>] (table.xvg) (Optional)
xvgr/xmgr file

—tablep [<.xvg>] (tablep.xvg) (Optional)
xvgr/xmgr file

—tableb [<.xvg>] (table.xvg) (Optional)
xvgr/xmgr file

—rerun [<.xtc/.trr/...>] (rerun.xtc) (Optional)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) ng
(page 501) h5md

—-ei [<.edi>] (sam.edi) (Optional)
ED sampling input

Options to specify output files:

-p [<.out>] (perf.out)
Generic output file

3.11. Command-line reference 293

GROMACS Documentation, Release 2026-rc

—err [<.log>] (bencherr.log)
Log file

—-so [<.tpr>] (tuned.tpr)
Portable xdr run input file

—o [<.trr/.cpt/...>] (traj.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

-x [<.xtc/.tng>] (traj_comp.xtc) (Optional)
Compressed trajectory (tng format or portable xdr format)

—cpo [<.cpt>] (state.cpt) (Optional)
Checkpoint file

—c [<.gro/.g96/...>] (confout.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

—e [<.edr>] (ener.edr)
Energy file

—-g [<.]og>] (nd.log)
Log file

—dhdl [<.xvg>] (dhdl.xvg) (Optional)
xvgr/xmgr file

—-field [<.xvg>] (field.xvg) (Optional)
xvgr/xmgr file

-tpi [<.xvg>] (tpi.xvg) (Optional)
xvgr/xmgr file

-tpid [<.xvg>] (tpidist.xvg) (Optional)
xvgr/xmgr file

—eo [<.xvg>] (edsam.xvg) (Optional)
xvgr/xmgr file

-px [<.xvg>] (pullx.xvg) (Optional)
xvgr/xmgr file

—-pf£ [<.xvg>] (pullf.xvg) (Optional)
xvgr/xmgr file

—ro [<.xvg>] (rotation.xvg) (Optional)
xvgr/xmgr file

—-ra [<.log>] (rotangles.log) (Optional)
Log file

-rs [<.log>] (rotslabs.log) (Optional)
Log file

-rt [<.log>] (rottorque.log) (Optional)
Log file

-mtx [<.mtx>] (nm.mtx) (Optional)
Hessian matrix

—-swap [<.xvg>] (swapions.xvg) (Optional)
xvgr/xmgr file

=bo [<.trr/.cpt/...>] (bench.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

-bx [<.xtc>] (bench.xtc)
Compressed trajectory (portable xdr format): xtc

3.11. Command-line reference

294

GROMACS Documentation, Release 2026-rc

-bepo [<.cpt>] (bench.cpt)
Checkpoint file

-be [<.gro/.g96/...>] (bench.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp

—-be [<.edr>] (bench.edr)
Energy file

-bg [<.log>] (bench.log)
Log file

-beo [<.xvg>] (benchedo.xvg) (Optional)
xvgr/xmgr file

-bdhdl [<.xvg>] (benchdhdl.xvg) (Optional)
xvgr/xmgr file

-bfield [<.xvg>] (benchfld.xvg) (Optional)
xvgr/xmgr file

-btpi [<.xvg>] (benchtpi.xvg) (Optional)
xvgr/xmgr file

-btpid [<.xvg>] (benchtpid.xvg) (Optional)
xvgr/xmgr file

-bdevout [<.xvg>] (benchdev.xvg) (Optional)
xvgr/xmgr file

-brunav [<.xvg>] (benchrnav.xvg) (Optional)
xvgr/xmgr file

-bpx [<.xvg>] (benchpx.xvg) (Optional)
xvgr/xmgr file

-bpf [<.xvg>] (benchpf.xvg) (Optional)
xvgr/xmgr file

-bro [<.xvg>] (benchrot.xvg) (Optional)
xvgr/xmgr file

-bra [<.log>] (benchrota.log) (Optional)
Log file

-brs [<.log>] (benchrots.log) (Optional)
Log file

-brt [<.log>] (benchrott.log) (Optional)
Log file

-bmtx [<.mtx>] (benchn.mtx) (Optional)
Hessian matrix

—=bdn [<.ndx>] (bench.ndx) (Optional)
Index file

-bswap [<.xvg>] (benchswp.xvg) (Optional)
xvgr/xmgr file

Other options:

—-xvg <enum> (Xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—-mdrun <string>
Command line to run a simulation, e.g. ‘gmx mdrun’ or ‘gmx_mpi mdrun’

—np <int> (1)
Number of ranks to run the tests on (must be > 2 for separate PME ranks)

3.11. Command-line reference 295

GROMACS Documentation, Release 2026-rc

-npstring <enum> (np)
Name of the $MP IRUN option that specifies the number of ranks to use (‘np’, or ‘n’; use ‘none’ if there is
no such option): np, n, none

—-ntmpi <int> (1)
Number of MPI-threads to run the tests on (turns MPI & mpirun off)

—r <int> (2)
Repeat each test this often

-max <real> (0.5)
Max fraction of PME ranks to test with

-min <real> (0.25)
Min fraction of PME ranks to test with

—-npme <enum> (auto)
Within -min and -max, benchmark all possible values for —-npme, or just a reasonable subset. Auto neglects
-min and -max and chooses reasonable values around a guess for npme derived from the .tpr: auto, all,
subset

-fix <int> (-2)
If >= -1, do not vary the number of PME-only ranks, instead use this fixed value and only vary rcoulomb
and the PME grid spacing.

—rmax <real> (0)
If >0, maximal rcoulomb for -ntpr>1 (rcoulomb upscaling results in fourier grid downscaling)

—rmin <real> (0)
If >0, minimal rcoulomb for -ntpr>1

—[no]scalevdw (yes)
Scale rvdw along with rcoulomb

-ntpr <int> (0)
Number of .7pr (page 503) files to benchmark. Create this many files with different rcoulomb scaling factors
depending on -rmin and -rmax. If < 1, automatically choose the number of .7pr (page 503) files to test

—-steps <int> (1000)
Take timings for this many steps in the benchmark runs

-resetstep <int> (1500)
Let dlb equilibrate this many steps before timings are taken (reset cycle counters after this many steps)

-nsteps <int> (-1)
If non-negative, perform this many steps in the real run (overwrites nsteps from .zpr (page 503), add .cpt
(page 494) steps)

—[no] launch (no)
Launch the real simulation after optimization

—[no]bench (yes)
Run the benchmarks or just create the input .zpr (page 503) files?

—[no] check (yes)
Before the benchmark runs, check whether mdrun works in parallel

—gpu_id <string>
List of unique GPU device IDs that are eligible for use

—[no] append (yes)
Append to previous output files when continuing from checkpoint instead of adding the simulation part
number to all file names (for launch only)

- [no] cpnum (no)
Keep and number checkpoint files (launch only)

3.11. Command-line reference 296

GROMACS Documentation, Release 2026-rc

—def fnm <string>
Set the default filenames (launch only)

3.11.97 gmx vanhove
Synopsis

[-f [<.xtc/.trr/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-om [<.xpm>]] [=-or [<.xvg>]] [-ot [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [—-[nolw] [—-xvg <enum>]

[-sqgqrt <real>] [—-fm <int>] [-rmax <real>] [-rbin <real>]
[-mmax <real>] [-nlevels <int>] [-nr <int>] [—fr <int>]

[[-ft <int>]

gmx vanhove

-rt <real>]

Description

gmx vanhove computes the Van Hove correlation function. The Van Hove G(r,t) is the probability that a particle
that is at r_0 at time zero can be found at position r_0+r at time t. gmx vanhove determines G not for a vector
1, but for the length of r. Thus it gives the probability that a particle moves a distance of r in time t. Jumps across
the periodic boundaries are removed. Corrections are made for scaling due to isotropic or anisotropic pressure
coupling.

With option —om the whole matrix can be written as a function of t and r or as a function of sqrt(t) and r (option
—-sqgrt).

With option —or the Van Hove function is plotted for one or more values of t. Option —nr sets the number of
times, option —fr the number spacing between the times. The binwidth is set with option —rbin. The number
of bins is determined automatically.

With option —ot the integral up to a certain distance (option —rt) is plotted as a function of time.

For all frames that are read the coordinates of the selected particles are stored in memory. Therefore the program
may use a lot of memory. For options —om and —ot the program may be slow. This is because the calculation
scales as the number of frames times —fm or —f£t. Note that with the —dt option the memory usage and calculation
time can be reduced.

Options

Options to specify input files:

—-£ [<.xte/.trr/. .. >] (traj.xtc)
Trajectory: xtc (page 505) trr (page 503) cpt (page 494) gro (page 495) g96 (page 495) pdb (page 499) tng
(page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

—om [<.xpm>] (vanhove.xpm) (Optional)
X PixMap compatible matrix file

—or [<.xvg>] (vanhove_r.xvg) (Optional)
xvgr/xmgr file

—ot [<.xvg>] (vanhove_t.xvg) (Optional)
xvgr/xmgr file

Other options:

3.11. Command-line reference 297

GROMACS Documentation, Release 2026-rc

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

—dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—-sqgrt <real> (0)
Use sqrt(t) on the matrix axis which binspacing # in sqrt(ps)

—fm <int> (0)
Number of frames in the matrix, 0 is plot all

—rmax <real> (2)
Maximum r in the matrix (nm)

—rbin <real> (0.01)
Binwidth in the matrix and for —or (nm)

—-mmax <real> (0)
Maximum density in the matrix, 0 is calculate (1/nm)

-nlevels <int> (81)
Number of levels in the matrix

—nr <int> (1)
Number of curves for the —or output

—fr <int> (0)
Frame spacing for the —or output

—rt <real> (0)
Integration limit for the —ot output (nm)

-ft <int> (0)
Number of frames in the —ot output, O is plot all

3.11.98 gmx velacc

Synopsis

gmx velacc [-f [<.trr/.cpt/...>]] [=-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-os [<.xvg>]] [-b <time>] [—-e <time>]
[-dt <time>] [-[no]lw] [-xvg <enum>] [—-[no]lm] [-[no]recip]
[-[no]lmol] [—acflen <int>] [-[no]lnormalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [—-endfit <real>]

3.11. Command-line reference

298

GROMACS Documentation, Release 2026-rc

Description

gmx velacc computes the velocity autocorrelation function. When the —m option is used, the momentum

autocorrelation function is calculated.

With option -mo1 the velocity autocorrelation function of molecules is calculated. In this case the index group

should consist of molecule numbers instead of atom numbers.

By using option —os you can also extract the estimated (vibrational) power spectrum, which is the Fourier trans-
form of the velocity autocorrelation function. Be sure that your trajectory contains frames with velocity infor-
mation (i.e. nstvout was set in your original .mdp (page 497) file), and that the time interval between data

collection points is much shorter than the time scale of the autocorrelation.

Options

Options to specify input files:

—-£f [<.trr/.cpt/...>] (traj.trr)
Full precision trajectory: trr (page 503) cpt (page 494) tng (page 501) hSmd

-s [<.tpr/.gro/...>] (topol.tpr) (Optional)
Structure+mass(db): pr (page 503) gro (page 495) g96 (page 495) pdb (page 499) brk ent

—-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (vac.xvg)
xvgr/xmgr file

—os [<.xvg>] (spectrum.xvg) (Optional)
xvgr/xmgr file

Other options:

—b <time> (0)
Time of first frame to read from trajectory (default unit ps)

—e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

—[no]lm (no)
Calculate the momentum autocorrelation function

—[no] recip (yes)
Use cm”-1 on X-axis instead of 1/ps for spectra.

—[no]lmol (no)
Calculate the velocity acf of molecules

—acflen <int> (-1)
Length of the ACF, default is half the number of frames

—[no]lnormalize (yes)
Normalize ACF

3.11. Command-line reference

299

GROMACS Documentation, Release 2026-rc

—P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

—fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp3, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

—endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.99 gmx wham
Synopsis

gmx wham [—-ix [<.dat>]] [-if [<.dat>]] [-it [<.dat>]] [-is [<.dat>]]
[-iiact [<.dat>]] [-tab [<.dat>]] [-o [<.xvg>]]

[-hist [<.xvg>]] [—-oiact [<.xvg>]] [-bsres [<.xvg>]]
[-bsprof [<.xvg>]] [—-xvg <enum>] [—-min <real>] [-max <real>]
[-[no]lauto] [-bins <int>] [—temp <real>] [-tol <real>]
[-[no]lv] [-b <real>] [—-e <real>] [-dt <real>]
[-[nolhistonly] [—-[no]lboundsonly] [—-[no]log] [-unit <enum>]
[-zprof0 <real>] [—-[nolcycl] [-[no]lsym] [-[nolac]

[-acsig <real>] [—ac—-trestart <real>] [—-nBootstrap <int>]
[-bs—method <enum>] [-bs-tau <real>] [-bs—-seed <int>]
[-histbs-block <int>] [-[no]vbs]

Description

gmx wham is an analysis program that implements the Weighted Histogram Analysis Method (WHAM). It is
intended to analyze output files generated by umbrella sampling simulations to compute a potential of mean force
(PMF).

gmx wham is currently not fully up to date. It only supports pull setups where the first pull coordinate(s) is/are
umbrella pull coordinates and, if multiple coordinates need to be analyzed, all used the same geometry and di-
mensions. In most cases this is not an issue.

At present, three input modes are supported.

» With option —1it, the user provides a file which contains the file names of the umbrella simulation run-input
files (.zpr (page 503) files), AND, with option —ix, a file which contains file names of the pullx mdrun
output files. The .7pr (page 503) and pullx files must be in corresponding order, i.e. the first .zpr (page 503)
created the first pullx, etc.

» Same as the previous input mode, except that the user provides the pull force output file names (pullf.
xvqg) with option —1 £. From the pull force the position in the umbrella potential is computed. This does
not work with tabulated umbrella potentials.

By default, all pull coordinates found in all pullx/pullf files are used in WHAM. If only some of the pull coordi-
nates should be used, a pull coordinate selection file (option —1 s) can be provided. The selection file must contain
one line for each tpr file in tpr-files.dat. Each of these lines must contain one digit (0 or 1) for each pull coordinate
in the tpr file. Here, 1 indicates that the pull coordinate is used in WHAM, and 0 means it is omitted. Example:
If you have three tpr files, each containing 4 pull coordinates, but only pull coordinates 1 and 2 should be used,
coordsel.dat looks like this:

1100
1100
1100

By default, the output files are:

3.11. Command-line reference 300

GROMACS Documentation, Release 2026-rc

TT-o7" PMF output file
“T-hist™" Histograms output file

Always check whether the histograms sufficiently overlap.

The umbrella potential is assumed to be harmonic and the force constants are read from the .7pr (page 503) files.
If a non-harmonic umbrella force was applied a tabulated potential can be provided with —t ab.

WHAM options

* —bins Number of bins used in analysis

* —temp Temperature in the simulations

* —tol Stop iteration if profile (probability) changed less than tolerance
¢ —auto Automatic determination of boundaries

e —min, -max Boundaries of the profile

The data points that are used to compute the profile can be restricted with options —b, —e, and —dt. Adjust —b to
ensure sufficient equilibration in each umbrella window.

With —1og (default) the profile is written in energy units, otherwise (with —nolog) as probability. The unit can
be specified with —unit. With energy output, the energy in the first bin is defined to be zero. If you want the free
energy at a different position to be zero, set —zprof0 (useful with bootstrapping, see below).

For cyclic or periodic reaction coordinates (dihedral angle, channel PMF without osmotic gradient), the option
—cycl is useful. gmx wham will make use of the periodicity of the system and generate a periodic PMF. The
first and the last bin of the reaction coordinate will assumed be be neighbors.

Option —sym symmetrizes the profile around z=0 before output, which may be useful for, e.g. membranes.

Parallelization

If available, the number of OpenMP threads used by gmx wham can be controlled by setting the OMP_NUM_ -
THREADS environment variable.

Autocorrelations

With -ac, gmx wham estimates the integrated autocorrelation time (IACT) tau for each umbrella window and
weights the respective window with 1/[1+2*tau/dt]. The IACTs are written to the file defined with —oiact. In
verbose mode, all autocorrelation functions (ACFs) are written to hist_autocorr.xvg. Because the IACTs
can be severely underestimated in case of limited sampling, option —acsig allows one to smooth the IACTs along
the reaction coordinate with a Gaussian (sigma provided with —acsig, see output in iact .xvg). Note that the
IACTs are estimated by simple integration of the ACFs while the ACFs are larger 0.05. If you prefer to compute
the TACTs by a more sophisticated (but possibly less robust) method such as fitting to a double exponential, you
can compute the IACTs with gmx analyze (page 130) and provide them to gmx wham with the file iact-in.
dat (option —iiact), which should contain one line per input file (pullx/pullf file) and one column per pull
coordinate in the respective file.

3.11. Command-line reference 301

GROMACS Documentation, Release 2026-rc

Error analysis

Statistical errors may be estimated with bootstrap analysis. Use it with care, otherwise the statistical error may be
substantially underestimated. More background and examples for the bootstrap technique can be found in Hub,
de Groot and Van der Spoel, JCTC (2010) 6: 3713-3720. -nBoot st rap defines the number of bootstraps (use,
e.g., 100). Four bootstrapping methods are supported and selected with ~bs-method.

* b-hist Default: complete histograms are considered as independent data points, and the bootstrap is
carried out by assigning random weights to the histograms (“Bayesian bootstrap™). Note that each point
along the reaction coordinate must be covered by multiple independent histograms (e.g. 10 histograms),
otherwise the statistical error is underestimated.

* hist Complete histograms are considered as independent data points. For each bootstrap, N histograms
are randomly chosen from the N given histograms (allowing duplication, i.e. sampling with replacement).
To avoid gaps without data along the reaction coordinate blocks of histograms (-histbs-block) may be
defined. In that case, the given histograms are divided into blocks and only histograms within each block
are mixed. Note that the histograms within each block must be representative for all possible histograms,
otherwise the statistical error is underestimated.

* traj The given histograms are used to generate new random trajectories, such that the generated data
points are distributed according the given histograms and properly autocorrelated. The autocorrelation time
(ACT) for each window must be known, so use —ac or provide the ACT with —iiact. If the ACT of all
windows are identical (and known), you can also provide them with -bs—-tau. Note that this method may
severely underestimate the error in case of limited sampling, that is if individual histograms do not represent
the complete phase space at the respective positions.

* traj—gauss The same as method traj, but the trajectories are not bootstrapped from the umbrella
histograms but from Gaussians with the average and width of the umbrella histograms. That method yields
similar error estimates like method tra j.

Bootstrapping output:
* —bsres Average profile and standard deviations
* —bsprof All bootstrapping profiles

With -vbs (verbose bootstrapping), the histograms of each bootstrap are written, and, with bootstrap method
traj, the cumulative distribution functions of the histograms.

Options

Options to specify input files:

—-ix [<.dat>] (pullx-files.dat) (Optional)
Generic data file

—-if [<.dat>] (pullf-files.dat) (Optional)
Generic data file

—-it [<.dat>] (tpr-files.dat) (Optional)
Generic data file

—-is [<.dat>] (coordsel.dat) (Optional)
Generic data file

-ijact [<.dat>] (iact-in.dat) (Optional)
Generic data file

—tab [<.dat>] (umb-pot.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.xvg>] (profile.xvg)
xvgr/xmgr file

3.11. Command-line reference 302

GROMACS Documentation, Release 2026-rc

-hist [<.xvg>] (histo.xvg)
xvgr/xmgr file

—-oiact [<.xvg>] (iact.xvg) (Optional)
xvgr/xmgr file

-bsres [<.xvg>] (bsResult.xvg) (Optional)
xvgr/xmgr file

-bsprof [<.xvg>] (bsProfs.xvg) (Optional)
xvgr/xmgr file

Other options:

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-min <real> (0)
Minimum coordinate in profile

-max <real> (0)
Maximum coordinate in profile

—[no]auto (yes)
Determine min and max automatically

—-bins <int> (200)
Number of bins in profile

—temp <real> (298)
Temperature

—tol <real> (1e-06)
Tolerance

-[no]lv (no)
Verbose mode

—b <real> (50)
First time to analyse (ps)

—e <real> (1e+20)
Last time to analyse (ps)

—dt <real> (0)
Analyse only every dt ps

—[no]histonly (no)
Write histograms and exit

—[no]boundsonly (no)

Determine min and max and exit (with —auto)

- [no]log (yes)

Calculate the log of the profile before printing

—unit <enum> (kJ)

Energy unit in case of log output: kJ, kCal, kT

—-zprof0 <real> (0)

Define profile to 0.0 at this position (with —10q)

—[no]cycl (no)

Create cyclic/periodic profile. Assumes min and max are the same point.

—[no] sym (no)
Symmetrize profile around z=0

-[nolac (no)

Calculate integrated autocorrelation times and use in wham

3.11. Command-line reference

303

GROMACS Documentation, Release 2026-rc

—acsig <real> (0)
Smooth autocorrelation times along reaction coordinate with Gaussian of this sigma

—ac—-trestart <real> (1)
When computing autocorrelation functions, restart computing every .. (ps)

—-nBootstrap <int> (0)
nr of bootstraps to estimate statistical uncertainty (e.g., 200)

-bs-method <enum> (b-hist)
Bootstrap method: b-hist, hist, traj, traj-gauss

-bs-tau <real> (0)
Autocorrelation time (ACT) assumed for all histograms. Use option —ac if ACT is unknown.

-bs-seed <int> (-1)
Seed for bootstrapping. (-1 = use time)

-histbs-block <int> (8)
When mixing histograms only mix within blocks of ~histbs-block.

- [no]vbs (no)
Verbose bootstrapping. Print the CDFs and a histogram file for each bootstrap.

3.11.100 gmx wheel
Synopsis

gmx wheel [—-f [<.dat>]] [-o [<.eps>]] [-xr0 <int>] [-rot0 <real>]
[-T <string>] [—-[no]lnn]

Description

gmx wheel plots a helical wheel representation of your sequence. The input sequence is in the .dat (page 494)

file where the first line contains the number of residues and each consecutive line contains a residue name.

Options

Options to specify input files:

—f [<.dat>] (nnnice.dat)
Generic data file

Options to specify output files:

-o [<.eps>] (plot.eps)
Encapsulated PostScript (tm) file

Other options:

-r0 <int> (1)
The first residue number in the sequence

—rot0 <real> (0)
Rotate around an angle initially (90 degrees makes sense)

-T <string>

Plot a title in the center of the wheel (must be shorter than 10 characters, or it will overwrite the wheel)

—[no]nn (yes)
Toggle numbers

3.11. Command-line reference

304

GROMACS Documentation, Release 2026-rc

3.11.101 gmx x2top

Synopsis

gnx x2top [-f [<.gro/.g96/...>]]1 [—-o [<.top>]] [-r [<.rtp>]]
[-£ff <string>] [—-[no]lv] [—-nexcl <int>] [-[no]H1l4]
[-[no]lalldih] [-[no]remdih] [-[no]lpairs] [—-name <string>]
[-[nolpbc] [—-[no]lpdbqgq] [-[no]param] [—[no]round]
[-kb <real>] [-kt <real>] [-kp <real>]

Description

gmx x2top generates a primitive topology from a coordinate file. The program assumes all hydrogens are
present when defining the hybridization from the atom name and the number of bonds. The program can also
make an .77p (page 500) entry, which you can then add to the .r7p (page 500) database.

When -param is set, equilibrium distances and angles and force constants will be printed in the topology for all
interactions. The equilibrium distances and angles are taken from the input coordinates, the force constant are set
with command line options. The force fields somewhat supported currently are:

G53a5 GROMOS96 53a5 Forcefield (official distribution)
oplsaa OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

The corresponding data files can be found in the library directory with name atomname2type.n2t. Check
Chapter 5 of the manual for more information about file formats. By default, the force field selection is interactive,
but you can use the — £ £ option to specify one of the short names above on the command line instead. In that case
gmx x2top just looks for the corresponding file.

Options

Options to specify input files:

—-f [<.gro/.g96/...>] (conf.gro)
Structure file: gro (page 495) g96 (page 495) pdb (page 499) brk ent esp 7pr (page 503)

Options to specify output files:

-o [<.top>] (out.top) (Optional)
Topology file

-r [<.rtp>] (out.rtp) (Optional)
Residue Type file used by pdb2gmx

Other options:

—£f <string> (oplsaa)
Force field for your simulation. Type “select” for interactive selection.

- [no]lv (no)
Generate verbose output in the top file.

—nexcl <int> (3)
Number of exclusions

- [no]H14 (yes)
Use 3rd neighbour interactions for hydrogen atoms

—[no]alldih (no)
Generate all proper dihedrals

—[no] remdih (no)
Remove dihedrals on the same bond as an improper

3.11. Command-line reference 305

GROMACS Documentation, Release 2026-rc

—[no]pairs (yes)
Output 1-4 interactions (pairs) in topology file

—-name <string> (ICE)
Name of your molecule

- [nolpbc (yes)
Use periodic boundary conditions.

—[no]pdbq (no)
Use the B-factor supplied in a .pdb (page 499) file for the atomic charges

—[no]param (yes)
Print parameters in the output

—[no] round (yes)
Round off measured values

—kb <real> (400000)
Bonded force constant (kJ/mol/nm”2)

-kt <real> (400)
Angle force constant (kJ/mol/rad”2)

-kp <real> (5)
Dihedral angle force constant (kJ/mol/rad”2)

Known Issues

* The atom type selection is primitive. Virtually no chemical knowledge is used
¢ Periodic boundary conditions screw up the bonding
* No improper dihedrals are generated

* The atoms to atomtype translation table is incomplete (at omname2type.n2t file in the data directory).
Please extend it and send the results back to the GROMACS crew.

3.11.102 gmx xpm2ps

Synopsis

gmx xpm2ps [—f [<.xpm>]] [-£2 [<.xpm>]] [-di [<.m2p>]] [-do [<.m2p>]]
[-o [<.eps>]] [=xpm [<.xpm>]] [—[no]lw] [—[no]frame]
[-title <enum>] [—-[nolyonce] [-legend <enum>]
[-diag <enum>] [-size <real>] [-bx <real>] [-by <real>]
[-rainbow <enum>] [—gradient <vector>] [-skip <int>]
[-[no]zeroline] [-legoffset <int>] [—combine <enum>]
[-emin <real>] [—-cmax <real>]

Description

gmx xpm2ps makes a beautiful color plot of an XPixelMap file. Labels and axis can be displayed, when they
are supplied in the correct matrix format. Matrix data may be generated by programs such as gmx rms (page 252)
or gmx mdmat (page 219).

Parameters are set in the . m2p file optionally supplied with —di. Reasonable defaults are provided. Settings for
the y-axis default to those for the x-axis. Font names have a defaulting hierarchy: titlefont -> legendfont; titlefont
-> (xfont -> yfont -> ytickfont) -> xtickfont, e.g. setting titlefont sets all fonts, setting xfont sets yfont, ytickfont
and xtickfont.

3.11. Command-line reference 306

GROMACS Documentation, Release 2026-rc

When no .m2p file is supplied, many settings are taken from command line options. The most important option
is —size, which sets the size of the whole matrix in postscript units. This option can be overridden with the
-bx and —by options (and the corresponding parameters in the .m2p file), which set the size of a single matrix
element.

With —-£2 a second matrix file can be supplied. Both matrix files will be read simultaneously and the upper left
half of the first one (-f) is plotted together with the lower right half of the second one (-£2). The diagonal
will contain values from the matrix file selected with —diag. Plotting of the diagonal values can be suppressed
altogether by setting —~diag to none. In this case, a new color map will be generated with a red gradient for
negative numbers and a blue for positive. If the color coding and legend labels of both matrices are identical, only
one legend will be displayed, else two separate legends are displayed. With —combine, an alternative operation
can be selected to combine the matrices. The output range is automatically set to the actual range of the combined
matrix. This can be overridden with —cmin and —cmax.

—title can be set to none to suppress the title, or to ylabel to show the title in the Y-label position (alongside
the y-axis).

With the —rainbow option, dull grayscale matrices can be turned into attractive color pictures.

Merged or rainbowed matrices can be written to an XPixelMap file with the —xpm option.

Options

Options to specify input files:

—-£f [<.xpm>] (root.xpm)
X PixMap compatible matrix file

-£2 [<.xpm>] (root2.xpm) (Optional)
X PixMap compatible matrix file

—di [<.m2p>] (ps.m2p) (Optional, Library)
Input file for mat2ps

Options to specify output files:

—do [<.m2p>] (out.m2p) (Optional)
Input file for mat2ps

-o [<.eps>] (plot.eps) (Optional)
Encapsulated PostScript (tm) file

—xpm [<.xpm>] (root.xpm) (Optional)
X PixMap compatible matrix file

Other options:

—[no]lw (no)
View output .xvg (page 506), .xpm (page 504), .eps (page 495) and .pdb (page 499) files

—[no] £rame (yes)
Display frame, ticks, labels, title and legend

-title <enum> (top)
Show title at: top, once, ylabel, none

—[no]yonce (no)
Show y-label only once

—-legend <enum> (both)
Show legend: both, first, second, none

—-diag <enum> (first)
Diagonal: first, second, none

—-size <real> (400)
Horizontal size of the matrix in ps units

3.11. Command-line reference 307

GROMACS Documentation, Release 2026-rc

—bx <real> (0)
Element x-size, overrides —size (also y-size when —by is not set)

-by <real> (0)
Element y-size

—rainbow <enum> (no)
Rainbow colors, convert white to: no, blue, red

—gradient <vector> (0 0 0)
Re-scale colormap to a smooth gradient from white {1,1,1} to {r,g,b}

-skip <int> (1)
only write out every nr-th row and column

—[no] zeroline (no)
insert line in .xpm (page 504) matrix where axis label is zero

-legoffset <int> (0)
Skip first N colors from .xpm (page 504) file for the legend

—combine <enum> (halves)
Combine two matrices: halves, add, sub, mult, div

—cmin <real> (0)
Minimum for combination output

—cmax <real> (0)
Maximum for combination output

3.11.103 Command-line interface and conventions

All GROMACS commands require an option before any arguments (i.e., all command-line arguments need to be
preceded by an argument starting with a dash, and values not starting with a dash are arguments to the preceding
option). Most options, except for boolean flags, expect an argument (or multiple in some cases) after the option
name. The argument must be a separate command-line argument, i.e., separated by space, asin —-f traj.xtc.
If more than one argument needs to be given to an option, they should be similarly separated from each other.
Some options also have default arguments, i.e., just specifying the option without any argument uses the default
argument. If an option is not specified at all, a default value is used; in the case of optional files, the default might
be not to use that file (see below).

All GROMACS command options start with a single dash, whether they are single- or multiple-letter options.
However, two dashes are also recognized (starting from 5.1).

In addition to command-specific options, some options are handled by the gmx wrapper, and can be specified for
any command. See wrapper binary help (page 120) for the list of such options. These options are recognized
both before the command name (e.g., gmx —quiet grompp) as well as after the command name (e.g., gmx
grompp —quiet). There is also a ~hidden option that can be specified in combination with —h to show help
for advanced/developer-targeted options.

Most analysis commands can process a trajectory with fewer atoms than the run input or structure file, but only if
the trajectory consists of the first n atoms of the run input or structure file.

3.11. Command-line reference 308

GROMACS Documentation, Release 2026-rc

Handling specific types of command-line options

boolean options
Boolean flags can be specified like —pbc and negated like —nopbc. It is also possible to use an explicit
value like -pbc no and -pbc yes.

file name options
Options that accept files names have features that support using default file names (where the default file
name is specific to that option):

* If a required option is not set, the default is used.

* If an option is marked optional, the file is not used unless the option is set (or other conditions make
the file required).

 If an option is set, and no file name is provided, the default is used.

All such options will accept file names without a file extension. The extension is automatically appended
in such a case. When multiple input formats are accepted, such as a generic structure format, the directory
will be searched for files of each type with the supplied or default name. When no file with a recognized
extension is found, an error is given. For output files with multiple formats, a default file type will be used.

Some file formats can also be read from compressed (. Z or . gz) formats.

enum options
Enumerated options (enum) should be used with one of the arguments listed in the option description. The
argument may be abbreviated, and the first match to the shortest argument in the list will be selected.

vector options
Some options accept a vector of values. Either 1 or 3 parameters can be supplied; when only one parameter
is supplied the two other values are also set to this value.

selection options
See Selection syntax and usage (page 318).

3.11.104 Commands by nhame

o gmx (page 120) - molecular dynamics simulation suite

* gmx anaeig (page 127) - Analyze eigenvectors/normal modes

* gmx analyze (page 130) - Analyze data sets

e gmx angle (page 133) - Calculate distributions and correlations for angles and dihedrals

e gmx awh (page 135) - Extract data from an accelerated weight histogram (AWH) run

» gmx bar (page 136) - Calculate free energy difference estimates through Bennett’s acceptance ratio
» gmx bundle (page 138) - Analyze bundles of axes, e.g., helices

» gmx check (page 139) - Check and compare files

e gmx chi (page 141) - Calculate everything you want to know about chi and other dihedrals

o gmx cluster (page 144) - Cluster structures

e gmx clustsize (page 148) - Calculate size distributions of atomic clusters

» gmx confrms (page 149) - Fit two structures and calculates the RMSD

e gmx convert-tpr (page 151) - Make a modified run-input file

* gmx convert-trj (page 152) - Converts between different trajectory types

e gmx covar (page 153) - Calculate and diagonalize the covariance matrix

» gmx current (page 155) - Calculate dielectric constants and current autocorrelation function

» gmx density (page 157) - Calculate the density of the system

3.11. Command-line reference 309

GROMACS Documentation, Release 2026-rc

* gmx densmap (page 159) - Calculate 2D planar or axial-radial density maps

» gmx densorder (page 160) - Calculate surface fluctuations

e gmx dielectric (page 162) - Calculate frequency dependent dielectric constants

e gmx dipoles (page 163) - Compute the total dipole plus fluctuations

» gmx disre (page 166) - Analyze distance restraints

» gmx distance (page 168) - Calculate distances between pairs of positions

e gmx dos (page 170) - Analyze density of states and properties based on that

e gmx dssp (page 171) - Calculate protein secondary structure via DSSP algorithm

* gmx dump (page 174) - Make binary files human readable

» gmx dyecoupl (page 175) - Extract dye dynamics from trajectories

e gmx editconf (page 176) - Convert and manipulates structure files

* gmx eneconv (page 179) - Convert energy files

» gmx enemat (page 180) - Extract an energy matrix from an energy file

o gmx energy (page 182) - Writes energies to xvg files and display averages

o gmx extract-cluster (page 186) - Allows extracting frames corresponding to clusters from trajectory
o gmx filter (page 187) - Frequency filter trajectories, useful for making smooth movies

e gmx freevolume (page 189) - Calculate free volume

e gmx gangle (page 190) - Calculate angles

e gmx genconf (page 192) - Multiply a conformation in ‘random’ orientations

» gmx genion (page 193) - Generate monoatomic ions on energetically favorable positions

» gmx genrestr (page 195) - Generate position restraints or distance restraints for index groups
» gmx grompp (page 196) - Make a run input file

e gmx gyrate (page 198) - Calculate radius of gyration of a molecule

» gmx gyrate-legacy (page 200) - Calculate the radius of gyration

e gmx h2order (page 201) - Compute the orientation of water molecules

» gmx hbond (page 203) - Compute and analyze hydrogen bonds.

» gmx hbond-legacy (page 205) - Compute and analyze hydrogen bonds

e gmx helix (page 208) - Calculate basic properties of alpha helices

e gmx helixorient (page 210) - Calculate local pitch/bending/rotation/orientation inside helices
* gmx help (page 211) - Print help information

e gmx hydorder (page 211) - Compute tetrahedrality parameters around a given atom

e gmx insert-molecules (page 213) - Insert molecules into existing vacancies

» gmx lie (page 214) - Estimate free energy from linear combinations

* gmx make_edi (page 215) - Generate input files for essential dynamics sampling

* gmx make_ndx (page 219) - Make index files

» gmx mdmat (page 219) - Calculate residue contact maps

o gmx mdrun (page 221) - Perform a simulation, do a normal mode analysis or an energy minimization
* gmx mindist (page 226) - Calculate the minimum distance between two groups

o gmx mk_angndx (page 228) - Generate index files for ‘gmx angle’

3.11. Command-line reference 310

GROMACS Documentation, Release 2026-rc

* gmx msd (page 228) - Compute mean squared displacements

» gmx nmeig (page 230) - Diagonalize the Hessian for normal mode analysis

» gmx nmens (page 232) - Generate an ensemble of structures from the normal modes

» gmx nmr (page 233) - Analyze nuclear magnetic resonance properties from an energy file

» gmx nmtraj (page 234) - Generate a virtual oscillating trajectory from an eigenvector

» gmx nonbonded-benchmark (page 235) - Benchmarking tool for the non-bonded pair kernels.
e gmx order (page 237) - Compute the order parameter per atom for carbon tails

* gmx pairdist (page 239) - Calculate pairwise distances between groups of positions

* gmx pdb2gmx (page 241) - Convert coordinate files to topology and FF-compliant coordinate files
* gmx pme_error (page 244) - Estimate the error of using PME with a given input file

e gmx polystat (page 245) - Calculate static properties of polymers

» gmx potential (page 246) - Calculate the electrostatic potential across the box

» gmx principal (page 248) - Calculate principal axes of inertia for a group of atoms

e gmx rama (page 249) - Compute Ramachandran plots

o gmx rdf (page 250) - Calculate radial distribution functions

* gmx report-methods (page 252) - Write short summary about the simulation setup to a text file and/or to the
standard output.

o gmx rms (page 252) - Calculate RMSDs with a reference structure and RMSD matrices
o gmx rmsdist (page 255) - Calculate atom pair distances averaged with power -2, -3 or -6
» gmx rmsf (page 256) - Calculate atomic fluctuations

» gmx rotacf (page 258) - Calculate the rotational correlation function for molecules

» gmx rotmat (page 259) - Plot the rotation matrix for fitting to a reference structure

» gmx saltbr (page 260) - Compute salt bridges

* gmx sans-legacy (page 261) - Compute small angle neutron scattering spectra

» gmx sasa (page 263) - Compute solvent accessible surface area

* gmx saxs-legacy (page 265) - Compute small angle X-ray scattering spectra

» gmx scattering (page 266) - Calculate small angle scattering profiles for SANS or SAXS
» gmx select (page 268) - Print general information about selections

o gmx sham (page 270) - Compute free energies or other histograms from histograms

» gmx sigeps (page 272) - Convert c6/12 or c6/cn combinations to and from sigma/epsilon
» gmx solvate (page 274) - Solvate a system

» gmx sorient (page 275) - Analyze solvent orientation around solutes

o gmx spatial (page 277) - Calculate the spatial distribution function

» gmx spol (page 278) - Analyze solvent dipole orientation and polarization around solutes
» gmx tcaf (page 280) - Calculate viscosities of liquids

e gmx traj (page 281) - Plot x, v, f, box, temperature and rotational energy from trajectories
» gmx trajectory (page 284) - Print coordinates, velocities, and/or forces for selections

» gmx trjcat (page 285) - Concatenate trajectory files

» gmx trjconv (page 287) - Convert and manipulates trajectory files

3.11. Command-line reference 311

GROMACS Documentation, Release 2026-rc

» gmx trjorder (page 290) - Order molecules according to their distance to a group

» gmx tune_pme (page 292) - Time mdrun as a function of PME ranks to optimize settings
e gmx vanhove (page 297) - Compute Van Hove displacement and correlation functions

» gmx velacc (page 298) - Calculate velocity autocorrelation functions

o gmx wham (page 300) - Perform weighted histogram analysis after umbrella sampling

o gmx wheel (page 304) - Plot helical wheels

e gmx x2top (page 305) - Generate a primitive topology from coordinates

» gmx xpm2ps (page 306) - Convert XPM (XPixelMap) matrices to postscript or XPM

3.11.105 Commands by topic
Trajectory analysis
gmx gangle (page 190)
Calculate angles

gmx convert-trj (page 152)
Converts between different trajectory types

gmx distance (page 168)
Calculate distances between pairs of positions

gmx dssp (page 171)
Calculate protein secondary structure via DSSP algorithm

gmx extract-cluster (page 186)
Allows extracting frames corresponding to clusters from trajectory

gmx freevolume (page 189)
Calculate free volume

gmx hbond (page 203)
Compute and analyze hydrogen bonds.

gmx msd (page 228)
Compute mean squared displacements

gmx pairdist (page 239)
Calculate pairwise distances between groups of positions

gmx rdf (page 250)
Calculate radial distribution functions

gmx sasa (page 263)
Compute solvent accessible surface area

gmx scattering (page 266)
Calculate small angle scattering profiles for SANS or SAXS

gmx select (page 268)
Print general information about selections

gmx trajectory (page 284)
Print coordinates, velocities, and/or forces for selections

gmx gyrate (page 198)
Calculate radius of gyration of a molecule

3.11. Command-line reference 312

GROMACS Documentation, Release 2026-rc

Generating topologies and coordinates
gmx editconf (page 176)
Edit the box and write subgroups

gmx x2top (page 305)
Generate a primitive topology from coordinates

gmx solvate (page 274)
Solvate a system

gmx insert-molecules (page 213)
Insert molecules into existing vacancies

gmx genconf (page 192)
Multiply a conformation in ‘random’ orientations

gmx genion (page 193)
Generate monoatomic ions on energetically favorable positions

gmx genrestr (page 195)
Generate position restraints or distance restraints for index groups

gmx pdb2gmx (page 241)
Convert coordinate files to topology and FF-compliant coordinate files

Running a simulation
gmx grompp (page 196)
Make a run input file

gmx mdrun (page 221)
Perform a simulation, do a normal mode analysis or an energy minimization

gmx convert-tpr (page 151)
Make a modified run-input file

Viewing trajectories

gmx nmtraj (page 234)
Generate a virtual oscillating trajectory from an eigenvector

Processing energies
gmx enemat (page 180)
Extract an energy matrix from an energy file

gmx energy (page 182)
Writes energies to xvg files and display averages

gmx mdrun (page 221)
(Re)calculate energies for trajectory frames with -rerun

3.11. Command-line reference

313

GROMACS Documentation, Release 2026-rc

Converting files
gmx editconf (page 176)
Convert and manipulates structure files

gmx eneconv (page 179)
Convert energy files

gmx sigeps (page 272)
Convert ¢6/12 or c6/cn combinations to and from sigma/epsilon

gmx trjcat (page 285)
Concatenate trajectory files

gmx trjconv (page 287)
Convert and manipulates trajectory files

gmx xpm2ps (page 306)
Convert XPM (XPixelMap) matrices to postscript or XPM

Tools
gmx analyze (page 130)
Analyze data sets

gmx awh (page 135)
Extract data from an accelerated weight histogram (AWH) run

gmyx filter (page 187)
Frequency filter trajectories, useful for making smooth movies

gmx lie (page 214)
Estimate free energy from linear combinations

gmx pme_error (page 244)
Estimate the error of using PME with a given input file

gmx sham (page 270)
Compute free energies or other histograms from histograms

gmx spatial (page 277)
Calculate the spatial distribution function

gmx traj (page 281)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx tune_pme (page 292)
Time mdrun as a function of PME ranks to optimize settings

gmx wham (page 300)
Perform weighted histogram analysis after umbrella sampling

gmx check (page 139)
Check and compare files

gmx dump (page 174)
Make binary files human readable

gmx make_ndx (page 219)
Make index files

gmx mk_angndx (page 228)
Generate index files for ‘gmx angle’

gmx trjorder (page 290)
Order molecules according to their distance to a group

3.11. Command-line reference

314

GROMACS Documentation, Release 2026-rc

gmx xpm2ps (page 306)
Convert XPM (XPixelMap) matrices to postscript or XPM

gmx report-methods (page 252)
Write short summary about the simulation setup to a text file and/or to the standard output.

Distances between structures
gmx cluster (page 144)
Cluster structures

gmx confrms (page 149)
Fit two structures and calculates the RMSD

gmx rms (page 252)
Calculate RMSDs with a reference structure and RMSD matrices

gmx rmsf (page 256)
Calculate atomic fluctuations

Distances in structures over time
gmx mindist (page 226)
Calculate the minimum distance between two groups

gmx mdmat (page 219)
Calculate residue contact maps

gmx polystat (page 245)
Calculate static properties of polymers

gmx rmsdist (page 255)
Calculate atom pair distances averaged with power -2, -3 or -6

Mass distribution properties over time

gmx gyrate-legacy (page 200)
Calculate the radius of gyration

gmx polystat (page 245)
Calculate static properties of polymers

gmx rdf (page 250)
Calculate radial distribution functions

gmx rotacf (page 258)
Calculate the rotational correlation function for molecules

gmx rotmat (page 259)
Plot the rotation matrix for fitting to a reference structure

gmx sans-legacy (page 261)
Compute small angle neutron scattering spectra

gmx saxs-legacy (page 265)
Compute small angle X-ray scattering spectra

gmx traj (page 281)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx vanhove (page 297)
Compute Van Hove displacement and correlation functions

3.11. Command-line reference 315

GROMACS Documentation, Release 2026-rc

Analyzing bonded interactions
gmx angle (page 133)
Calculate distributions and correlations for angles and dihedrals

gmx mk_angndx (page 228)
Generate index files for ‘gmx angle’

Structural properties
gmx bundle (page 138)
Analyze bundles of axes, e.g., helices

gmx clustsize (page 148)
Calculate size distributions of atomic clusters

gmx disre (page 166)
Analyze distance restraints

gmx hbond-legacy (page 205)
Compute and analyze hydrogen bonds

gmx order (page 237)
Compute the order parameter per atom for carbon tails

gmx principal (page 248)
Calculate principal axes of inertia for a group of atoms

gmx rdf (page 250)
Calculate radial distribution functions

gmx saltbr (page 260)
Compute salt bridges

gmx sorient (page 275)
Analyze solvent orientation around solutes

gmx spol (page 278)
Analyze solvent dipole orientation and polarization around solutes

Kinetic properties
gmx bar (page 136)
Calculate free energy difference estimates through Bennett’s acceptance ratio

gmx current (page 155)
Calculate dielectric constants and current autocorrelation function

gmx dos (page 170)
Analyze density of states and properties based on that

gmx dyecoupl (page 175)
Extract dye dynamics from trajectories

gmx principal (page 248)
Calculate principal axes of inertia for a group of atoms

gmx tcaf (page 280)
Calculate viscosities of liquids

gmx traj (page 281)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx vanhove (page 297)
Compute Van Hove displacement and correlation functions

3.11. Command-line reference

316

GROMACS Documentation, Release 2026-rc

gmx velacc (page 298)
Calculate velocity autocorrelation functions

Electrostatic properties
gmx current (page 155)
Calculate dielectric constants and current autocorrelation function

gmx dielectric (page 162)
Calculate frequency dependent dielectric constants

gmx dipoles (page 163)
Compute the total dipole plus fluctuations

gmx potential (page 246)
Calculate the electrostatic potential across the box

gmx spol (page 278)
Analyze solvent dipole orientation and polarization around solutes

gmx genion (page 193)
Generate monoatomic ions on energetically favorable positions

Protein-specific analysis
gmx chi (page 141)
Calculate everything you want to know about chi and other dihedrals

gmx helix (page 208)
Calculate basic properties of alpha helices

gmx helixorient (page 210)
Calculate local pitch/bending/rotation/orientation inside helices

gmx rama (page 249)
Compute Ramachandran plots

gmx wheel (page 304)
Plot helical wheels

Interfaces
gmx bundle (page 138)
Analyze bundles of axes, e.g., helices

gmx density (page 157)
Calculate the density of the system

gmx densmap (page 159)
Calculate 2D planar or axial-radial density maps

gmx densorder (page 160)
Calculate surface fluctuations

gmx h2order (page 201)
Compute the orientation of water molecules

gmx hydorder (page 211)
Compute tetrahedrality parameters around a given atom

gmx order (page 237)
Compute the order parameter per atom for carbon tails

3.11. Command-line reference

317

GROMACS Documentation, Release 2026-rc

gmx potential (page 246)
Calculate the electrostatic potential across the box

Covariance analysis

gmx anaeig (page 127)
Analyze the eigenvectors

gmx covar (page 153)
Calculate and diagonalize the covariance matrix

gmx make_edi (page 215)
Generate input files for essential dynamics sampling

Normal modes

gmx anaeig (page 127)
Analyze the normal modes

gmx nmeig (page 230)
Diagonalize the Hessian for normal mode analysis

gmx nmtraj (page 234)
Generate a virtual oscillating trajectory from an eigenvector

gmx nmens (page 232)
Generate an ensemble of structures from the normal modes

gmx grompp (page 196)
Make a run input file

gmx mdrun (page 221)
Find a potential energy minimum and calculate the Hessian

3.11.106 Special topics

The information in these topics is also accessible through gmx help topic on the command line.

Selection syntax and usage

Selections are used to select atoms/molecules/residues for analysis. In contrast to traditional index files, selections
can be dynamic, i.e., select different atoms for different trajectory frames. The GROMACS manual contains a
short introductory section to selections in the Analysis chapter, including suggestions on how to get familiar with
selections if you are new to the concept. The subtopics listed below provide more details on the technical and
syntactic aspects of selections.

Each analysis tool requires a different number of selections and the selections are interpreted differently. The
general idea is still the same: each selection evaluates to a set of positions, where a position can be an atom
position or center-of-mass or center-of-geometry of a set of atoms. The tool then uses these positions for its
analysis to allow very flexible processing. Some analysis tools may have limitations on the types of selections
allowed.

3.11. Command-line reference 318

GROMACS Documentation, Release 2026-rc

Specifying selections from command line

If no selections are provided on the command line, you are prompted to type the selections interactively (a pipe
can also be used to provide the selections in this case for most tools). While this works well for testing, it is easier
to provide the selections from the command line if they are complex or for scripting.

Each tool has different command-line arguments for specifying selections (see the help for the individual tools).
You can either pass a single string containing all selections (separated by semicolons), or multiple strings, each
containing one selection. Note that you need to quote the selections to protect them from the shell.

If you set a selection command-line argument, but do not provide any selections, you are prompted to type the
selections for that argument interactively. This is useful if that selection argument is optional, in which case it is
not normally prompted for.

To provide selections from a file, use —sf file.dat in the place of the selection for a selection argument
(e.g., —select -sf file.dat). In general, the —sf argument reads selections from the provided file and
assigns them to selection arguments that have been specified up to that point, but for which no selections have
been provided. As a special case, —sf provided on its own, without preceding selection arguments, assigns the
selections to all (yet unset) required selections (i.e., those that would be prompted interactively if no selections are
provided on the command line).

To use groups from a traditional index file, use argument —n to provide a file. See the “syntax” subtopic for how
to use them. If this option is not provided, default groups are generated. The default groups are generated with the
same logic as for non-selection tools.

Depending on the tool, two additional command-line arguments may be available to control the behavior:

e —seltype can be used to specify the default type of positions to calculate for each selection.

* —selrpos can be used to specify the default type of positions used in selecting atoms by coordinates.
See the “positions” subtopic for more information on these options.

Tools that take selections apply them to a structure/topology and/or a trajectory file. If the tool takes both (typically
as —s for structure/topology and - £ for trajectory), then the trajectory file is only used for coordinate information,
and all other information, such as atom names and residue information, is read from the structure/topology file. If
the tool only takes a structure file, or if only that input parameter is provided, then also the coordinates are taken
from that file. For example, to select atoms from a .pdb/. gro file in a tool that provides both options, pass it
as —s (only). There is no warning if the trajectory file specifies, e.g., different atom names than the structure file.
Only the number of atoms is checked. Many selection-enabled tools also provide an —fgroup option to specify
the atom indices that are present in the trajectory for cases where the trajectory only has a subset of atoms from
the topology/structure file.

Selection syntax

A set of selections consists of one or more selections, separated by semicolons. Each selection defines a set of
positions for the analysis. Each selection can also be preceded by a string that gives a name for the selection for
use in, e.g., graph legends. If no name is provided, the string used for the selection is used automatically as the
name.

For interactive input, the syntax is slightly altered: line breaks can also be used to separate selections. followed
by a line break can be used to continue a line if necessary. Notice that the above only applies to real interactive
input, not if you provide the selections, e.g., from a pipe.

It is possible to use variables to store selection expressions. A variable is defined with the following syntax:

[VARNAME = EXPR ; }

where EXPR is any valid selection expression. After this, VARNAME can be used anywhere where EXPR would be
valid.

3.11. Command-line reference 319

GROMACS Documentation, Release 2026-rc

Selections are composed of three main types of expressions, those that define atoms (ATOM_EXPR), those that
define positions (POS_EXPR), and those that evaluate to numeric values (NUM_EXPR). Each selection should be
aPOS_EXPRoraATOM_EXPR (the latter is automatically converted to positions). The basic rules are as follows:

e An expression like NUM_EXPR1 < NUM_EXPR2 evaluates to an ATOM_EXPR that selects all the atoms
for which the comparison is true.

e Atom expressions can be combined with boolean operations such as not ATOM_EXPR, ATOM_EXPR
and ATOM_EXPR, or ATOM_EXPR or ATOM_EXPR. Parentheses can be used to alter the evaluation
order.

e ATOM_EXPR expressions can be converted into POS__EXPR expressions in various ways, see the “positions”
subtopic for more details.

* POS_EXPR can be converted into NUM_EXPR using syntax like “x of POS_EXPR”. Currently, this is
only supported for single positions like in expression “x of cog of ATOM_EXPR”.

Some keywords select atoms based on string values such as the atom name. For these keywords, it is possible to use
wildcards (name "C«") or regular expressions (e.g., resname "R[AB]"). The match type is automatically
guessed from the string: if it contains other characters than letters, numbers, ‘*’, or *?’, it is interpreted as a regular
expression. To force the matching to use literal string matching, use name = "Cx" to match a literal C*. To

force other type of matching, use ‘?” or ‘~’ in place of ‘=" to force wildcard or regular expression matching,
respectively.

Strings that contain non-alphanumeric characters should be enclosed in double quotes as in the examples. For
other strings, the quotes are optional, but if the value conflicts with a reserved keyword, a syntax error will occur.
If your strings contain uppercase letters, this should not happen.

Index groups provided with the —n command-line option or generated by default can be accessed with group
NR or group NAME, where NR is a zero-based index of the group and NAME is part of the name of the desired
group. The keyword group is optional if the whole selection is provided from an index group. To see a list of
available groups in the interactive mode, press enter in the beginning of a line.

Specifying positions in selections

Possible ways of specifying positions in selections are:
1. A constant position can be defined as [XX, YY, ZZ], where XX, YY and ZZ are real numbers.

2. com of ATOM_EXPR [pbc] orcog of ATOM_EXPR [pbc] calculate the center of mass/geometry
of ATOM_EXPR. If pbc is specified, the center is calculated iteratively to try to deal with cases where
ATOM_EXPR wraps around periodic boundary conditions.

3. POSTYPE of ATOM_EXPR calculates the specified positions for the atoms in ATOM_EXPR. POSTYPE
can be atom, res_com, res_cog, mol_comor mol_cog, with an optional prefix whole_ part_ or
dyn_. whole_ calculates the centers for the whole residue/molecule, even if only part of it is selected.
part_ prefix calculates the centers for the selected atoms, but uses always the same atoms for the same
residue/molecule. The used atoms are determined from the largest group allowed by the selection. dyn_ -
calculates the centers strictly only for the selected atoms. If no prefix is specified, whole selections default
to part_ and other places default to whole_. The latter is often desirable to select the same molecules
in different tools, while the first is a compromise between speed (dyn__ positions can be slower to evaluate
than part_) and intuitive behavior.

4. ATOM_EXPR, when given for whole selections, is handled as 3. above, using the position type from the
command-line argument —seltype.

Selection keywords that select atoms based on their positions, such as dist from, use by default the positions
defined by the —selrpos command-line option. This can be overridden by prepending a POSTYPE specifier to
the keyword. For example, res_com dist from POS evaluates the residue center of mass distances. In the
example, all atoms of a residue are either selected or not, based on the single distance calculated.

3.11. Command-line reference 320

GROMACS Documentation, Release 2026-rc

Arithmetic expressions in selections

Basic arithmetic evaluation is supported for numeric expressions. Supported operations are addition, subtraction,
negation, multiplication, division, and exponentiation (using *). Result of a division by zero or other illegal
operations is undefined.

Selection keywords

The following selection keywords are currently available. For keywords marked with a plus, additional help is
available through a subtopic KEYWORD, where KEYWORD is the name of the keyword.

» Keywords that select atoms by an integer property:

atomnr

mol (synonym for molindex)
molecule (synonym for molindex)
molindex

resid (synonym for resnr)
residue (synonym for resindex)
resindex

resnr

(use in expressions or like “atomnr 1 to 57 97)

» Keywords that select atoms by a numeric property:

beta (synonym for betafactor)
betafactor

charge

distance from POS [cutoff REAL]
distance from POS [cutoff REAL]

mass

mindistance from POS EXPR [cutoff REAL]
mindistance from POS _EXPR [cutoff REAL]
occupancy

X

Yy
Z

(use in expressions or like “occupancy 0.5 to 1)

» Keywords that select atoms by a string property:

-

altloc

atomname

atomtype

chain

insertcode

name (synonym for atomname)
pdbatomname

pdbname (synonym for pdbatomname)
resname

type (synonym for atomtype)

(use like “name PATTERN [PATTERN] ...")

* Additional keywords that directly select atoms:

3.11. Command-line reference 321

GROMACS Documentation, Release 2026-rc

all

insolidangle center POS span POS_EXPR [cutoff REAL]
none

same KEYWORD as ATOM_EXPR

within REAL of POS_EXPR

» Keywords that directly evaluate to positions:

cog of ATOM_EXPR [pbc]
com of ATOM_EXPR [pbc]

(see also “positions” subtopic)

* Additional keywords:

merge POSEXPR
POSEXPR permute P1 ... PN
plus POSEXPR

Selecting atoms by name - atomname, name, pdbatomname, pdbname

name
pdbname
atomname
pdbatomname

These keywords select atoms by name. name selects atoms using the GROMACS atom naming convention. For
input formats other than PDB, the atom names are matched exactly as they appear in the input file. For PDB files,
4 character atom names that start with a digit are matched after moving the digit to the end (e.g., to match 3HG2
from a PDB file, use name HG23). pdbname can only be used with a PDB input file, and selects atoms based
on the exact name given in the input file, without the transformation described above.

atomname and pdbatomname are synonyms for the above two keywords.

Selecting based on distance - dist, distance, mindist, mindistance, within

distance from POS [cutoff REAL]
mindistance from POS EXPR [cutoff REAL]
within REAL of POS_EXPR

distance and mindistance calculate the distance from the given position(s), the only difference being in
that distance only accepts a single position, while any number of positions can be given for mindistance,
which then calculates the distance to the closest position. within directly selects atoms that are within REAL of
POS_EXPR

For the first two keywords, it is possible to specify a cutoff to speed up the evaluation: all distances above the
specified cutoff are returned as equal to the cutoff.

3.11. Command-line reference 322

GROMACS Documentation, Release 2026-rc

Selecting atoms in a solid angle - insolidangle

[insolidangle center POS span POS_EXPR [cutoff REAL] }

This keyword selects atoms that are within REAL degrees (default=5) of any position in POS_EXPR as seen from
POS a position expression that evaluates to a single position), i.e., atoms in the solid angle spanned by the positions
in POS_EXPR and centered at POS.

Technically, the solid angle is constructed as a union of small cones whose tip is at POS and the axis goes through
a point in POS_EXPR. There is such a cone for each position in POS_EXPR, and point is in the solid angle if it
lies within any of these cones. The cutoff determines the width of the cones.

Merging selections - merge, plus

POSEXPR merge POSEXPR [stride INT]
POSEXPR merge POSEXPR [merge POSEXPR ...]
POSEXPR plus POSEXPR [plus POSEXPR ...]

Basic selection keywords can only create selections where each atom occurs at most once. The merge and plus
selection keywords can be used to work around this limitation. Both create a selection that contains the positions
from all the given position expressions, even if they contain duplicates. The difference between the two is that
merge expects two or more selections with the same number of positions, and the output contains the input
positions selected from each expression in turn, i.e., the output is like A1 B1 A2 B2 and so on. It is also possible
to merge selections of unequal size as long as the size of the first is a multiple of the second one. The stride
parameter can be used to explicitly provide this multiplicity. plus simply concatenates the positions after each
other, and can work also with selections of different sizes. These keywords are valid only at the selection level,
not in any subexpressions.

Permuting selections - permute

[permute Pl ... PN J

By default, all selections are evaluated such that the atom indices are returned in ascending order. This can be
changed by appending permute P1 P2 ... PN to an expression. The Pi should form a permutation of the
numbers 1 to N. This keyword permutes each N-position block in the selection such that the i’th position in the
block becomes Pi’th. Note that it is the positions that are permuted, not individual atoms. A fatal error occurs if
the size of the selection is not a multiple of n. It is only possible to permute the whole selection expression, not
any subexpressions, i.e., the permute keyword should appear last in a selection.

Selecting atoms by residue number - resid, residue, resindex, resnr

resnr
resid
resindex
residue

resnr selects atoms using the residue numbering in the input file. resid is synonym for this keyword for VMD
compatibility.

resindex N selects the N th residue starting from the beginning of the input file. This is useful for uniquely
identifying residues if there are duplicate numbers in the input file (e.g., in multiple chains). residue is a
synonym for resindex. This allows same residue as to work as expected.

3.11. Command-line reference 323

GROMACS Documentation, Release 2026-rc

Extending selections - same

[same KEYWORD as ATOM_EXPR J

The keyword same can be used to select all atoms for which the given KEYWORD matches any of the atoms in
ATOM_EXPR. Keywords that evaluate to integer or string values are supported.

Selection evaluation and optimization

Boolean evaluation proceeds from left to right and is short-circuiting i.e., as soon as it is known whether an atom
will be selected, the remaining expressions are not evaluated at all. This can be used to optimize the selections:
you should write the most restrictive and/or the most inexpensive expressions first in boolean expressions. The
relative ordering between dynamic and static expressions does not matter: all static expressions are evaluated only
once, before the first frame, and the result becomes the leftmost expression.

Another point for optimization is in common subexpressions: they are not automatically recognized, but can be
manually optimized by the use of variables. This can have a big impact on the performance of complex selections,
in particular if you define several index groups like this:

rdist = distance from com of resnr 1 to 5;
resname RES and rdist < 2;
resname RES and rdist < 4;
resname RES and rdist < 6;

Without the variable assignment, the distances would be evaluated three times, although they are exactly the same
within each selection. Anything assigned into a variable becomes a common subexpression that is evaluated only
once during a frame. Currently, in some cases the use of variables can actually lead to a small performance loss
because of the checks necessary to determine for which atoms the expression has already been evaluated, but this
should not be a major problem.

Selection limitations

* Some analysis programs may require a special structure for the input selections (e.g., some options of gmx
gangle require the index group to be made of groups of three or four atoms). For such programs, it is up
to the user to provide a proper selection expression that always returns such positions.

¢ All selection keywords select atoms in increasing order, i.e., you can consider them as set operations that in
the end return the atoms in sorted numerical order. For example, the following selections select the same
atoms in the same order:

s N

resname RA RB RC
resname RB RC RA

L J

atomnr 10 11 12 13
atomnr 12 13 10 11
atomnr 10 to 13
atomnr 13 to 10

L J

If you need atoms/positions in a different order, you can:
— use external index groups (for some static selections),
— use the permute keyword to change the final order, or
— use the merge or plus keywords to compose the final selection from multiple distinct selections.

* Due to technical reasons, having a negative value as the first value in expressions like

3.11. Command-line reference 324

GROMACS Documentation, Release 2026-rc

[charge -1 to -0.7

result in a syntax error. A workaround is to write

[charge {-1 to -0.7}

instead.

* When name selection keyword is used together with PDB input files, the behavior may be unintuitive.
When GROMACS reads in a PDB file, 4 character atom names that start with a digit are transformed such
that, e.g., IHG2 becomes HG21, and the latter is what is matched by the name keyword. Use pdbname to

match the atom name as it appears in the input PDB file.

Selection examples

Below, examples of different types of selections are given.

* Selection of all water oxygens:

[resname SOL and name OW

¢ Centers of mass of residues 1 to 5 and 10:

[res_com of resnr 1 to 5 10

 All atoms farther than 1 nm of a fixed position:

[not within 1 of [1.2, 3.1, 2.4]

 All atoms of a residue LIG within 0.5 nm of a protein (with a custom name):

["Close to protein" resname LIG and within 0.5 of group "Protein"

 All protein residues that have at least one atom within 0.5 nm of a residue LIG:

[group "Protein" and same residue as within 0.5 of resname LIG

¢ All RES residues whose COM is between 2 and 4 nm from the COM of all of them:

rdist = res_com distance from com of resname RES
resname RES and rdist >= 2 and rdist <= 4

* Selection like with duplicate atoms like C1 C2C2C3 C3 C4 ... C8 CO:

[name "C[1-8]" merge name "C[2-9]"

This can be used with gmx distance to compute C1-C2, C2-C3 etc. distances.

¢ Selection with atoms in order C2 Cl1:

[name Cl C2 permute 2 1

This can be used with gmx gangle to get C2->C1 vectors instead of C1->C2.

* Selection with COMs of two index groups:

[com of group 1 plus com of group 2

This can be used with gmx distance to compute the distance between these two COMs.

* Fixed vector along x (can be used as a reference with gmx gangle):

3.11. Command-line reference

325

GROMACS Documentation, Release 2026-rc

[[O, 0, 0] plus [1, 0, O] }

* The following examples explain the difference between the various position types. This selection selects a
position for each residue where any of the three atoms C[123] has x < 2. The positions are computed as
the COM of all three atoms. This is the default behavior if you just write res_com of.

[part_res_com of name Cl C2 C3 and x < 2 }

This selection does the same, but the positions are computed as COM positions of whole residues:

[whole_res_com of name Cl C2 C3 and x < 2 }

Finally, this selection selects the same residues, but the positions are computed as COM of exactly those
atoms atoms that match the x < 2 criterion:

[dyn_res_com of name Cl C2 C3 and x < 2 }

* Without the of keyword, the default behavior is different from above, but otherwise the rules are the same:

[name Cl C2 C3 and res_com X < 2]

works as if whole_res_com was specified, and selects the three atoms from residues whose COM satis-
fiex x < 2. Using

[name Cl C2 C3 and part_res_com x < 2 }

instead selects residues based on the COM computed from the C[123] atoms.

3.11.107 Command changes between versions

Starting from GROMACS 5.0, some of the analysis commands (and a few other commands as well) have changed
significantly.

One main driver for this has been that many new tools mentioned below now accept selections through one or
more command-line options instead of prompting for a static index group. To take full advantage of selections, the
interface to the commands has changed somewhat, and some previous command-line options are no longer present
as the same effect can be achieved with suitable selections. Please see Selection syntax and usage (page 318)
additional information on how to use selections.

In the process, some old analysis commands have been removed in favor of more powerful functionality that is
available through an alternative tool. For removed or replaced commands, this page documents how to perform
the same tasks with new tools. For new commands, a brief note on the available features is given. See the linked
help for the new commands for a full description.

This section lists only major changes; minor changes like additional/removed options or bug fixes are not typically
included.

For more information about changed features, please check out the Release notes (page 722).

3.11. Command-line reference 326

GROMACS Documentation, Release 2026-rc

Version 2020

gmx convert-trj

new

gmx convert-trj (page 152) has been introduced as a selection-enabled alternative for exchanging trajectory file
format (previously done in gmx trjconv (page 287)).

gmx extract-cluster

new

gmx extract-cluster (page 186) has been introduced as a selection-enabled way to write sub-trajectories based on
the output from a cluster analysis. The corresponding option -sub in gmx trjconv (page 287) has been removed.

Version 2018

gmx trajectory

new

gmx trajectory (page 284) has been introduced as a selection-enabled version of gmx traj (page 281). It supports
output of coordinates, velocities, and/or forces for positions calculated for selections.

Version 2016

Analysis on arbitrary subsets of atoms

Tools implemented in the new analysis framework can now operate upon trajectories that match only a subset of
the atoms in the input structure file.

gmx insert-molecules

improved

gmx insert-molecules (page 213) has gained an option —replace that makes it possible to insert molecules into
a solvated configuration, replacing any overlapping solvent atoms. In a fully solvated box, it is also possible to
insert into a certain region of the solvent only by selecting a subset of the solvent atoms (—replace takes a
selection that can also contain expressions like not within 1 of ...).

gmx rdf

improved

The normalization for the output RDF can now also be the radial number density.

3.11. Command-line reference 327

GROMACS Documentation, Release 2026-rc

gmx genconf

simplified

Removed -block, —sort and —shuffle.

Version 5.1

General

Symbolic links from 5.0 are no longer supported. The only way to invoke a command is through gmx
<command>.

gmx pairdist

new

gmx pairdist (page 239) has been introduced as a selection-enabled replacement for gmx mindist (page 226)
(gmx mindist still exists unchanged). It can calculate min/max pairwise distances between a pair of selections,
including, e.g., per-residue minimum distances or distances from a single point to a set of residue-centers-of-mass.

gmx rdf

rewritten

gmx rdf (page 250) has been rewritten for 5.1 to use selections for specifying the points from which the RDFs
are calculated. The interface is mostly the same, except that there are new command-line options to specify the
selections. The following additional changes have been made:

* —com and —rdf options have been removed. Equivalent functionality is available through selections:
— —comcan be replaced with a com of <selection> as the reference selection.

— —rdf can be replaced with a suitable set of selections (e.g., res_com of <selection>)and/or
using —seltype.

* —rmax option is added to specify a cutoff for the RDFs. If set to a value that is significantly smaller than
half the box size, it can speed up the calculation significantly if a grid-based neighborhood search can be
used.

* —hg and -fade options have been removed, as they are simply postprocessing steps on the raw numbers
that can be easily done after the analysis.

Version 5.0

General

Version 5.0 introduced the gmx wrapper binary. For backwards compatibility, this version still creates symbolic
links by default for old tools: e.g., g_order <options> is equivalent to gmx order <options>, and
g_order is simply a symbolic link on the file system.

3.11. Command-line reference 328

GROMACS Documentation, Release 2026-rc

g_bond

replaced
This tool has been removed in 5.0. A replacement is gmx distance (page 168).

You can provide your existing index file to gmx distance (page 168), and it will calculate the same distances. The
differences are:

* —blen and -tol options have different default values.
* You can control the output histogram with ~binw.

e —aver and —averdist options are not present. Instead, you can choose between the different things
to calculate using —oav (corresponds to —d with —averdist), —oall (corresponds to —d without
—averdist), —oh (corresponds to —o with —aver), and -oallstat (corresponds to —1 without
—-aver).

You can produce any combination of output files. Compared to g_bond, gmx distance -oall is currently
missing labels for the output columns.

g_dist

replaced

This tool has been removed in 5.0. A replacement is gmx distance (page 168) (for most options) or gmx select
(page 268) (for —dist or —1t).

If you had index groups A and B in index.ndx for g_dist, you can use the following command to compute
the same distance with gmx distance:

gmx distance —-n index.ndx -select 'com of group "A" plus com of group "B"'_,
——oxyz —-oall

The —intra switch is replaced with —nopbc.

If you used ~dist D, you can do the same calculation with gmx select:

gmx select -n index.ndx -select 'group "B" and within D of com of group "A"
—~' —-on/-o0i/-os/-olt

You can select the output option that best suits your post-processing needs (-olt is a replacement for g_dist
-dist -1t)

gmx distance

new

gmx distance (page 168) has been introduced as a selection-enabled replacement for various tools that computed
distances between fixed pairs of atoms (or centers-of-mass of groups). It has a combination of the features of
g_bond and g_dist, allowing computation of one or multiple distances, either between atom-atom pairs or
centers-of-mass of groups, and providing a combination of output options that were available in one of the tools.

3.11. Command-line reference 329

GROMACS Documentation, Release 2026-rc

gmx gangle

new

gmx gangle (page 190) has been introduced as a selection-enabled replacement for g_sgangle. In addition
to supporting atom-atom vectors, centers-of-mass can be used as endpoints of the vectors, and there are a few
additional angle types that can be calculated. The command also has basic support for calculating normal angles
between three atoms and/or centers-of-mass, making it a partial replacement for gmx angle (page 133) as well.

gmx protonate

replaced

This was a very old tool originally written for united atom force fields, where it was necessary to generate all
hydrogens after running a trajectory in order to calculate e.g. distance restraint violations. The functionality to
simply protonate a structure is available in gmx pdb2gmx (page 241). If there is significant interest, we might
reintroduce it after moving to new topology formats in the future.

gmx freevolume

new

This tool has been introduced in 5.0. It uses a Monte Carlo sampling method to calculate the fraction of free
volume within the box (using a probe of a given size).

g_sas

rewritten

This tool has been rewritten in 5.0, and renamed to gmx sasa (page 263) (the underlying surface area calculation
algorithm is still the same).

The main difference in the new tool is support for selections. Instead of prompting for an index group, a (poten-
tially dynamic) selection for the calculation can be given with —surface. Any number of output groups can be
given with —output, allowing multiple parts of the surface area to be computed in a single run. The total area of
the —surface group is now always calculated.

The tool no longer automatically divides the surface into hydrophobic and hydrophilic areas, and there isno —f_ -
index option. The same effects can be obtained by defining suitable selections for —~output. If you want output
that contains the same numbers as with the old tool for a calculation group A and output group B, you can use

gmx sasa —surface 'group "A"' -output '"Hydrophobic" group "A" and charge
—~{-0.2 to 0.2}; "Hydrophilic" group "B" and not charge {-0.2 to 0.2};
—"Total" group "B"'

Solvation free energy estimates are now calculated only if separately requested with —~odg, and are written into a
separate file.

Output option —i for a position restraint file is not currently implemented in the new tool, but would not be very
difficult to add if requested.

3.11. Command-line reference 330

GROMACS Documentation, Release 2026-rc

g_sgangle

replaced

This tool has been removed in 5.0. A replacement is gmx gangle (page 190) (for angle calculation) and gmx
distance (page 168) (for —od, —od1, —od2).

If you had index groups A and B in index.ndx for g_sgangle, you can use the following command to compute
the same angle with gmx gangle:

—plane —-group2 'group "B"' -oav

gmx gangle -n index.ndx -gl vector/plane —-groupl 'group "A"' -g2 vector/ }

You need to select either vector or plane for the —g1 and —g2 options depending on which one your index
groups specify.

If you only had a single index group A in index.ndx and you used g_sgangle —z or —one, you can use:

[gmx gangle -n index.ndx —-gl vector/plane —-groupl 'group "A"' -g2 z/t0 -ocav }

For the distances, you can use gmx distance (page 168) to compute one or more distances as you want. Both
distances between centers of groups or individual atoms are supported using the new selection syntax.

genbox

This tool has been split to gmx solvate (page 274) and gmx insert-molecules (page 213).

tpbconv

This tool has been renamed gmx convert-tpr (page 151).

3.12 Terminology

3.12.1 Pressure

The pressure in molecular dynamics can be computed from the kinetic energy and the virial.

Fluctuation

Whether or not pressure coupling is used within a simulation, the pressure value for the simulation box will
oscillate significantly. Instantaneous pressure is meaningless, and not well-defined. Over a picosecond time scale
it usually will not be a good indicator of the true pressure. This variation is entirely normal due to the fact that
pressure is a macroscopic property and can only be measured properly as time average, while it is being measured
and/or adjusted with pressure coupling on the microscopic scale. How much it varies and the speed at which
it does depends on the number of atoms in the system, the type of pressure coupling used and the value of the
coupling constants. Fluctuations of the order of hundreds of bar are typical. For a box of 216 waters, fluctuations
of 500-600 bar are standard. Since the fluctuations go down with the square root of the number of particles, a
system of 21600 water molecules (100 times larger) will still have pressure fluctuations of 50-60 bar.

3.12. Terminology 331

GROMACS Documentation, Release 2026-rc

3.12.2 Periodic boundary conditions

Periodic boundary conditions (PBC) are used in molecular dynamics simulations to avoid problems with boundary
effects caused by finite size, and make the system more like an infinite one, at the cost of possible periodicity
effects.

Beginners visualizing a trajectory sometimes think they are observing a problem when
* the molecule(s) does not stay in the centre of the box, or
* it appears that (parts of) the molecule(s) diffuse out of the box, or
¢ holes are created, or
* broken molecules appear, or

e their unit cell was a rhombic dodecahedron or cubic octahedron but it looks like a slanted cube after the
simulation, or

* crazy bonds all across the simulation cell appear.
This is not a problem or error that is occurring, it is what you should expect.

The existence of PBC means that any atom that leaves a simulation box by, say, the right-hand face, then enters
the simulation box by the left-hand face. In the example of a large protein, if you look at the face of the simulation
box that is opposite to the one from which the protein is protruding, then a hole in the solvent will be visible. The
reason why the molecule(s) move from where they were initially located within the box is that they are (for the
vast majority of simulations) free to diffuse around. And so they do. They are not held in a magic location of the
box. The box is not centered around anything while performing the simulation. Molecules are not made whole as
a matter of course. Moreover, any periodic cell shape can be expressed as a parallelepiped (a.k.a. triclinic cell),
and GROMACS does so internally regardless of the initial shape of the box.

These visual issues can be fixed after the conclusion of the simulation by judicious use of the optional inputs to
gmx trjconv (page 287) to process the trajectory files. Similarly, analyses such as RMSD of atomic positions can
be flawed when a reference structure is compared with a structure that needs adjusting for periodicity effects, and
the solution with gmx trjconv (page 287) follows the same lines. Some complex cases needing more than one
operation will require more than one invocation of gmx frjconv (page 287) in order to work.

For further information, see the corresponding section in the Reference Manual (page 369).

Suggested workflow

Fixing periodicity effects with gmx trjconv (page 287) to suit visualization or analysis can be tricky. Multiple
invocations can be necessary. You may need to create custom index groups (e.g. to keep your ligand with your
protein) Following the steps below in order (omitting those not required) should help get a pleasant result. You
will need to consult gmx trjconv -h to find out the details for each step. That is deliberate — there is no magic
“do what I want” recipe. You have to decide what you want, first. :-)

1. First make your molecules whole if you want them whole.
2. Cluster your molecules/particles if you want them clustered.

3. If you want jumps removed, extract the first frame from the trajectory to use as the reference, and then use
—-pbc nojump with that first frame as reference.

4. Center your system using some criterion. Doing so shifts the system, so do not use -pbc nojump after
this step.

5. Perhaps put everything in some box with the other —pbc or —ur options.

6. Fit the resulting trajectory to some (other) reference structure (if desired), and do not use any PBC related
option afterwards.

With point three, the issue is that gmx trjconv (page 287) removes the jumps from the first frame using the reference
structure provided with -s. If the reference structure (run input file) is not clustered/whole, using —pbc no jump
will undo steps 1 and 2.

3.12. Terminology 332

GROMACS Documentation, Release 2026-rc

3.12.3 Thermostats

Thermostats are designed to help a simulation sample from the correct ensemble (i.e. NVT or NPT) by modulating
the temperature of the system in some fashion. First, we need to establish what we mean by temperature. In
simulations, the “instantaneous (kinetic) temperature” is usually computed from the kinetic energy of the system
using the equipartition theorem. In other words, the temperature is computed from the system’s total kinetic
energy.

So, what is the goal of a thermostat? Actually, it turns out the goal is not to keep the temperature constant, as that
would mean fixing the total kinetic energy, which would be silly and not the aim of NVT or NPT. Rather, it is to
ensure that the average temperature of a system be correct.

To see why this is the case, imagine a glass of water sitting in a room. Suppose you can look very closely at a few
molecules in some small region of the glass, and measure their kinetic energies. You would not expect the kinetic
energy of this small number of particles to remain precisely constant; rather, you would expect fluctuations in the
kinetic energy due to the small number of particles. As you average over larger and larger numbers of particles,
the fluctuations in the average get smaller and smaller, so finally by the time you look at the whole glass, you say
it has “constant temperature”.

Molecular dynamics simulations are often fairly small compared to a glass of water, so we have bigger fluctuations.
So it is really more appropriate here to think of the role of a thermostat as ensuring that we have

(a) the correct average temperature, and
(b) the fluctuations of the correct size.

See the relevant section in the Reference Manual (page 384) for details on how temperature coupling is applied
and the types currently available.

What to do

Some hints on practices that generally are a good idea:

 Preferably, use a thermostat that samples the correct distribution of temperatures (for examples, see the
corresponding manual section), in addition to giving you the correct average temperature.

* Atleast: use a thermostat that gives you the correct average temperature, and apply it to components of your
system for which they are justified (see the first bullet in What not to do (page 333)). In some cases, using
tc—grps = System may lead to the “hot solvent/cold solute” problem described in the 3rd reference in
Further reading (page 334).

What not to do

Some hints on practices that generally not a good idea to use:

* Do not use separate thermostats for every component of your system. Some molecular dynamics thermostats
only work well in the thermodynamic limit. A group must be of sufficient size to justify its own thermostat.
If you use one thermostat for, say, a small molecule, another for protein, and another for water, you are
likely introducing errors and artifacts that are hard to predict. In particular, do not couple ions in aqueous
solvent in a separate group from that solvent. For a protein simulation, using tc—grps = Protein
Non-Protein is usually best.

* Do not use thermostats that work well only in the limit of a large number of degrees of freedom for systems
with few degrees of freedom. For example, do not use Nosé-Hoover or Berendsen thermostats for types of
free energy calculations where you will have a component of the system with very few degrees of freedom
in an end state (i.e. a noninteracting small molecule).

3.12. Terminology 333

GROMACS Documentation, Release 2026-rc

Further reading

1. Cheng, A. & Merz, K. M. Application of the Nosé-Hoover chain algorithm to the study of protein dynamics.
J. Phys. Chem. 100 (5), 1927-1937 (1996).

2. Mor, A., Ziv, G. & Levy, Y. Simulations of proteins with inhomogeneous degrees of freedom: the effect of
thermostats. J. Comput. Chem. 29 (12), 19921998 (2008).

3. Lingenheil, M., Denschlag, R., Reichold, R. & Tavan, P. The “hot-solvent/cold-solute” problem revisited.
J. Chem. Theory Comput. 4 (8), 1293—-1306 (2008).

3.12.4 Energy conservation

In principle, a molecular dynamics simulation should conserve the total energy, the total momentum and (in a
non-periodic system) the total angular momentum. A number of algorithmic and numerical issues make that this
is not always the case:

* Cut-off treatment and/or long-range electrostatics treatment (see Van Der Spoel, D. & van Maaren, P. J. The
origin of layer structure artifacts in simulations of liquid water. J. Chem. Theor. Comp. 2, 1-11 (2006).)

* Treatment of pair lists,

* Constraint algorithms (see e.g. Hess, B. P-LINCS: A parallel linear constraint solver for molecular simula-
tion. J. Chem. Theor. Comp. 4, 116122 (2008).).

 The integration timestep.
o Temperature coupling (page 333) and pressure coupling (page 331).

* Round-off error (in particular in single precision), for example subtracting large numbers (Lippert, R. A. et
al. A common, avoidable source of error in molecular dynamics integrators. J. Chem. Phys. 126, 046101
(2007).).

* The choice of the integration algorithm (in GROMACS this is normally leap-frog).

* Removal of center of mass motion: when doing this in more than one group the conservation of energy will
be violated.

3.12.5 Average structure

Various GROMACS utilities can compute average structures. Presumably the idea for this comes from something
like an ensemble-average NMR structure. In some cases, it makes sense to calculate an average structure (as a step
on the way to calculating root-mean-squared fluctuations (RMSF), for example, one needs the average position of
all of the atoms).

However, it is important to remember that an average structure is not necessarily meaningful. By way of analogy,
suppose I alternate holding a ball in my left hand, then in my right hand. What is the average position of the
ball? Halfway in between — even though I always have it either in my left hand or my right hand. Similarly, for
structures, averages will tend to be meaningless anytime there are separate metastable conformational states. This
can happen on a sidechain level, or for some regions of backbone, or even whole helices or components of the
secondary structure.

Thus, if you derive an average structure from a molecular dynamics simulation, and find artifacts like unphysical
bond lengths, weird structures, etc., this does not necessarily mean something is wrong. It just shows the above:
an average structure from a simulation is not necessarily a physically meaningful structure.

3.12. Terminology 334

http://pubs.acs.org/doi/abs/10.1021/jp951968y
https://doi.org/10.1002/jcc.20951
http://pubs.acs.org/doi/abs/10.1021/ct8000365
https://doi.org/10.1021/ct0502256
https://doi.org/10.1021/ct700200b
https://doi.org/10.1063/1.2431176

GROMACS Documentation, Release 2026-rc

3.12.6 Blowing up

Blowing up is a highly technical term used to describe a common sort of simulation failure. In brief, it describes a
failure typically due to an unacceptably large force that ends up resulting in a failure of the integrator.

To give a bit more background, it is important to remember that molecular dynamics numerically integrates New-
ton’s equations of motion by taking small, discrete timesteps, and using these timesteps to determine new ve-
locities and positions from velocities, positions, and forces at the previous timestep. If forces become too large
at one timestep, this can result in extremely large changes in velocity/position when going to the next timestep.
Typically, this will result in a cascade of errors: one atom experiences a very large force one timestep, and thus
goes shooting across the system in an uncontrolled way in the next timestep, overshooting its preferred location
or landing on top of another atom or something similar. This then results in even larger forces the next timestep,
more uncontrolled motions, and so on. Ultimately, this will cause the simulation package to crash in some way,
since it cannot cope with such situations. In simulations with constraints, the first symptom of this will usually
be some LINCS or SHAKE warning or error — not because the constraints are the source of the problem, but just
because they are the first thing to crash. Likewise for warnings about tabulated or 1-4 interactions being outside
the distance supported by the table. This can happen on one computer system while another resulted in a stable
simulation because of the impossibility of numerical reproducibility of these calculations on different computer
systems.

Possible causes include:
¢ you did not minimize well enough,
* you have a bad starting structure, perhaps with steric clashes,
* you are using too large a timestep (particularly given your choice of constraints),
* you are doing particle insertion in free energy calculations without using soft core,

* you are using inappropriate pressure coupling (e.g. when you are not in equilibrium, Berendsen can be
good while relaxing the volume, but you will need to switch to a more accurate pressure-coupling algorithm
later),

* you are using inappropriate temperature coupling, perhaps on inappropriate groups, or
* your position restraints are to coordinates too different from those present in the system, or

* you have a single water molecule somewhere within the system that is isolated from the other water
molecules, or

* you are experiencing a bug in gmx mdrun (page 221).

Because blowing up is due, typically, to forces that are too large for a particular timestep size, there are a couple
of basic solutions:

* make sure the forces do not get that large, or
* use a smaller timestep.

Better system preparation is a way to make sure that forces do not get large, if the problems are occurring near the
beginning of a simulation.

3.12.7 Diagnosing an unstable system
Troubleshooting a system that is blowing up can be challenging, especially for an inexperienced user. Here are a
few general tips that one may find useful when addressing such a scenario:

1. If the crash is happening relatively early (within a few steps), set nstxout (or nstxout-compressed)
to 1, capturing all possible frames. Watch the resulting trajectory to see which atoms/residues/molecules
become unstable first.

2. Simplify the problem to try to establish a cause:

3.12. Terminology 335

GROMACS Documentation, Release 2026-rc

* If you have a new box of solvent, try minimizing and simulating a single molecule to see if the insta-
bility is due to some inherent problem with the molecule’s topology or if instead there are clashes in
your starting configuration.

 If you have a protein-ligand system, try simulating the protein alone in the desired solvent. If it is
stable, simulate the ligand in vacuo to see if its topology gives stable configurations, energies, etc.

* Remove the use of fancy algorithms, particularly if you have not equilibrated thoroughly first.

3. Monitor various components of the system’s energy using gmx energy (page 182). If an intramolecular term
is spiking, that may indicate improper bonded parameters, for example.

4. Make sure you have not been ignoring error messages (missing atoms when running gmx pdb2gmx
(page 241), mismatching names when running gmx grompp (page 196), etc.) or using work-arounds (like
using gmx grompp -maxwarn when you should not be) to make sure your topology is intact and being
interpreted correctly.

5. Make sure you are using appropriate settings in your mdp (page 497) file for the force field you have chosen
and the type of system you have. Particularly important settings are treatment of cutoffs, proper neighbor
searching interval (nst11ist), and temperature coupling. Improper settings can lead to a breakdown in the
model physics, even if the starting configuration of the system is reasonable.

When using no explict solvent, starting your equilibration with a smaller time step than your production run can
help energy equipartition more stably.

There are several common situations in which instability frequently arises, usually in the introduction of new
species (ligands or other molecules) into the system. To determine the source of the problem, simplify the system
(e.g. the case of a protein-ligand complex) in the following way.

1. Does the protein (in water) minimize adequately by itself? This is a test of the integrity of the coordi-
nates and system preparation. If this fails, something probably went wrong when running gmx pdb2gmx
(page 241) (see below), or maybe gmx genion (page 193) placed an ion very close to the protein (it is
random, after all).

2. Does the ligand minimize in vacuo? This is a test of the topology. If it does not, check your parameterization
of the ligand and any implementation of new parameters in force field files.

3. (If previous item is successful) Does the ligand minimize in water, and/or does a short simulation of the
ligand in water succeed?

Other sources of possible problems are in the biomolecule topology itself.

1. Did you use -missing when running gmx pdb2gmx (page 241)? If so, do not. Reconstruct missing
coordinates rather than ignoring them.

2. Did you override long/short bond warnings by changing the lengths? If so, do not. You probably have
missing atoms or some terrible input geometry.

3.12.8 Molecular dynamics

Molecular dynamics (MD) is computer simulation with atoms and/or molecules interacting using some basic laws
of physics. The GROMACS Reference Manual (page 373) provides a good general introduction to this area,
as well as specific material for use with GROMACS. The first few chapters are mandatory reading for anybody
wishing to use GROMACS and not waste time.

¢ Introduction to molecular modeling (slides, video) - theoretical framework, modeling levels, limitations and
possibilities, systems and methods (Erik Lindahl).

3.12. Terminology 336

https://extras.csc.fi/chem/courses/gmx2007/Erik_Talks/preworkshop_tutorial_introduction.pdf
https://video.csc.fi/playlist/dedicated/0_7z3nas0q/0_tccn9xof

GROMACS Documentation, Release 2026-rc

Books

There are several text books around.
Good introductory books are:
e A. Leach (2001) Molecular Modeling: Principles and Applications.
* T. Schlick (2002) Molecular Modeling and Simulation
With programming background:
» D. Rapaport (1996) The Art of Molecular Dynamics Simulation
e D. Frenkel, B. Smith (2001) Understanding Molecular Simulation
More from the physicist’s view:
* M. Allen, D. Tildesley (1989) Computer simulation of liquids

* H.J.C. Berendsen (2007) Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics
to Fluid Dynamics

Types / Ensembles

* NVE - number of particles (N), system volume (V) and energy (E) are constant / conserved.

e NVT - number of particles (N), system volume (V) and temperature (T) are constant / conserved. (See
thermostats (page 333) for more on constant temperature).

* NPT - number of particles (N), system pressure (P) and temperature (T) are constant / conserved. (See
pressure coupling (page 331) for more on constant pressure).

3.12.9 Force field

Force fields are sets of potential functions and parametrized interactions that can be used to study physical systems.
A general introduction to their history, function and use is beyond the scope of this guide, and the user is asked to
consult either the relevant literature or try to start at the relevant Wikipedia page.

3.13 Validation

As with any code, both scientific or commercial, results produced by GROMACS can be incorrect. We provide
no guarantees on the correctness of any output. With that said, because of extensive test coverage and its large
user base, the results produced by GROMACS are very reliable. However, new code and features have not had as
extensive testing as established parts of code and there is therefore a higher risk for bugs, which the user needs to
be aware of. We mark such features with two different tags: “experimental” and “validation pending”. gmx mdrun
(page 221) will notify users in the log file and on the standard output when such features are in use.

Note that the responsibility of the GROMACS developers is only the correctness of unmodified GROMACS code
distributed as part of an official release, not that of modified versions, external packages or plug-ins. An example
is QM/MM simulations. If the results are incorrect because of an issue in the QM-package used, that is not
something the GROMACS developers are responsible for. What the GROMACS developers are responsible for
in this case is the correctness of the QM/MM interface (indeed there are tests that cover the QM/MM interface
alone).

3.13. Validation 337

https://en.wikipedia.org/wiki/Force_field_(chemistry)

GROMACS Documentation, Release 2026-rc

3.13.1 Experimental features

Features labeled “experimental” have not received sufficient testing. Such features are not suitable for production
simulations. We try to keep code belonging to this category to a minimum. Such features are included in the
main codebase primarily because it simplifies the development process. Experimental features always need to be
activated using an environment variable and/or by activating a cmake configuration option. Users can try such
features and are encouraged to provide feedback, in particular in case of issues.

The current features with experimental status are:
* CUDA graph code, activated by the GMX_CUDA_ GRAPH environment variable
¢ NVSHMEM communication, enabled at build with —-DGMX_NVSHMEM=0N CMake variable
* OneAPI graph support, enabled at build with -DGMX_SYCL_ENABLE_GRAPHS=0ON CMake variable

* Parallel PME over multiple GPUs with the HIP GPU backend targeting AMD GPUs, enabled at build with
-DGMX_GPU=HIP and -DGMX_USE_HEFFTE=0N CMake variables

¢ Direct halo communication, activated by the GMX_FILLERS_IN_LOCAL_STATE environment variable
* NBNxM 1x1 non-bonded kernels, activated by the GMX_NBNXN_PLAINC_1X1 environment variable
* H5MD trajectory output, activated by selecting the h5md type for trajectory file output in mdrun

e LEaP-compatible dihedral reordering, activated by the _FF_AMBER_LEAP_ATOM_REORDERING pre-
processor define

* Using wave64 execution on wave32 (RDNA) devices with HIP, activated by passing
-mwavefrontsize64 as an additional compilation flag.

* VKFFT support for evaluating 3D Fast Fourier Transforms (on non-AMD and non-Apple platforms), en-
abled at build time with —-DGMX_GPU_FFT_LIBRARY=vkFFT CMake variable

* oneMath support for evaluating 3D Fast Fourier Transforms (on any platform), enabled at build time with
-DGMX_GPU_FFT_LIBRARY=oneMath CMake variable

* Double-batched FFT library support for evaluating 3D Fast Fourier Transforms, enabled at build time with
-DGMX_GPU_FFT_LIBRARY=BBFFT CMake variable

* an external Fast-Multipole Method library, enabled at build time with -DGMX_USE_EXT_FMM=0N CMake
variable, and at run time by fmm-backend .mdp variable

3.13.2 Features with validation pending

Ideally, we would have a validation test suite that covers all combinations of features of GROMACS as well as all
possible CPU architectures and GPU backends. Currently we do not have this, but we are working on a collection
of validation systems. Still it will be challenging to cover the combinatorial explosion of features and options, as
well as all supported hardware. When a new feature or acceleration backend has successfully passed our internal
testing and validation, it will in most cases enter in a GROMACS release in the category “validation pending”.
For the user this means that we expect the feature to give correct results, but there is a possibility of incorrect
results with certain combinations of features and/or backends. Such features will never be active by default; the
user will have to actively set an gmx mdrun (page 221) command line option or an environment variable, and in
some cases an mdp option. We expect features to be fully validated over the course of one or two years. Users are
encouraged to test features with validation pending to aid the validation process. Carefully check your results and
please report any issues on the GROMACS user forum or by opening an issue on GitLab issues.

The current features with status validation pending are:
* The modular simulator with an integrator different from Velocity Verlet
» The Colvars interface, activated by the colvars—active mdp option
* The PLUMED interface, activated by the —plumed option of gmx mdrun (page 221)

* The neural network potential interface, activated by the nnpot —act ive mdp option and configuring with
LibTorch

3.13. Validation 338

http://forums.gromacs.org/
https://gitlab.com/gromacs/gromacs/-/issues

GROMACS Documentation, Release 2026-rc

* The SYCL GPU backend for non-AMD and non-Intel GPU platforms, activated by choosing the SYCL
option for GMX_GPU in cmake

» HIP GPU backend targeting AMD GPUs, activated by choosing the HIP option for GMX_GPU in cmake
* The Fast Multipole Method interface, enabled at build time by the ~-DGMX_USE_EXT_FMM CMake variable

* AMBER LEaP-compatible dihedral reordering by grompp, activated by the _FF_AMBER_LEAP_ATOM_-
REORDERING preprocessor define

* Non-bonded free-energy calculations on a GPU, activated by the -nbfe gpu mdrun option

3.13.3 Feature lifecycle stages
1. Development/Experimental: A new feature that may be incomplete, under active development, or not suffi-
ciently tested.

* Risk: High. May contain bugs, the API or behavior may change, and the feature could be removed without
notice.

» Usage recommendation: Not for production use. Use only for testing and feedback.

2. Validation pending: A feature that is code-complete and has passed initial tests, but has not been validated
across the full matrix of scientific cases, hardware, and parallelization options.

» Risk: Moderate. The feature is expected to be correct, but carries a risk of incorrect results exists in specific,
untested scenarios.

» Usage recommendation: Use with caution. Users are encouraged to test and aid in validation by carefully
checking results and reporting any issues.

3. Stable: The default state for a feature, validated, and considered reliable for production simulations.
¢ Risk: Low (within the bounds of the standard GROMACS disclaimer).
» Usage recommendation: Recommended for all users.

4. Legacy: A feature that is functional but has not been extensively used or tested in recent releases, or it has
been replaced by a newer alternative.

* Risk: Low to moderate (for correctness), but it will not receive updates and may be less performant or
flexible than alternatives.

» Usage recommendation: Discouraged for new work. Users should migrate to the recommended modern
alternative (if applicable).

5. Deprecated: A formal, end-of-life warning that the feature is no longer recommended and is scheduled for
removal in a future major release.

* Risk: Low to moderate (for correctness), high (for future-proofing/continuity). It will receive no bug fixes
or maintenance.

» Usage recommendation: Do not use.

6. Removed: The feature’s code has been permanently deleted from the GROMACS codebase, documentation
still may refer to it as a past feature.

¢ Risk: N/A

» Usage recommendation: If required, use an older release which still contains it.

3.13. Validation 339

GROMACS Documentation, Release 2026-rc

3.14 Environment Variables

GROMACS programs may be influenced by the use of environment variables. First of all, the variables set in
the GMXRC file are essential for running and compiling GROMACS. Some other useful environment variables
are listed in the following sections. Most environment variables function by being set in your shell to any non-
NULL value. Specific requirements are described below if other values need to be set. You should consult
the documentation for your shell for instructions on how to set environment variables in the current shell, or in
configuration files for future shells. Note that requirements for exporting environment variables to jobs run under
batch control systems vary and you should consult your local documentation for details.

3.14.1 Output Control

GMX_COMPELDUMP
Applies for computational electrophysiology setups only (see reference manual). The initial structure gets
dumped to pdb (page 499) file, which allows to check whether multimeric channels have the correct PBC
representation.

GMX_ DISABLE_GPU_TIMING
Disables GPU timings in the log file for OpenCL.

GMX_ ENABLE_GPU_TIMING
Enables GPU timings in the log file for CUDA and SYCL. Note that CUDA timings are incorrect with
multiple streams, as happens with domain decomposition or with both non-bondeds and PME on the GPU
(this is also the main reason why they are not turned on by default).

GMX_ LOG_BUFFER
the size of the buffer for file I/O. When set to 0, all file I/O will be unbuffered and therefore very slow. This
can be handy for debugging purposes, because it ensures that all files are always totally up-to-date.

GMX_MAXBACKUP
GROMACS automatically backs up old copies of files when trying to write a new file of the same name, and
this variable controls the maximum number of backups that will be made, default 99. If set to 0 it fails to
run if any output file already exists. And if set to -1 it overwrites any output file without making a backup.

GMX_NO_OQUOTES
if this is explicitly set, no cool quotes will be printed at the end of a program.

GMX_PRINT_ LONGFORMAT
use long float format when printing decimal values.

GMX_ SUPPRESS_DUMP
prevent dumping of step files during (for example) blowing up during failure of constraint algorithms.

GMX TPI_DUMP
dump all configurations to a pdb (page 499) file that have an interaction energy less than the value set in this
environment variable.

GMX_ TRAJECTORY_IO_VERBOSITY
Defaults to 1, which prints frame count e.g. when reading trajectory files. Set to O for quiet operation.

GMX_ VIEW_XVG
GMX_VIEW_EPS and GMX_VIEW_PDB, commands used to automatically view xvg (page 506), eps
(page 495) and pdb (page 499) file types, respectively; they default to xmgrace, ghostview and
rasmol. Set to empty to disable automatic viewing of a particular file type. The command will be forked
off and run in the background at the same priority as the GROMACS tool (which might not be what you
want). Be careful not to use a command which blocks the terminal (e.g. vi), since multiple instances might
be run.

3.14. Environment Variables 340

GROMACS Documentation, Release 2026-rc

3.14.2 Debugging

GMX_ DD_NPULSE
over-ride the number of DD pulses used (default 0, meaning no over-ride). Normally 1 or 2.

GMX_DD_DEBUG
general debugging trigger for every domain decomposition (default 0, meaning off). Currently only checks
global-local atom index mapping for consistency.

GMX_DD_NST_ DUMP
number of steps that elapse between dumping the current DD to a PDB file (default 0). This only takes
effect during domain decomposition, so it should typically be O (never), 1 (every DD phase) or a multiple
of nst1ist (page49).

GMX_ DD_NST_ DUMP_GRID
number of steps that elapse between dumping the current DD grid to a PDB file (default 0). This only takes
effect during domain decomposition, so it should typically be O (never), 1 (every DD phase) or a multiple
of nst1ist (page49).

GMX DISABLE_ALTERNATING_GPU_WAIT
disables the specialized polling wait path used to wait for the PME and nonbonded GPU tasks completion
to overlap to do the reduction of the resulting forces that arrive first. Setting this variable switches to the
generic path with fixed waiting order.

GMX TEST_REQUIRED_ NUMBER_OF_DEVICES
sets the number of GPUs required by the test suite. By default, the test suite would fall-back to using CPU if
GPUs could not be detected. Set it to a positive integer value to ensure that at least this at least this number
of usable GPUs are detected. Default: O (not testing GPU availability).

There are a number of extra environment variables like these that are used in debugging - check the code!

3.14.3 Performance and Run Control

GMX AWH NO_POINT_LIMIT
Removes the upper limit on the number of points in an AWH bias grid. By default, an error is raised if
the grid is unreasonably large and can cause sampling problems. Setting this variable will only remove this
safety check. It is recommended instead to reduce the grid size, e.g., by using lower force constants.

GMX_ BONDED_NTHREAD_ UNIFORM
Value of the number of threads per rank from which to switch from uniform to localized bonded interaction
distribution; optimal value dependent on system and hardware, default value is 4.

GMX_ CUDA_GRAPH
Use CUDA Graphs to schedule a graph on each step rather than multiple activities scheduled to multiple
CUDA streams, if the run conditions allow. Experimental.

GMX_ CYCLE_ALL
times all code during runs. Incompatible with threads.

GMX_ CYCLE_BARRIER
calls MPI_Barrier before each cycle start/stop call.

GMX_ DD ORDER_ ZYX
build domain decomposition cells in the order (z, y, x) rather than the default (x, y, z).

GMX_ DD_RECORD_LOAD
record DD load statistics for reporting at end of the run (default 1, meaning on)

GMX_ DD_SINGLE_RANK
Controls the use of the domain decomposition machinery when using a single MPI rank. Value 0 turns DD
off, 1 turns DD on. Default is automated choice based on heuristics.

3.14. Environment Variables 341

GROMACS Documentation, Release 2026-rc

GMX_DD USE_SENDRECV2
during constraint and vsite communication, use a pair of MPI__Sendrecv calls instead of two simultaneous
non-blocking calls (default 0, meaning off). Might be faster on some MPI implementations.

GMX DETAILED_PERF_STATS
when set, print slightly more detailed performance information to the /og (page 496) file. The resulting
output is the way performance summary is reported in versions 4.5.x and thus may be useful for anyone
using scripts to parse log (page 496) files or standard output.

GMX DISABLE_DYNAMICPRUNING
disables dynamic pair-list pruning. Note that gmx mdrun (page 221) will still tune nstlist to the optimal
value picked assuming dynamic pruning. Thus for good performance the -nstlist option should be used.

GMX_DISABLE_GPU_DETECTION
when set, disables GPU detection even if gmx mdrun (page 221) was compiled with GPU support.

GMX_ DISABLE_GPU_TIMING
timing of asynchronously executed GPU operations can have a non-negligible overhead with short step
times. Disabling timing can improve performance in these cases. Timings are disabled by default with
CUDA and SYCL.

GMX_DISABLE_ SIMD_ KERNELS
disables architecture-specific SIMD-optimized (SSE2, SSE4.1, AVX, etc.) non-bonded kernels thus forcing
the use of plain C kernels.

GMX_DISABLE_STAGED_GPU_TO_CPU_PMEPP_COMM
Use direct rather than staged GPU communications for PME force transfers from the PME GPU to the CPU
memory of a PP rank. This may have advantages in PCle-only servers, or for runs with low atom counts
(which are more sensitive to latency than bandwidth).

GMX_ DISRE_ENSEMBLE_SIZE
the number of systems for distance restraint ensemble averaging. Takes an integer value.

GMX DLB_BASED_ON_FLOPS
do domain-decomposition dynamic load balancing based on flop count rather than measured time elapsed
(default 0, meaning off). This makes the load balancing reproducible, which can be useful for debugging
purposes. A value of 1 uses the flops; a value > 1 adds (value - 1)*5% of noise to the flops to increase the
imbalance and the scaling.

GMX_DLB_MAX BOX_ SCALING
maximum percentage box scaling permitted per domain-decomposition load-balancing step (default 10)

GMX_EMULATE_GPU
emulate GPU runs by using algorithmically equivalent CPU reference code instead of GPU-accelerated
functions. As the CPU code is slow, it is intended to be used only for debugging purposes.

GMX_ DISABLE_DIRECT GPU_COMM
Disables the direct GPU communication in multi-rank parallel runs even when build and simulation setup
support it.

GMX_ENABLE_NVSHMEM
Enables GPU kernel-initiated communication using NVSHMEM in multi-rank parallel runs when build and
simulation setup support it.

GMX_ ENABLE_STAGED_GPU_TO_CPU_PMEPP_COMM
Use a staged implementation of GPU communications for PME force transfers from the PME GPU to the
CPU memory of a PP rank for thread-MPI. The staging is done via a GPU buffer on the PP GPU. This is
expected to be beneficial for servers with direct communication links between GPUs.

GMX_ ENX NO_FATAL
disable exiting upon encountering a corrupted frame in an edr (page 494) file, allowing the use of all frames
up until the corruption.

GMX FILLERS_IN_LOCAL_STATE
Fillers particles are needed to make the number of particles a multiple of the SIMD or GPU warp/wave-
front width for computing non-bonded interactions. These fillers can also be added to the local state, if all

3.14. Environment Variables 342

GROMACS Documentation, Release 2026-rc

algorithms support this, which avoids indexing but increases the size of buffers. This environment variable
can be set to 0 or 2 to force this behavior off or on. Setting it to 1 turns the behavior on when supported.

GMX_FORCE_UPDATE
update forces when invoking mdrun -rerun.

GMX_ FORCE_GPU_AWARE MPI
Override the result of build- and runtime GPU-aware MPI detection and force the use of direct GPU MPI
communication. Aimed at cases where the user knows that the MPI library is GPU-aware, but GROMACS
is not able to detect this. Note that only CUDA and SYCL builds support such functionality.

GMX_ FORCE_UPDATE_DEFAULT_CPU
Force update to run on the CPU by default, makes the mdrun —-update auto behave as —update
cpu.

GMX_ GPU_DD_COMMS
Removed.

GMX_ GPU_DISABLE_COMPATIBILITY_CHECK
Disables the hardware compatibility check in OpenCL and SYCL. Useful for developers and allows testing
the OpenCL/SYCL kernels on non-supported platforms without source code modification.

GMX_GPU_ID
set in the same way as mdrun -gpu_id, GMX_GPU_ID allows the user to specify different GPU IDs for
different ranks, which can be useful for selecting different devices on different compute nodes in a cluster.
Cannot be used in conjunction with mdrun -gpu_id.

GMX_GPU_NB_EWALD_ TWINCUT
force the use of twin-range cutoff kernel even if rvdw (page 53) equals rcoulomb (page 51) after PP-
PME load balancing. The switch to twin-range kernels is automated, so this variable should be used only
for benchmarking.

GMX_ GPU_NB_ANA_ EWALD
force the use of analytical Ewald kernels. Should be used only for benchmarking.

GMX_ GPU_NB_TAB_EWALD
force the use of tabulated Ewald kernels. Should be used only for benchmarking.

GMX_GPU_PME_DECOMPOSITION
Enable the support for PME decomposition on GPU. This feature is supported with CUDA and SYCL back-
ends, and allows using multiple PME ranks with GPU offload, which is expected to improve performance
when scaling over many GPUs. Note: this feature still lacks substantial testing.

GMX_GPU_DISABLE_ BUFFER _ OPS
Disable coordinate/force transformation to be done on the GPU and execute these tasks on the CPU instead.

GMX_GPU_PME PP COMMS
Removed.

GMX_ GPUTASKS
set in the same way as mdrun —gputasks, GMX_GPUTASKS allows the mapping of GPU tasks to GPU
device IDs to be different on different ranks, if e.g. the MPI runtime permits this variable to be different for
different ranks. Cannot be used in conjunction with mdrun -gputasks. Has all the same requirements
asmdrun —gputasks.

GMX_HEFFTE_RESHAPE_ALGORITHM
Sets heffte::plan_options::reshape_algorithm to p2p (the default) or p2p_plined,
alltoallv,oralltoall. Seethe HeFFTe docs for details.

GMX_HEFFTE_USE_GPU_AWARE
Setsheffte::plan_options: :use_gpu_aware to true (the default) or false. See the HeFFTe
docs for details.

GMX_HEFFTE_USE_PENCILS
Sets heffte: :plan_options: :use_pencils to true or false (the default). See the HeFFTe
docs for details.

3.14. Environment Variables 343

https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html

GROMACS Documentation, Release 2026-rc

GMX_HEFFTE_USE_REORDER
Sets heffte: :plan_options: :use_reorder to true (the default) or false. See the HeFFTe
docs for details.

GMX_ IGNORE_FSYNC_FAILURE_ENV
allow gmx mdrun (page 221) to continue even if a file is missing.

GMX_LJCOMB_TOL
when set to a floating-point value, overrides the default tolerance of le-5 for force-field floating-point pa-
rameters.

GMX_ MAXCONSTRWARN
if set to -1, gmx mdrun (page 221) will not exit if it produces too many LINCS warnings.

GMX_NB_MIN CI
neighbor list balancing parameter used when running on GPU. Sets the target minimum number pair-lists
in order to improve multi-processor load-balance for better performance with small simulation systems.
Must be set to a non-negative integer, the O value disables list splitting. The default value is optimized
for supported GPUs therefore changing it is not necessary for normal usage, but it can be useful on future
architectures.

GMX_NBNXN_CYCLE
when set, print detailed neighbor search cycle counting.

GMX NBNXN_EWALD ANALYTICAL
force the use of analytical Ewald non-bonded kernels, mutually exclusive of GMX_NBNXN_EWALD_ -
TABLE.

GMX_ NBNXN EWALD TABLE
force the use of tabulated Ewald non-bonded kernels, mutually exclusive of GMX_NBNXN_EWALD_-
ANALYTICAL.

GMX_NBNXN_PLAINC_1X1
force the use of the reference 1x1 non-SIMD CPU non-bonded kernel, mutually exclusive of GMX_—
NBNXN_SIMD_2XNN and GMX_NBNXN_ STIMD_ 4XN.

GMX_NBNXN_SIMD_ 2XNN
force the use of 2x(N+N) SIMD CPU non-bonded kernels, mutually exclusive of GMX_NBNXN_PLAINC_—
1X1 and GMX_NBNXN_SIMD_4XN.

GMX NBNXN_ SIMD 4XN
force the use of 4xN SIMD CPU non-bonded kernels, mutually exclusive of GMX_NBNXN_PLAINC_1X1
and GMX_NBNXN_SIMD_2XNN.

GMX_NO_CART_REORDER
used in initializing domain decomposition communicators. Rank reordering is default, but can be switched
off with this environment variable.

GMX_NO_INT, GMX_NO_TERM, GMX_NO_USR1
disable signal handlers for SIGINT, SIGTERM, and SIGUSRI, respectively.

GMX_NO_LJ_COMB_RULE
force the use of LJ parameter lookup instead of using combination rules in the non-bonded kernels.

GMX_ NO_NODECOMM
do not use separate inter- and intra-node communicators.

GMX_ NO_NONBONDED
skip non-bonded calculations; can be used to estimate the possible performance gain from adding a GPU
accelerator to the current hardware setup — assuming that this is fast enough to complete the non-bonded
calculations while the CPU does bonded force and PME computation. Freezing the particles will be required
to stop the system blowing up.

GMX_NO_UPDATEGROUPS
turns off update groups. May allow for a decomposition of more domains for small systems at the cost of
communication during update.

3.14. Environment Variables 344

https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html

GROMACS Documentation, Release 2026-rc

GMX_NOOPTIMIZEDKERNELS
deprecated, use GMX_DISABLE_SIMD_KERNELS instead.

GMX_NOPREDICT
shell positions are not predicted.

GMX NSTLIST DYNAMICPRUNING
overrides the dynamic pair-list pruning interval chosen heuristically by mdrun. Values should be between
the pruning frequency value (1 for CPU and 2 for GPU) and nst 1ist (page49) - 1.

GMX_ OVERRIDE_IDENTICAL_SIMULATION_PARTS
overrides the check for identical simulation parts when continuing simulations with gmx mdrun (page 221)
with the -multidir option.

GMX_PME_NUM_THREADS
set the number of OpenMP or PME threads; overrides the default set by gmx mdrun (page 221); can be
used instead of the ~-npme command line option, also useful to set heterogeneous per-process/-node thread
count.

GMX_PME_P3M
use P3M-optimized influence function instead of smooth PME B-spline interpolation.

GMX PME_THREAD DIVISION
PME thread division in the format “x y z” for all three dimensions. The sum of the threads in each dimension
must equal the total number of PME threads (set in GMX_PME_NTHREADS).

GMX_PMEONEDD
if the number of domain decomposition cells is set to 1 for both x and y, decompose PME in one dimension.

GMX_ PULL_PARTICIPATE_ALL
disable the default heuristic for when to use a separate pull MPI communicator (at >=32 ranks).

GMX_REPORT CPU_AFFINITY
print to the log file the CPU affinity of each MPI rank at startup. This prints the effective affinity mask of
the main thread before OpenMP and GPU offload are initialized (unless they do so on library load, as is the
case with 1 ibgomp).

GMX_ REQUIRE_SHELL_ INIT
require that shell positions are initiated.

GMX_TPIC_MASSES
should contain multiple masses used for test particle insertion into a cavity. The center of mass of the last
atoms is used for insertion into the cavity.

GMX_VERLET_BUFFER_ PRESSURE_TOLERANCE
sets the maximum tolerated error in the pressure in bar for the automated tuning of the Verlet pair-list
buffering. Can only be used with system where this tolerance has not been set using the mdp parameter.

GMX_VERLET BUFFER RES
resolution of buffer size in Verlet cutoff scheme. The default value is 0.001, but can be overridden with this
environment variable.

HWLOC_XMLFILE
Not strictly a GROMACS environment variable, but on large machines the hwloc detection can take a few
seconds if you have lots of MPI processes. If you run the hwloc command 1stopo out.xml and set this
environment variable to point to the location of this file, the hwloc library will use the cached information
instead, which can be faster.

MDRUN
the gmx mdrun (page 221) command used by gmx tune_pme (page 292).

MPIRUN
the mpirun command used by gmx tune_pme (page 292).

3.14. Environment Variables 345

GROMACS Documentation, Release 2026-rc

3.14.4 OpenCL management

Currently, several environment variables exist that help customize some aspects of the OpenCL version of GRO-
MACS. They are mostly related to the runtime compilation of OpenCL kernels, but they are also used in device
selection.

GMX_OCL_DEBUG
Use in conjunction with OCL_FORCE_CPU or with an AMD device. It adds the debug flag to the compiler
options (-g).

GMX_ OCIL_DISABLE_ FASTMATH

Prevents the use of ~c1-fast-relaxed-math compiler option. Note: fast math is always disabled on
Intel devices due to instability.

GMX_OCL_DISABLE_I_ PREFETCH
Disables i-atom data (type or LJ parameter) prefetch allowing testing.

GMX_ OCIL_ENABLE_I_PREFETCH
Enables i-atom data (type or LJ parameter) prefetch allowing testing on platforms where this behavior is not
default.

GMX_ OCIL_DUMP_INTERM FILES
If defined, intermediate language code corresponding to the OpenCL build process is saved to file. Caching
has to be turned off in order for this option to take effect.

* NVIDIA GPUs: PTX code is saved in the current directory with the name device_name.ptx

* AMD GPUs: . IL/.ISA files will be created for each OpenCL kernel built. For details about where
these files are created check AMD documentation for —~save-temps compiler option.

GMX_ OCIL_DUMP_LOG
If defined, the OpenCL build log is always written to the mdrun log file. Otherwise, the build log is written
to the log file only when an error occurs.

GMX OCIL_FILE_PATH
Use this parameter to force GROMACS to load the OpenCL kernels from a custom location. Use it only if
you want to override GROMACS default behavior, or if you want to test your own kernels.

GMX_OCL_FORCE_AMD_WAVEFRONT64
Force the use of Wave64 mode on AMD devices. This allows using OpenCL on RDNA-family devices, but
is not recommended. For development use only.

GMX_ OCIL_FORCE_CPU
Force the selection of a CPU device instead of a GPU. This exists only for debugging purposes. Do not
expect GROMACS to function properly with this option on, it is solely for the simplicity of stepping in a
kernel and see what is happening.

GMX_ OCIL_GENCACHE
Enable OpenCL binary caching. Only intended to be used for development and (expert) testing as neither
concurrency nor cache invalidation is implemented safely!

GMX_OCL_NOFASTGEN
If set, generate and compile all algorithm flavors, otherwise only the flavor required for the simulation is
generated and compiled.

GMX_OCIL_NOOPT
Disable optimisations. Adds the option c1-opt—-disable to the compiler options.

GMX_OCL_SHOW_DIAGNOSTICS
Use Intel OpenCL extension to show additional runtime performance diagnostics.

GMX_OCIL_VERBOSE
If defined, it enables verbose mode for OpenCL kernel build. Currently available only for NVIDIA GPUs.
See GMX_OCL_DUMP_LOG for details about how to obtain the OpenCL build log.

3.14. Environment Variables 346

https://www.khronos.org/opencl/

GROMACS Documentation, Release 2026-rc

3.14.5 SYCL management

GMX_ SYCL_ALLOW_ALL_DEVICES
Include CPUs and Accelerator SYCL devices in addition to GPUs. This exists for debugging purposes and
for enabling experimental backends.

3.14.6 Analysis and Core Functions

GMX_ AMBER_ LEAP_ATOM_REORDERING_VERBOSE
make gmx grompp (page 196) print indices and types of dihedral atoms that were processed for reordering
to match AMBER LEaP.

GMX_ DIPOLE_SPACING
spacing used by gmx dipoles (page 163).

GMX_ ENER_VERBOSE
make gmx energy (page 182) and gmx eneconv (page 179) loud and noisy.

GMX_MAXRESRENUM
sets the maximum number of residues to be renumbered by gmx grompp (page 196). A value of -1 indicates
all residues should be renumbered.

GMX_NO_FFRTP_TER_RENAME
Some force fields (like AMBER) use specific names for N- and C- terminal residues (NXXX and CXXX) as
rtp (page 500) entries that are normally renamed. Setting this environment variable disables this renaming.

GMX_USE_XMGR
sets viewer to xmgr (deprecated) instead of xmgrace.

GMXTIMEUNIT
the time unit used in output files, can be anything in fs, ps, ns, us, ms, s, m or h.

VMD_PLUGIN_PATH
where to find VMD plug-ins. Needed to be able to read file formats recognized only by a VMD plug-in.

VMDDIR
base path of VMD installation.

3.15 Floating point arithmetic

GROMACS spends its life doing arithmetic on real numbers, often summing many millions of them. These
real numbers are encoded on computers in so-called binary floating-point representation. This representation is
somewhat like scientific exponential notation (but uses binary rather than decimal), and is necessary for the fastest
possible speed for calculations. Unfortunately the laws of algebra only approximately apply to binary floating-
point. In part, this is because some real numbers that are represented simply and exactly in decimal (like 1/5=0.2)
have no exact representation in binary floating-point, just as 1/3 cannot be represented in decimal. There are
many sources you can find with a search engine that discuss this issue more exhaustively, such as Wikipedia and
David Goldberg’s 1991 paper What every computer scientist should know about floating-point arithmetic (article,
addendum). Bruce Dawson also has a written a number of very valuable blog posts on modern floating-point
programming at his Random ASCII site that are worth reading.

So, the sum of a large number of binary representations of exact decimal numbers need not equal the expected
algebraic or decimal result. Users observe this phenomenon in sums of partial charges expressed to two decimal
places that sometimes only approximate the integer total charge to which they contribute (however a deviation
in the first decimal place would always be indicative of a badly-formed topology). When GROMACS has to
represent such floating-point numbers in output, it sometimes uses a computer form of scientific notation known
as E notation. In such notation, a number like -9.999971e-01 is actually -0.9999971, which is close enough to -1
for purposes of assessing the total charge of a system.

3.15. Floating point arithmetic 347

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E37069_01/html/E39019/z400228248508.html
https://randomascii.wordpress.com/category/floating-point/

GROMACS Documentation, Release 2026-rc

It is also not appropriate for GROMACS to guess to round things, because such rounding relies on assumptions
about the inputs that need not be true. Instead the user needs to understand how their tools work.

3.16 Security when using GROMACS

We advise the users of GROMACS to be careful when using GROMACS with files obtained from an unknown
source (e.g. the Internet).

We cannot guarantee that the program will not crash with serious errors that could cause execution of code with
the same privileges as GROMACS and e.g. delete the contents of your home directory.

Files that the user has created themselves do not carry those risks, but may still misbehave and crash or consume
large amounts of resources upon malformed input.

Run input files obtained from outside sources should be treated with the same caution as an executable file from
the same source.

3.17 Policy for deprecating GROMACS functionality

Occasionally functionality ceases being useful, is unable to be fixed or maintained, or its user interface needs to
be improved. The development team does this sparingly. Broken functionality might be removed without notice if
nobody willing to fix it can be found. Working functionality will be changed only after announcing in the previous
major release the intent to remove and/or change the form of such functionality. Thus there is typically a year for
users and external tool providers to prepare for such changes, and contact the GROMACS developers to see how
they might be affected and how best to adapt.

There is a current list of anticipated changes and deprecated functionality in the “Major release” notes (page 722).

When environment variables are deprecated, it is up to the user to make sure that their scripts are updated accord-
ingly for the new release. In cases where it is sensible, the development team should do the effort to keep the
old environment variables working for one extra release cycle, before fully removing them. The user should be
informed about this future deprecation with a warning. If keeping the old environment variable is not possible or
highly problematic, setting the removed environment variable should be triggering a warning during one release
cycle.

3.16. Security when using GROMACS 348

CHAPTER
FOUR

SHORT HOW-TO GUIDES

A number of short guides are presented here to help users getting started with simulations. Useful third-party
tutorials provided by Justin Lemkul are found here http://www.mdtutorials.com/.

4.1 Beginners

For those just starting out with GROMACS and / or Molecular Dynamics Simulations (page 336) it can be very
daunting. It is highly recommended that the various and extensive documentation that has been made available for
GROMACS is read first, plus papers published in the area of interest.

4.1.1 Resources
* GROMACS Reference Manual (page 359) - very detailed document that can also act as a very good intro-
duction for MD (page 336) in general.
e Flow Chart (page 31)- simple flow chart of a typical GROMACS MD run of a protein in a box of water.

* Molecular dynamics simulations and GROMACS introduction (slides, video) - force fields, integrators,
control of temperature and pressure (Berk Hess).

4.2 Adding a Residue to a Force Field

4.2.1 Adding a new residue

If you have the need to introduce a new residue into an existing force field so that you can use pdb2gmx (page 241),
or modify an existing one, there are several files you will need to modify. You must consult the Reference Manual
(page 359) for description of the required format. Follow these steps:

1. Add the residue to the r7p (page 500) file for your chosen force field. You might be able to copy an existing
residue, rename it and modify it suitably, or you may need to use an external topology generation tool and
adapt the results to the r7p (page 500) format.

2. If you need hydrogens to be able to be added to your residue, create an entry in the relevant idb (page 496)
file.

If you are introducing new atom types, add them to the atomt ypes.atp and ffnonbonded. itp files.

If you require any new bonded types, add them to £ fbonded. itp.

woA W

Add your residue to residuetypes.dat with the appropriate specification (Protein, DNA, Ion, etc).
6. If the residue involves special connectivity to other residues, update specbond. dat.

Note that if all you are doing is simulating some weird ligand in water, or some weird ligand with a normal protein,
then the above is more work than generating a standalone ifp (page 496) file containing a [moleculetype]

349

http://www.mdtutorials.com/
https://extras.csc.fi/chem/courses/gmx2007/Berk_talks/forcef.pdf
https://video.csc.fi/playlist/dedicated/0_7z3nas0q/0_9aehv6v2

GROMACS Documentation, Release 2026-rc

(for example, by modifying the rop (page 501) produced by some parameterization server), and inserting an
#include of that ifp (page 496) file into a top (page 501) generated for the system without that weird ligand.

4.2.2 Modifying a force field

Modifying a force field is best done by making a full copy of the installed forcefield directory and
residuetypes.dat into your local working directory:

[cp -r $GMXLIB/residuetypes.dat S$GMXLIB/amber99sb.ff

Then, modify those local copies as above. pdb2gmx (page 241) will then find both the original and modified
version and you can choose the modified version interactively from the list, or if you use the pdb2gmx (page 241)
— £ f option the local version will override the system version.

4.3 Water solvation

When using solvate (page 274) to generate a box of solvent, you need to supply a pre-equilibrated box of a suitable
solvent for solvate (page 274) to stack around your solute(s), and then to truncate to give the simulation volume
you desire. When using any 3-point model (e.g. SPC, SPC/E or TIP3P) you should specify —cs spc216.
gro which will take this file from the gromacs/share/top directory. Other water models (e.g. TIP4P
and TIP5P) are available as well. Check the contents of the /share/top subdirectory of your GROMACS
installation. After solvation, you should then be sure to equilibrate for at least 5-10ps at the desired temperature.
You will need to select the right water model in your 7op (page 501) file, either with the —water flag to pdb2gmx
(page 241), or by editing your fop (page 501) file appropriately by hand.

For information about how to use solvents other than pure water, please see Non-Water Solvation (page 350) or
Mixed Solvents (page 351).

4.4 Non water solvent

It is possible to use solvents other than water in GROMACS. The only requirements are that you have a pre-
equilibrated box of whatever solvent you need, and suitable parameters for this species in a simulation. One can
then pass the solvent box to the -cs switch of solvate (page 274) to accomplish solvation.

A series of about 150 different equilibrated liquids validated for use with GROMACS, and for the OPLS/AA and
GAFF force fields, can be found at virtualchemistry.

4.4.1 Making a non-aqueous solvent box

Choose a box density and box size. The size does not have to be that of your eventual simulation box - a Inm
cube is probably fine. Generate a single molecule of the solvent. Work out how much volume a single molecule
would have in the box of your chosen density and size. Use edifconf (page 176) to place a box of that size around
your single molecule. Then use edifconf (page 176) to move the molecule a little bit off center. Then use genconf
(page 192) —rot to replicate that box into a large one of the right size and density. Then equilibrate thoroughly
to remove the residual ordering of the molecules, using NVT and periodic boundary conditions. Now you have a
box you can pass to solvate (page 274) —cs, which will replicate it to fit the size of the actual simulation box.

4.3. Water solvation 350

https://virtualchemistry.org/

GROMACS Documentation, Release 2026-rc

4.5 Mixed solvent

A common question that new users have is how to create a system with mixed solvent (urea or DMSO at a given
concentration in water, for example). The simplest procedure for accomplishing this task is as follows:

* Determine the number of co-solvent molecules necessary, given the box dimensions of your system.
* Generate a coordinate file of a single molecule of your co-solvent (i.e., urea.gro).

* Usethe —~ci -nmol options of gmx insert-molecules (page 213) to add the required number of co-solvent
molecules to the box.

* Fill the remainder of the box with water (or whatever your other solvent is) using gmx solvate (page 274) or
gmx insert-molecules (page 213).

 Edit your topology (page 501) to #include the appropriate itp (page 496) files, as well as make changes
tothe [molecules] directive to account for all the species in your system.

4.6 Making Disulfide Bonds

The easiest way to do this is by using the mechanism implemented with the specbond. dat file and pdb2gmx
(page 241). You may find pdb2gmx (page 241) —ss yes is useful. The sulfur atoms will need to be in the same
unit that pdb2gmx (page 241) is converting to amoleculetype, so invoking pdb2gmx (page 241) —chainsep
correctly may be required. See pdb2gmx (page 241) —h. This requires that the two sulfur atoms be within a
distance + tolerance (usually 10%) in order to be recognised as a disulfide. If your sulfur atoms are not this close,
then either you can

* edit the contents of specbond.dat to allow the bond formation and do energy minimization very care-
fully to allow the bond to relax to a sensible length, or

* run a preliminary EM or MD with a distance restraint (and no disulfide bond) between these sulfur atoms
with a large force constant so that they approach within the existing specbond.dat range to provide a
suitable coordinate file for a second invocation of pdb2gmx (page 241).

Otherwise, editing your 7op (page 501) file by hand is the only option.

4.7 Running membrane simulations in GROMACS

4.7.1 Running Membrane Simulations
Users frequently encounter problems when running simulations of lipid bilayers, especially when a protein is
involved. Users seeking to simulate membrane proteins may find this tutorial useful.
One protocol for the simulation of membrane proteins consists of the following steps:
1. Choose a force field for which you have parameters for the protein and lipids.

2. Insert the protein into the membrane. (For instance, use g_membed on a pre-formed bilayer or do a coarse-
grained self-assembly simulation and then convert back to the atomistic representation.)

3. Solvate the system and add ions to neutralize excess charges and adjust the final ion concentration.
4. Energy minimize.

5. Let the membrane adjust to the protein. Typically run MD for ~5-10ns with restraints (1000 kJ/(mol nm?2)
on all protein heavy atoms.

6. Equilibrate without restraints.

7. Run production MD.

4.5. Mixed solvent 351

https://tutorials.gromacs.org/membrane-protein.html

GROMACS Documentation, Release 2026-rc

4.7.2 Adding waters with genbox

When generating waters around a pre-formed lipid membrane with solvare (page 274) you may find that water
molecules get introduced into interstices in the membrane. There are several approaches to removing these,
including

a short MD run to get the hydrophobic effect to exclude these waters. In general this is sufficient to reach
a water-free hydrophobic phase, as the molecules are usually expelled quickly and without disrupting the
general structure. If your setup relies on a completely water-free hydrophobic phase at the start, you can try
to follow the advice below:

Set the —radius option in gmx solvate (page 274) to change the water exclusion radius,

copy vdwradii.dat from your $GMXLIB location to the working directory, and edit it to increase the
radii of your lipid atoms (between 0.35 and 0.5nm is suggested for carbon) to prevent solvate (page 274)
from seeing interstices large enough for water insertion,

editing your structure by hand to delete them (remembering to adjust your atom count for gro (page 495)
files and to account for any changes in the ropology (page 501)), or

use a SCI'ipt someone wrote to remove them.

4.7.3 External material

4.8

Membrane simulations slides , membrane simulations video - (Erik Lindahl).

tutorial for membrane protein simulations - designed to demonstrate what sorts of questions and problems
occur when simulating proteins that are embedded within a lipid bilayer.

Combining the OPLS-AA forcefield with the Berger lipids A detailed description of the motivation, method,
and testing.

Several Topologies for membrane proteins with different force fields gaff, charmm berger Shirley W. L. Siu,
Robert Vacha, Pavel Jungwirth, Rainer A. Bockmann: Biomolecular simulations of membranes: Physical
properties from different force fields.

Lipidbook is a public repository for force-field parameters of lipids, detergents and other molecules that are
used in the simulation of membranes and membrane proteins. It is described in: J. Domarski, P. Stansfeld,
M.S.P. Sansom, and O. Beckstein. J. Membrane Biol. 236 (2010), 255—258. doi:10.1007/s00232-010-
9296-8.

Parameterization of novel molecules

Most of your parametrization questions/problems can be resolved very simply, by remembering the following two

rules:

You should not mix and match force fields. Force fields (page 337) are (at best) designed to be self-
consistent, and will not typically work well with other force fields. If you simulate part of your system with
one force field and another part with a different force field which is not parametrized with the first force
field in mind, your results will probably be questionable, and hopefully reviewers will be concerned. Pick a
force field. Use that force field.

If you need to develop new parameters, derive them in a manner consistent with how the rest of the force
field was originally derived, which means that you will need to review the original literature. There isn’t a
single right way to derive force field parameters; what you need is to derive parameters that are consistent
with the rest of the force field. How you go about doing this depends on which force field you want to use.
For example, with AMBER force fields, deriving parameters for a non-standard amino acid would probably
involve doing a number of different quantum calculations, while deriving GROMOS or OPLS parameters
might involve more (a) fitting various fluid and liquid-state properties, and (b) adjusting parameters based
on experience/chemical intuition/analogy. Some suggestions for automated approaches can be found Zere
(page 39).

4.8. Parameterization of novel molecules 352

https://extras.csc.fi/chem/courses/gmx2007/Erik_Talks/membrane_simulations.pdf
https://video.csc.fi/playlist/dedicated/0_7z3nas0q/0_0tr9yd2p
http://www.mdtutorials.com/gmx/membrane_protein/index.html
http://pomes.biochemistry.utoronto.ca/files/lipidCombinationRules.pdf
https://doi.org/10.1063/1.2897760
https://doi.org/10.1063/1.2897760
https://www.lipidbook.org/
https://doi.org/10.1007/s00232-010-9296-8
https://doi.org/10.1007/s00232-010-9296-8

GROMACS Documentation, Release 2026-rc

It would be wise to have a reasonable amount of simulation experience with GROMACS before attempting to
parametrize new force fields, or new molecules for existing force fields. These are expert topics, and not suitable
for giving to (say) undergraduate students for a research project, unless you like expensive quasi-random number
generators. A very thorough knowledge of Chapter 5: Interaction function and force fields (page 413) of the
GROMACS Reference Manual will be required. If you haven’t been warned strongly enough, please read below
about parametrization for exotic species.

Another bit of advice: Don’t be more haphazard in obtaining parameters than you would be buying fine jewellery.
Just because the guy on the street offers to sell you a diamond necklace for $10 doesn’t mean that’s where you
should buy one. Similarly, it isn’t necessarily the best strategy to just download parameters for your molecule
of interest from the website of someone you’ve never heard of, especially if they don’t explain how they got the
parameters.

Be forewarned about using PRODRG topologies without verifying their contents: the artifacts of doing so are now
published, along with some tips for properly deriving parameters for the GROMOS family of force fields.

4.8.1 Exotic Species

So, you want to simulate a protein/nucleic acid system, but it binds various exotic metal ions (ruthenium?), or there
is an iron-sulfur cluster essential for its functionality, or similar. But, (unfortunately?) there aren’t parameters
available for these in the force field you want to use. What should you do? You shoot an e-mail to the GROMACS
user discussion forum, and get referred to the FAQs.

If you really insist on simulating these in molecular dynamics, you’ll need to obtain parameters for them, either
from the literature, or by doing your own parametrization. But before doing so, it’s probably important to stop and
think, as sometimes there is a reason there may not already be parameters for such atoms/clusters. In particular,
here are a couple of basic questions you can ask yourself to see whether it’s reasonable to develop/obtain standard
parameters for these and use them in molecular dynamics:

¢ Are quantum effects (i.e. charge transfer) likely to be important? (i.e., if you have a divalent metal ion in an
enzyme active site and are interested in studying enzyme functionality, this is probably a huge issue).

* Are standard force field parametrization techniques used for my force field of choice likely to fail for an
atom/cluster of this type? (i.e. because Hartree-Fock 6-31G* can’t adequately describe transition metals,
for example)

If the answer to either of these questions is “Yes”, you may want to consider doing your simulations with some-
thing other than classical molecular dynamics.

Even if the answer to both of these is “No”, you probably want to consult with someone who is an expert on the
compounds you’re interested in, before attempting your own parametrization. Further, you probably want to try
parametrizing something more straightforward before you embark on one of these.

4.9 Potential of Mean Force

The potential of mean force (PMF) is defined as the potential that gives an average force over all the configurations
of a given system. There are several ways to calculate the PMF in GROMACS, probably the most common of
which is to make use of the pull code. The steps for obtaining a PMF using umbrella sampling, which allows for
sampling of statistically-improbable states, are:

» Generate a series of configurations along a reaction coordinate (from a steered MD simulation, a normal
MD simulation, or from some arbitrarily-created configurations)

* Use umbrella sampling to restrain these configurations within sampling windows.
e Use gmx wham (page 300) to make use of the WHAM algorithm to reconstruct a PMF curve.

A more detailed tutorial is linked here for umbrella sampling.

4.9. Potential of Mean Force 353

http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://pubs.acs.org/doi/abs/10.1021/ci100335w
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://tutorials.gromacs.org/umbrella-sampling.html

GROMACS Documentation, Release 2026-rc

4.10 Single-Point Energy

Computing the energy of a single configuration is an operation that is sometimes useful. The best way to do this
with GROMACS is with the mdrun (page 221) ~rerun mechanism, which applies the model physics in the 7pr
(page 503) to the configuration in the trajectory or coordinate file supplied to mdrun.

[mdrun —s input.tpr -rerun configuration.pdb

Note that the configuration supplied must match the topology you used when generating the 7pr (page 503) file
with grompp (page 196). The configuration you supplied to grompp (page 196) is irrelevant, except perhaps for
atom names. You can also use this feature with energy groups (see the Reference manual), or with a trajectory
of multiple configurations (and in this case, by default mdrun (page 221) will do neighbour searching for each
configuration, because it can make no assumptions about the inputs being similar).

A zero-step energy minimization does a step before reporting the energy, and a zero-step MD run has (avoidable)
complications related to catering to possible restarts in the presence of constraints, so neither of those procedures
are recommended.

4.11 Carbon Nanotube

4.11.1 Robert Johnson’s Tips

Taken from Robert Johnson’s posts on the gmx-users mailing list archive.
* Be absolutely sure that the “terminal” carbon atoms are sharing a bond in the topology file.
e Use periodic_molecules = yes in your mdp (page 497) file for input in gmx grompp (page 196).

* Even if the topology is correct, crumpling may occur if you place the nanotube in a box of wrong dimension,
so use VMD to visualize the nanotube and its periodic images and make sure that the space between images
is correct. If the spacing is too small or too big, there will be a large amount of stress induced in the tube
which will lead to crumpling or stretching.

* Don’t apply pressure coupling along the axis of the nanotube. In fact, for debugging purposes, it might
be better to turn off pressure coupling altogether until you figure out if anything is going wrong, and if so,
what.

* When using x2top (page 305) with a specific force field, things are assumed about the connectivity of the
molecule. The terminal carbon atoms of your nanotube will only be bonded to, at most, 2 other carbons, if
periodic, or one if non-periodic and capped with hydrogens.

* You can generate an “infinite” nanotube with the —pbc option to x2top (page 305). Here, x2top (page 305)
will recognize that the terminal C atoms actually share a chemical bond. Thus, when you use grompp
(page 196) you won’t get an error about a single bonded C.

4.11.2 Andrea Minoia’s tutorial

Modeling Carbon Nanotubes with GROMACS (also archived as http://chembytes.wikidot.com/grocnt) contains
everything to set up simple simulations of a CNT using OPLS-AA parameters. Structures of simple CNTs can be
easily generated e.g. by buildCstruct (Python script that also adds terminal hydrogens) or TubeGen Online (just
copy and paste the PDB output into a file and name it cnt.pdb).

To make it work with modern GROMACS you’ll probably want to do the following:
* make a directory cnt_oplsaa.ff
* In this directory, create the following files, using the data from the tutorial page:
— forcefield.itp from the file in section ifp (page 496)

— atomnames2types.n2t from the file in section n27 (page 499)

4.10. Single-Point Energy 354

https://mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-users
http://www.ks.uiuc.edu/Research/vmd/
http://chembytes.wikidot.com/grocnt
http://chembytes.wikidot.com/buildcstruct
http://turin.nss.udel.edu/research/tubegenonline.html

GROMACS Documentation, Release 2026-rc

— aminoacids.rtp from the file in section r7p (page 500)

* generate a topology with the custom forcefield (the cnt_oplsaa.ff directory must be in the same directory as
where the gmx x2top (page 305) command is run or it must be found on the GMXLIB path), ~-noparam
instructs gmx x2top (page 305) to not use bond/angle/dihedral force constants from the command line (-
kb, -ka, -kd) but rely on the force field files; however, this necessitates the next step (fixing the dihedral
functions)

[gmx x2top —-f cnt.gro -o cnt.top —ff cnt_oplsaa —-name CNT -noparam }

The function type for the dihedrals is set to ‘1’ by gmx x2fop (page 305) but the force field file specifies type ‘3’.
Therefore, replace func type ‘1’ with ‘3’ inthe [dihedrals 1] section of the topology file. A quick way is to
use sed (but you might have to adapt this to your operating system; also manually look at the top file and check
that you only changed the dihedral func types):

[sed —i~ '"/\[dihedrals \]/,/\[system \]1/s/1 x$/3/' cnt.top }

Once you have the topology you can set up your system. For instance, a simple in-vacuo simulation (using your
favourite parameters in em.mdp (page 497) and md.mdp (page 497)):

Put into a slightly bigger box:

[gmx editconf -f cnt.gro -o boxed.gro -bt dodecahedron -d 1 }

Energy minimise in vacuuo:

gmx grompp —-f em.mdp -c¢ boxed.gro -p cnt.top -o em.tpr
gmx mdrun -v -deffnm em

MD in vacuuo:

gmx grompp —-f md.mdp -c em.gro -p cnt.top -o md.tpr
gmx mdrun -v —-deffnm md

Look at trajectory:

gmx trjconv —f md.xtc -s md.tpr -o md_centered.xtc —-pbc mol -center
gmx trjconv —-s md.tpr —-f md _centered.xtc -o md_fit.xtc —-fit rot+trans
vmd em.gro md_fit.xtc

4.12 Visualization Software

Some programs that are useful for visualizing either a trajectory file and/or a coordinate file are:

e VMD - a molecular visualization program for displaying, animating, and analyzing large biomolecular
systems using 3-D graphics and built-in scripting. Reads GROMACS trajectories.

¢ PyMOL - capable molecular viewer with support for animations, high-quality rendering, crystallography,
and other common molecular graphics activities. Does not read GROMACS trajectories in default configu-
ration, requiring conversion to PDB or similar format. When compiled with VMD plugins, #7r (page 503)
& xtc (page 505) files can be loaded.

* Rasmol - the derivative software Protein Explorer (below) might be a better alternative, but the Chime
component requires windows. Rasmol works fine on Unix.

* Protein Explorer - a RasMol-derivative, is the easiest-to-use and most powerful software for looking at
macromolecular structure and its relation to function. It runs on Windows or Macintosh/PPC computers.

e Chimera - A full featured, Python-based visualization program with all sorts of features for use on any
platform. The current version reads GROMACS trajectories.

4.12. Visualization Software 355

http://www.ks.uiuc.edu/Research/vmd/
http://www.pymol.org
http://www.ks.uiuc.edu/Research/vmd/
http://www.umass.edu/microbio/rasmol/index2.htm
http://www.umass.edu/microbio/rasmol/
http://www.umass.edu/microbio/rasmol/index2.htm
http://www.umass.edu/microbio/rasmol/
http://www.umass.edu/microbio/rasmol/index2.htm
http://www.rbvi.ucsf.edu/chimera/

GROMACS Documentation, Release 2026-rc

* Molscript - This is a script-driven program form high-quality display of molecular 3D structures in both
schematic and detailed representations. You can get an academic license for free from Avatar.

4.12.1 Topology bonds vs Rendered bonds

Remember that each of these visualization tools is only looking at the coordinate file you gave it. Thus it’s not
using your topology which is described in either your fop (page 501) file or your 7pr (page 503) file. Each of
these programs makes their own guesses about where the chemical bonds are for rendering purposes, so do not be
surprised if the heuristics do not always match your topology.

4.13 Extracting Trajectory Information

There are several techniques available for finding information in GROMACS trajectory (trr (page 503), xtc
(page 505), tng (page 501)) files.

 use the GROMACS trajectory analysis utilities
* use gmx traj (page 281) to write a xvg (page 500) file and read that in an external program as above
* write your own C code using gromacs/share/template/template.cpp as a template

* use gmx dump (page 174) and redirect the shell output to a file and read that in an external program like
MATLAB, or Mathematica or other spreadsheet software.

4.14 External tools to perform trajectory analysis

In recent years several external tools have matured sufficiently to analyse diverse sets of trajectory data from
several simulation packages. Below is a short list of tools (in an alphabetical order) that are known to be able to
analyse GROMACS trajectory data.

* LOOS
* MDAnalysis
* MDTraj

¢ Pteros

4.15 Plotting Data

The various GROMACS analysis utilities can generate xvg (page 506) files. These are text files that have been
specifically formatted for direct use in Grace. You can, however, in all GROMACS analysis programs turn off
the Grace specific codes by running the programs with the —~xvg none option. This circumvents problems with
tools like gnuplot and Excel (see below).

Note that Grace uses some embedded backslash codes to indicate superscripts, normal script, etc. in units. So
“Area (nmS2N)” is nm squared.

4.13. Extracting Trajectory Information 356

https://github.com/pekrau/MolScript
http://loos.sourceforge.net/
https://www.mdanalysis.org/
http://mdtraj.org/
https://github.com/yesint/pteros/

GROMACS Documentation, Release 2026-rc

4.15.1 Software

Some software packages that can be used to graph data in a xvg (page 506) file:

e Grace - WYSIWYG 2D plotting tool for the X Window System and M*tif. Grace runs on practically

any version of Unix-like OS, provided that you can satisfy its library dependencies (Lesstif is a valid free
alternative to Motif). It is also available for the other common operation systems.

* gnuplot - portable command-line driven interactive data and function plotting utility for UNIX, IBM OS/2,

MS Windows, DOS, Macintosh, VMS, Atari and many other platforms. Remember to use:

[set datafile commentschars "#@&"

J

to avoid gnuplot trying to interpret Grace-specific commands in the xvg (page 506) file or use the —xvg
none option when running the analysis program. For simple usage,:

[plot "file.xvg" using 1:2 with lines

is a hack that will achieve the right result.

Matplotlib - a popular Python library for visualization. A simple script that will plot the datain file.xvg
and show the result on the screen

import numpy as np

import matplotlib.pyplot as plt

X, y = np.loadtxt ("file.xvg", comments=["@", "#", "&"], unpack=True)
plt.plot (x, V)

plt.show ()

MS Excel - change the file extension to .csv and open the file (when prompted, choose to ignore the first 20
or so rows and select fixed-width columns, if you are using German MS Excel version, you have to change

ARL T3t

decimal delimiter from “,” to “., or use your favourite *nix tool.
Sigma Plot A commercial tool for windows with some useful analysis tools in it.

R - freely available language and environment for statistical computing and graphics which provides a wide
variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series
analysis, classification, clustering, etc.

SPSS A commercial tool (Statistical Product and Service Solutions), which can also plot and analyse data.

4.16 Micelle Clustering

This is necessary for the gmx spatial (page 277) tool if you have a fully-formed single aggregate and want to
generate the spatial distribution function for that aggregate or for solvent around that aggregate.

Clustering to ensure that the micelle is not split across a periodic boundary condition (page 332) border is an
essential step prior to calculating properties such as the radius of gyration and the radial distribution function.
Without this step your results will be incorrect (a sign of this error is unexplained huge fluctuations in the calculated
value when the visualized trajectory looks fine).

Three steps are required:

use frjconv (page 287) —-pbc cluster to obtain a single frame that has all of the lipids in the unit cell.
This must be the first frame of your trajectory. A similar frame from some previous timepoint will not work.

use grompp (page 196) to make a new 7pr (page 503) file based on the frame that was output from the step
above.

use frjconv (page 287) —pbc nojump to produce the desired trajectory using the newly produced 7pr
(page 503) file.

More explicitly, the same steps are:

4.16.

Micelle Clustering 357

GROMACS Documentation, Release 2026-rc

gmx trjconv —-f a.xtc -o a_cluster.gro -e 0.001 -pbc cluster
gmx grompp —-f a.mdp -c¢ a_cluster.gro -o a_cluster.tpr
gmx trjconv —-f a.xtc -o a_cluster.xtc -s a_cluster.tpr —-pbc nojump

4.16. Micelle Clustering 358

CHAPTER
FIVE

REFERENCE MANUAL

This part of the documentation covers implementation details of GROMACS.
For quick simulation set-up and short explanations, please refer to the User guide (page 30).
Help with the installation of GROMACS can be found in the Inszall guide (page 3).

If you want to help with developing GROMACS, your are most welcome to read up on the Developer Guide
(page 640) and continue right away with coding for GROMACS.

5.1 Preface and Disclaimer

GROMACS - 2026-rc

Current Contributors: Mark Abraham, Andrey Alekseenko, Brian Andrews, Paul Bauer, Cathrine Bergh, Hugh
Bird, Eliane Briand, Ania Brown, Yiqi Chen, Mahesh Doijade, Giacomo Fiorin, Stefan Fleischmann, Sergey
Gorelov, Gilles Gouaillardet, Alan Gray, Farzaneh Jalalypour, Petter Johansson, Carsten Kutzner, Grzegorz
Lazarski, Justin A. Lemkul, Magnus Lundborg, Julio Maia, Pascal Merz, Vedran Mileti¢, Dmitry Morozov,
Lukas Miillender, Szilard Pall, Andrea Pasquadibisceglie, Michele Pellegrino, Nicola Piasentin, Daniele Rapetti,
Muhammad Umair Sadiq, Hubert Santuz, Michael Shirts, Tatiana Shugaeva, Alexey Shvetsov, Balint Soproni,
Philip Turner, Alessandra Villa, Yang Zhang

Previous Contributors: Emile Apol, Rossen Apostolov, James Barnett, Vladimir Basov, Herman J.C. Berendsen,
Par Bjelkmar, Christian Blau, Viacheslav Bolnykh, Kevin Boyd, Aldert van Buuren, Carlo Camilloni, Rudi van
Drunen, Anton Feenstra, Oliver Fleetwood, Vytas Gapsys, Gaurav Garg, Gerrit Groenhof, Bert de Groot, Anca
Hamuraru, Vincent Hindriksen, Victor Holanda, M. Eric Irrgang, Aleksei Iupinov, Joe Jordan, Christoph Junghans,
Prashanth Kanduri, Dimitrios Karkoulis, Peter Kasson, Sebastian Kehl, Sebastian Keller, Jiri Kraus, Per Larsson,
Viveca Lindahl, Erik Marklund, Pieter Meulenhoff, Teemu Murtola, Julien Nabet, Sander Pronk, Roland Schulz,
Alfons Sijbers, David van der Spoel, Peter Tieleman, Carsten Uphoff, Jon Vincent, Teemu Virolainen, Christian
Wennberg, Sebastian Wingbermiihle, Maarten Wolf, Artem Zhmurov

Project leaders: Berk Hess, Erik Lindahl
© 1991 - 2000:

Department of Biophysical Chemistry, University of Groningen. Nijenborgh 4, 9747 AG Groningen,
The Netherlands.

© 2001 —2025:

The GROMACS development teams at the Royal Institute of Technology and Uppsala University,
Sweden.

This manual is not complete and has no pretension to be so, due to lack of time of the contributors — our first
priority is to improve the software. It is worked on continuously, which in some cases might mean the information
is not entirely correct.

Comments on form and content are welcome, please send them to the user discussion forum or the developer
discussion forum (see our webpage or this section on how to contribute (page 640)), or open an issue on our issue

359

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://gromacs.bioexcel.eu/c/gromacs-developers/10
https://gromacs.bioexcel.eu/c/gromacs-developers/10
http://www.gromacs.org
https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/-/issues/

GROMACS Documentation, Release 2026-rc

tracker. Corrections can also be made in the GROMACS git source repository and uploaded to the GROMACS
GitLab.

We release an updated version of the manual whenever we release a new version of the software, so in general it
is a good idea to use a manual with the same major and minor release number as your GROMACS installation.

5.1.1 Citation information

Please reference this documentation as https://doi.org/10.5281/zenodo.17944199.
However, we prefer that you cite (some of) the GROMACS papers:

* Bekker et al. (1993) (page 589)

* Berendsen et al. (1995) (page 589)

e Lindahl et al. (2001) (page 589)

* van der Spoel at al. (2005) (page 589)

e Hess et al. (2008) (page 589)

* Pronk et al. (2013) (page 589)

e Pall et al. (2015) (page 589)

* Abraham et al. (2015) (page 589)

when you publish your results. Any future development depends on academic research grants, since the package
is distributed as free software!

5.1.2 GROMACS is Free Software

The entire GROMACS package is available under the GNU Lesser General Public License (LGPL), version 2.1.
This means it is free as in free speech, not just that you can use it without paying us money. You can redistribute
GROMACS and/or modify it under the terms of the LGPL as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. For details, check the COPYING file in the source
code or consult this page.

The GROMACS source code and selected set of binary packages are available on our homepage,
www.gromacs.org. Have fun!

5.1. Preface and Disclaimer 360

https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/
https://doi.org/10.5281/zenodo.17944199
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gromacs.org

GROMACS Documentation, Release 2026-rc

5.2 Introduction

5.2.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimization. These are two of
the many techniques that belong to the realm of computational chemistry and molecular modeling. Computational
chemistry is just a name to indicate the use of computational techniques in chemistry, ranging from quantum
mechanics of molecules to dynamics of large complex molecular aggregates. Molecular modeling indicates the
general process of describing complex chemical systems in terms of a realistic atomic model, with the goal being to
understand and predict macroscopic properties based on detailed knowledge on an atomic scale. Often, molecular
modeling is used to design new materials, for which the accurate prediction of physical properties of realistic
systems is required.

Macroscopic physical properties can be distinguished by

1. static equilibrium properties, such as the binding constant of an inhibitor to an enzyme, the average potential
energy of a system, or the radial distribution function of a liquid, and

2. dynamic or non-equilibrium properties, such as the viscosity of a liquid, diffusion processes in membranes,
the dynamics of phase changes, reaction kinetics, or the dynamics of defects in crystals.

The choice of technique depends on the question asked and on the feasibility of the method to yield reliable
results at the present state of the art. Ideally, the (relativistic) time-dependent Schrodinger equation describes the
properties of molecular systems with high accuracy, but anything more complex than the equilibrium state of a few
atoms cannot be handled at this ab initio level. Thus, approximations are necessary; the higher the complexity of a
system and the longer the time span of the processes of interest is, the more severe the required approximations are.
At a certain point (reached very much earlier than one would wish), the ab initio approach must be augmented
or replaced by empirical parameterization of the model used. Where simulations based on physical principles
of atomic interactions still fail due to the complexity of the system, molecular modeling is based entirely on a
similarity analysis of known structural and chemical data. The QSAR methods (Quantitative Structure-Activity
Relations) and many homology-based protein structure predictions belong to the latter category.

Macroscopic properties are always ensemble averages over a representative statistical ensemble (either equilibrium
or non-equilibrium) of molecular systems. For molecular modeling, this has two important consequences:

* The knowledge of a single structure, even if it is the structure of the global energy minimum, is not suf-
ficient. It is necessary to generate a representative ensemble at a given temperature, in order to compute
macroscopic properties. But this is not enough to compute thermodynamic equilibrium properties that are
based on free energies, such as phase equilibria, binding constants, solubilities, relative stability of molec-
ular conformations, etc. The computation of free energies and thermodynamic potentials requires special
extensions of molecular simulation techniques.

* While molecular simulations, in principle, provide atomic details of the structures and motions, such details
are often not relevant for the macroscopic properties of interest. This opens the way to simplify the descrip-
tion of interactions and average over irrelevant details. The science of statistical mechanics provides the
theoretical framework for such simplifications. There is a hierarchy of methods ranging from considering
groups of atoms as one unit, describing motion in a reduced number of collective coordinates, averaging
over solvent molecules with potentials of mean force combined with stochastic dynamics 9 (page 589),
to mesoscopic dynamics describing densities rather than atoms and fluxes as response to thermodynamic
gradients rather than velocities or accelerations as response to forces /0 (page 589).

For the generation of a representative equilibrium ensemble two methods are available:
1. Monte Carlo simulations and
2. Molecular Dynamics simulations.

For the generation of non-equilibrium ensembles and for the analysis of dynamic events, only the second method
is appropriate. While Monte Carlo simulations are more simple than MD (they do not require the computation of
forces), they do not yield significantly better statistics than MD in a given amount of computer time. Therefore,
MD is the more universal technique. If a starting configuration is very far from equilibrium, the forces may
be excessively large and the MD simulation may fail. In those cases, a robust energy minimization is required.
Another reason to perform an energy minimization is the removal of all kinetic energy from the system: if several

5.2. Introduction 361

GROMACS Documentation, Release 2026-rc

“snapshots” from dynamic simulations must be compared, energy minimization reduces the thermal noise in the
structures and potential energies so that they can be compared better.

5.2.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system of [V interacting atoms:

(92I'i .
mi—atz =F;,,i=1...N. G.D
The forces are the negative derivatives of a potential function V (ry,rs,...,ry):
aVv
F,=- 5.2
; ar. (5.2)

The equations are solved simultaneously in small time steps. The system is followed for some time, taking care
that the temperature and pressure remain at the required values, and the coordinates are written to an output file at
regular intervals. The coordinates as a function of time represent a trajectory of the system. After initial changes,
the system will usually reach an equilibrium state. By averaging over an equilibrium trajectory, many macroscopic
properties can be extracted from the output file.

It is useful at this point to consider the limitations of MD simulations. The user should be aware of those limitations
and always perform checks on known experimental properties to assess the accuracy of the simulation. We list the
approximations below.

The simulations are classical

» Using Newton’s equation of motion automatically implies the use of classical mechanics to describe the
motion of atoms. This is all right for most atoms at normal temperatures, but there are exceptions. Hydrogen
atoms are quite light and the motion of protons is sometimes of essential quantum mechanical character.
For example, a proton may tunnel through a potential barrier in the course of a transfer over a hydrogen
bond. Such processes cannot be properly treated by classical dynamics! Helium liquid at low temperature
is another example where classical mechanics breaks down. While helium may not deeply concern us,
the high frequency vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator differs appreciably from that of a real quantum oscillator when the resonance
frequency v approaches or exceeds kT'/h. At room temperature the wavenumber o = 1/\ = v/c at which
hv = kgT is approximately 200 cm™!. Thus, all frequencies higher than, say, 100 cm~! may misbehave in
classical simulations. This means that practically all bond and bond-angle vibrations are suspect, and even
hydrogen-bonded motions as translational or librational H-bond vibrations are beyond the classical limit
(see Table 5.1) What can we do?

Table 5.1: Typical vibrational frequencies (wavenumbers) in molecules
and hydrogen-bonded liquids. Compare k7T'/h = 200 cm ™~ at 300 K.

type of bond type of vibration wavenumber cm ~*

C-H, O-H, N-H stretch 3000-3500
C=C, C=0 stretch 1700-2000
HOH bending 1600

Cc-C stretch 1400-1600
H>CX sciss, rock 1000-1500
CCC bending 800-1000
O-H---O vibration 400-700
O-H---O stretch 50-200

e Well, apart from real quantum-dynamical simulations, we can do one of two things:

(a) If we perform MD simulations using harmonic oscillators for bonds, we should make corrections to
the total internal energy U = Ej;, + Epoe and specific heat Cy, (and to entropy S and free energy
A or G if those are calculated). The corrections to the energy and specific heat of a one-dimensional
oscillator with frequency v are: /7 (page 589)

1
UM — Ut 4+ kT (23: —14 1) (5.3)

5.2. Introduction 362

GROMACS Documentation, Release 2026-rc

COM _ el e 54
= k|l —s -1 .
P e (1) oY
where © = hv/kT. The classical oscillator absorbs too much energy (k¥T'), while the high-frequency

quantum oscillator is in its ground state at the zero-point energy level of %hlj.

(b) We can treat the bonds (and bond angles) as constraints in the equations of motion. The rationale
behind this is that a quantum oscillator in its ground state resembles a constrained bond more closely
than a classical oscillator. A good practical reason for this choice is that the algorithm can use larger
time steps when the highest frequencies are removed. In practice the time step can be made four times
as large when bonds are constrained than when they are oscillators /2 (page 589). GROMACS has
this option for the bonds and bond angles. The flexibility of the latter is rather essential to allow for
the realistic motion and coverage of configurational space /3 (page 589).

Electrons are in the ground state
In MD simulations, we use a conservative force field that is a function of the positions of atoms only. This
means that the electronic motions are not considered: the electrons are supposed to adjust their dynamics
instantly when the atomic positions change (the Born-Oppenheimer approximation), and remain in their
ground state. This is really all right, almost always. But of course, electron transfer processes and elec-
tronically excited states can not be treated. Neither can chemical reactions be treated properly, but there are
other reasons to shy away from reactions for the time being.

Force fields are approximate

Force fields provide the forces. They are not really a part of the simulation method and their parameters can
be modified by the user as the need arises or knowledge improves. But the form of the forces that can be
used in a particular program is subject to limitations. The force field that is incorporated in GROMACS is
described in Chapter 4. In the present version the force field is pair-additive (apart from long-range Coulomb
forces), it cannot incorporate polarizabilities, and it does not contain fine-tuning of bonded interactions. This
urges the inclusion of some limitations in this list below. For the rest, it is quite useful and fairly reliable for
biologically-relevant macromolecules in aqueous solution!

The force field is pair-additive

This means that all non-bonded forces result from the sum of non-bonded pair interactions. Non pair-
additive interactions, the most important example of which is interaction through atomic polarizability, are
represented by effective pair potentials. Only average non pair-additive contributions are incorporated. This
also means that the pair interactions are not pure, i.e., they are not valid for isolated pairs or for situations
that differ appreciably from the test systems on which the models were parameterized. In fact, the effective
pair potentials are not that bad in practice. But the omission of polarizability also means that electrons in
atoms do not provide a dielectric constant as they should. For example, real liquid alkanes have a dielectric
constant of slightly more than 2, which reduce the long-range electrostatic interaction between (partial)
charges. Thus, the simulations will exaggerate the long-range Coulomb terms. Luckily, the next item
compensates this effect a bit.

Long-range interactions are cut off

GROMACS commonly uses a cut-off radius for the Lennard-Jones interactions and sometimes for the
Coulomb interactions as well. The “minimum-image convention” used by GROMACS requires that only
one image of each particle in the periodic boundary conditions is considered for a pair interaction, so the
cut-off radius cannot exceed half the box size. That is still pretty big for large systems, and trouble is only
expected for systems containing charged particles. But then truly bad things can happen, like accumulation
of charges at the cut-off boundary or very wrong energies! For such systems, you should consider using
one of the implemented long-range electrostatic algorithms, such as particle-mesh Ewald /4 (page 589), /5
(page 589).

Boundary conditions are unnatural

Since system size is small (even 100,000 particles is small), a cluster of particles will have a lot of unwanted
boundary with its environment (vacuum). We must avoid this condition if we wish to simulate a bulk system.
As such, we use periodic boundary conditions to avoid real phase boundaries. Since liquids are not crystals,
something unnatural remains. This item is mentioned last because it is the least of the evils. For large
systems, the errors are small, but for small systems with a lot of internal spatial correlation, the periodic
boundaries may enhance internal correlation. In that case, beware of, and test, the influence of system size.
This is especially important when using lattice sums for long-range electrostatics, since these are known to
sometimes introduce extra ordering.

5.2. Introduction 363

GROMACS Documentation, Release 2026-rc

5.2.3 Energy Minimization and Search Methods

As mentioned in Computational Chemistry and Molecular Modeling (page 361), in many cases energy minimiza-
tion is required. GROMACS provides a number of methods for local energy minimization, as detailed in Energy
Minimization (page 401).

The potential energy function of a (macro)molecular system is a very complex landscape (or hypersurface) in
a large number of dimensions. It has one deepest point, the global minimum and a very large number of local
minima, where all derivatives of the potential energy function with respect to the coordinates are zero and all
second derivatives are non-negative. The matrix of second derivatives, which is called the Hessian matrix, has non-
negative eigenvalues; only the collective coordinates that correspond to translation and rotation (for an isolated
molecule) have zero eigenvalues. In between the local minima there are saddle points, where the Hessian matrix
has only one negative eigenvalue. These points are the mountain passes through which the system can migrate
from one local minimum to another.

Knowledge of all local minima, including the global one, and of all saddle points would enable us to describe
the relevant structures and conformations and their free energies, as well as the dynamics of structural transitions.
Unfortunately, the dimensionality of the configurational space and the number of local minima is so high that
it is impossible to sample the space at a sufficient number of points to obtain a complete survey. In particular,
no minimization method exists that guarantees the determination of the global minimum in any practical amount
of time. Impractical methods exist, some much faster than others /6 (page 589). However, given a starting
configuration, it is possible to find the nearest local minimum. “Nearest” in this context does not always imply
“nearest” in a geometrical sense (i.e., the least sum of square coordinate differences), but means the minimum that
can be reached by systematically moving down the steepest local gradient. Finding this nearest local minimum
is all that GROMACS can do for you, sorry! If you want to find other minima and hope to discover the global
minimum in the process, the best advice is to experiment with temperature-coupled MD: run your system at a
high temperature for a while and then quench it slowly down to the required temperature; do this repeatedly! If
something as a melting or glass transition temperature exists, it is wise to stay for some time slightly below that
temperature and cool down slowly according to some clever scheme, a process called simulated annealing. Since
no physical truth is required, you can use your imagination to speed up this process. One trick that often works is
to make hydrogen atoms heavier (mass 10 or so): although that will slow down the otherwise very rapid motions
of hydrogen atoms, it will hardly influence the slower motions in the system, while enabling you to increase the
time step by a factor of 3 or 4. You can also modify the potential energy function during the search procedure, e.g.
by removing barriers (remove dihedral angle functions or replace repulsive potentials by soft-core potentials /7
(page 589)), but always take care to restore the correct functions slowly. The best search method that allows rather
drastic structural changes is to allow excursions into four-dimensional space /8 (page 589), but this requires some
extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

* Those that require only function evaluations. Examples are the simplex method and its variants. A step is
made on the basis of the results of previous evaluations. If derivative information is available, such methods
are inferior to those that use this information.

* Those that use derivative information. Since the partial derivatives of the potential energy with respect to all
coordinates are known in MD programs (these are equal to minus the forces) this class of methods is very
suitable as modification of MD programs.

» Those that use second derivative information as well. These methods are superior in their convergence prop-
erties near the minimum: a quadratic potential function is minimized in one step! The problem is that for
N particles a 3N x 3NN matrix must be computed, stored, and inverted. Apart from the extra programming
to obtain second derivatives, for most systems of interest this is beyond the available capacity. There are
intermediate methods that build up the Hessian matrix on the fly, but they also suffer from excessive storage
requirements. So GROMACS will shy away from this class of methods.

The steepest descent method, available in GROMACS, is of the second class. It simply takes a step in the direction
of the negative gradient (hence in the direction of the force), without any consideration of the history built up in
previous steps. The step size is adjusted such that the search is fast, but the motion is always downhill. This is
a simple and sturdy, but somewhat stupid, method: its convergence can be quite slow, especially in the vicinity
of the local minimum! The faster-converging conjugate gradient method (see e.g. 19 (page 589)) uses gradient
information from previous steps. In general, steepest descents will bring you close to the nearest local minimum
very quickly, while conjugate gradients brings you very close to the local minimum, but performs worse far away

5.2. Introduction 364

GROMACS Documentation, Release 2026-rc

from the minimum. GROMACS also supports the L-BFGS minimizer, which is mostly comparable to conjugate
gradient method, but in some cases converges faster.

5.2. Introduction 365

GROMACS Documentation, Release 2026-rc

5.3 Definitions and Units

5.3.1 Notation

The following conventions for mathematical typesetting are used throughout this document:

Item Notation = Example
Vector Bold italic r;
Vector Length Italic 7

We define the lowercase subscripts i, 7, k and [to denote particles: r; is the position vector of particle ¢, and using
this notation:
ri =r; —r;
R (5.5)
rij = |rijl
The force on particle ¢ is denoted by F; and

F;; = force on i exerted by j (5.6)

5.3.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for most relevant molecular
quantities. Let us call them MD units. The basic units in this system are nm, ps, K, electron charge (e¢) and
atomic mass unit (u), see Table 5.2 The values used in GROMACS are taken from the CODATA Internationally
recommended 2010 values of fundamental physical constants (see NIST homepage).

Table 5.2: Basic units used in GROMACS
Quantity Symbol Unit

nm =10"2m

length r

mass m u (unified atomic mass unit) = 1.660 538 921 x 10727 kg
time t ps =10"12 s

charge q e = elementary charge = 1.602 176 565 x 10~ C
temperature T K

Consistent with these units are a set of derived units, given in Table 5.3

Table 5.3: Derived units. Note that an additional conversion factor of
10%® a.m.u (=~ 16.6) is applied to get bar instead of internal MD units in

the energy and log files
Quantity Symbol Unit
energy EV kJ mol ~*
Force F kJ mol ™ nm~!
pressure P bar
velocity v nm ps~— ! = 1000 ms—!
dipole moment o enm
electric potential ~ ® kJ mol ' e~ =0.010 364 269 19 Volt
electric field E kJmol " nm~!e~! =1.036426 919 x 107 Vm ™"

1

Tme, = 138.935458 kJ mol ™ 'nm e~2. It relates the mechanical quantities

The electric conversion factor f =
to the electrical quantities as in

2 2
V= fq7 or F = f% (5.7)

5.3. Definitions and Units 366

http://nist.gov

GROMACS Documentation, Release 2026-rc

Electric potentials ® and electric fields E are intermediate quantities in the calculation of energies and forces.
They do not occur inside GROMACS. If they are used in evaluations, there is a choice of equations and related
units. We strongly recommend following the usual practice of including the factor f in expressions that evaluate
® and E:

_ 4j
(p(r)_f;‘r_rjl
(5.8)

With these definitions, ¢® is an energy and ¢E is a force. The units are those given in Table 5.3 about 10 mV for
potential. Thus, the potential of an electronic charge at a distance of 1 nm equals f = 140 units ~ 1.4 V. (exact
value: 1.4399645 V)

Note that these units are mutually consistent; changing any of the units is likely to produce inconsistencies and
is therefore strongly discouraged! In particular: if A are used instead of nm, the unit of time changes to 0.1 ps.
If kcal mol ™! (= 4.184 kJ mol ') is used instead of kJ mol ™" for energy, the unit of time becomes 0.488882 ps
and the unit of temperature changes to 4.184 K. But in both cases all electrical energies go wrong, because they
will still be computed in kJ mol ?, expecting nm as the unit of length. Although careful rescaling of charges may
still yield consistency, it is clear that such confusions must be rigidly avoided.

In terms of the MD units, the usual physical constants take on different values (see Table 5.4). All quantities are
per mol rather than per molecule. There is no distinction between Boltzmann’s constant k and the gas constant R:
their value is 0.008 314 462 1kJ mol 'K ~1.

Table 5.4: Some Physical Constants

Symbol Name Value

Nav Avogadro’s number 6.022 14129 x 1023 mol !

R gas constant 8.3144621 x 1073 kJ mol ' K—!

kB Boltzmann’s constant idem

h Planck’s constant 0.399 031271 kJ mol " ps
Dirac’s constant 0.063 507 799 3 kJ mol ! ps

c velocity of light 299 792.458 nm ps~!

5.3.3 Reduced units

When simulating Lennard-Jones (LJ) systems, it might be advantageous to use reduced units (i.e., setting €;; =
0ii = m; = kp = 1 for one type of atoms). This is possible. When specifying the input in reduced units, the
output will also be in reduced units. The one exception is the temperature, which is expressed in 0.008 314 462 1
reduced units. This is a consequence of using Boltzmann’s constant in the evaluation of temperature in the code.
Thus not T, but k5T, is the reduced temperature. A GROMACS temperature 7' = 1 means a reduced temperature
of 0.008 . .. units; if a reduced temperature of 1 is required, the GROMACS temperature should be 120.272 36.

In Table 5.5 quantities are given for LJ potentials:

= (5) (2]

5.3. Definitions and Units 367

GROMACS Documentation, Release 2026-rc

Table 5.5: Reduced Lennard-Jones quantities

Quantity Symbol Relation to Sl

Length r* ro~!

Mass m* mM~!
Time t* to~! \/e/M
Temperature T* kgT e !
Energy E* EBe !

Force F* Foe !
Pressure P* Pode!
Velocity v* vy/M/e
Density p* Ng3 V-1

5.3.4 Mixed or Double precision

GROMACS can be compiled in either mixed or double precision. Documentation of previous GROMACS versions
referred to single precision, but the implementation has made selective use of double precision for many years.
Using single precision for all variables would lead to a significant reduction in accuracy. Although in mixed
precision all state vectors, i.e. particle coordinates, velocities and forces, are stored in single precision, critical
variables are double precision. A typical example of the latter is the virial, which is a sum over all forces in the
system, which have varying signs. In addition, in many parts of the code we managed to avoid double precision
for arithmetic, by paying attention to summation order or reorganization of mathematical expressions. The default
configuration uses mixed precision, but it is easy to turn on double precision by adding the option ~-DGMX_ —
DOUBLE=o0n to cmake. Double precision will be 20 to 100% slower than mixed precision depending on the
architecture you are running on. Double precision will use somewhat more memory and run input, energy and
full-precision trajectory files will be almost twice as large.

The energies in mixed precision are accurate up to the last decimal, the last one or two decimals of the forces are
non-significant. The virial is less accurate than the forces, since the virial is only one order of magnitude larger
than the size of each element in the sum over all atoms (sec. Virial and pressure (page 456)). In most cases this
is not really a problem, since the fluctuations in the virial can be two orders of magnitude larger than the average.
Using cut-offs for the Coulomb interactions cause large errors in the energies, forces, and virial. Even when using
a reaction-field or lattice sum method, the errors are larger than, or comparable to, the errors due to the partial use
of single precision. Since MD is chaotic, trajectories with very similar starting conditions will diverge rapidly, the
divergence is faster in mixed precision than in double precision.

For most simulations, mixed precision is accurate enough. In some cases double precision is required to get
reasonable results:

* normal mode analysis, for the conjugate gradient or 1-bfgs minimization and the calculation and diagonal-
ization of the Hessian

* long-term energy conservation, especially for large systems

5.3. Definitions and Units 368

GROMACS Documentation, Release 2026-rc

5.4 Algorithms

In this chapter we first give describe some general concepts used in GROMACS: periodic boundary conditions
(sec. Periodic boundary conditions (page 369)) and the group concept (sec. The group concept (page 372)). The
MD algorithm is described in sec. Molecular Dynamics (page 373): first a global form of the algorithm is given,
which is refined in subsequent subsections. The (simple) EM (Energy Minimization) algorithm is described in
sec. Energy Minimization (page 401). Some other algorithms for special purpose dynamics are described after
this.

A few issues are of general interest. In all cases the system must be defined, consisting of molecules. Molecules
again consist of particles with defined interaction functions. The detailed description of the fopology of the
molecules and of the force field and the calculation of forces is given in chapter Interaction function and force
fields (page 413). In the present chapter we describe other aspects of the algorithm, such as pair list generation,
update of velocities and positions, coupling to external temperature and pressure, conservation of constraints. The
analysis of the data generated by an MD simulation is treated in chapter Analysis (page 563).

5.4.1 Periodic boundary conditions

Yy
T op S op op
o; o, o
”””” op |/ o op
o L e hd
op S| oy oy *
,,,,,, °{°
Yy
””””””” o Jojoj
o o, ®; |
””””””” ojp oj [opi
o; o; o,
Op | e op oy *

Fig. 5.1: Periodic boundary conditions in two dimensions.

The classical way to minimize edge effects in a finite system is to apply periodic boundary conditions. The atoms
of the system to be simulated are put into a space-filling box, which is surrounded by translated copies of itself
(Fig. 5.1). Thus there are no boundaries of the system; the artifact caused by unwanted boundaries in an isolated
cluster is now replaced by the artifact of periodic conditions. If the system is crystalline, such boundary conditions
are desired (although motions are naturally restricted to periodic motions with wavelengths fitting into the box).
If one wishes to simulate non-periodic systems, such as liquids or solutions, the periodicity by itself causes errors.
The errors can be evaluated by comparing various system sizes; they are expected to be less severe than the errors
resulting from an unnatural boundary with vacuum.

There are several possible shapes for space-filling unit cells. Some, like the rhombic dodecahedron and the
truncated octahedron 20 (page 589) are closer to being a sphere than a cube is, and are therefore better suited to the
study of an approximately spherical macromolecule in solution, since fewer solvent molecules are required to fill
the box given a minimum distance between macromolecular images. At the same time, rhombic dodecahedra and
truncated octahedra are special cases of triclinic unit cells; the most general space-filling unit cells that comprise
all possible space-filling shapes 2/ (page 589). For this reason, GROMACS is based on the triclinic unit cell.

5.4. Algorithms 369

GROMACS Documentation, Release 2026-rc

GROMACS uses periodic boundary conditions, combined with the minimum image convention: only one — the
nearest — image of each particle is considered for short-range non-bonded interaction terms. For long-range
electrostatic interactions this is not always accurate enough, and GROMACS therefore also incorporates lattice
sum methods such as Ewald Sum, PME and PPPM.

GROMACS supports triclinic boxes of any shape. The simulation box (unit cell) is defined by the 3 box vectors
a,b and c. The box vectors must satisfy the following conditions:

ay=a,=>b,=0 (5.10)
a; >0, b, >0, c,>0 (5.11)
1 1 1
ol < 5 0wy leal < Faz, eyl < 5y (5.12)

Equations (5.10) can always be satisfied by rotating the box. Inequalities ((5.11)) and ((5.12)) can always be
satisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always keeps the particles in a brick-shaped volume for
efficiency, as illustrated in Fig. 5.1 for a 2-dimensional system. Therefore, from the output trajectory it might
seem that the simulation was done in a rectangular box. The program rrjconv (page 287) can be used to convert
the trajectory to a different unit-cell representation.

It is also possible to simulate without periodic boundary conditions, but it is usually more efficient to simulate
an isolated cluster of molecules in a large periodic box, since fast grid searching can only be used in a periodic
system.

Fig. 5.2: A rhombic dodecahedron (arbitrary orientation).

Fig. 5.3: A truncated octahedron (arbitrary orientation).

5.4. Algorithms 370

GROMACS Documentation, Release 2026-rc

Some useful box types

Table 5.6: Overview over different box types

box type image box box vectors box vector angles
distance volume a b c Zbc Zac Z ab
cubic d a3 d 0 0 90° 90° 90°
0 d 0
0 0 d
rhombic d V2d® d 0 % d 60° 60° 90°
dodecahedron 0.707d®> 0 d zd
(xy-square) 0 0 %\/5 d
rhombic d Vedd d id 1d 60° 60° 60°
dodecahedron 0.707d® 0 $V3d V3d
(xy- hexagon) 0 0 %\/6 d
truncated d V3P d id —+d 70.53° 109.47° 70.53°
octahedron 0.770d®> 0 2V2d iv2d
0 0 zv6d

The three most useful box types for simulations of solvated systems are described in Table 5.6. The rhombic
dodecahedron (Fig. 5.2) is the smallest and most regular space-filling unit cell. Each of the 12 image cells is at the
same distance. The volume is 71% of the volume of a cube having the same image distance. This saves about 29%
of CPU-time when simulating a spherical or flexible molecule in solvent. There are two different orientations of a
rhombic dodecahedron that satisfy equations (5.10), (5.11) and (5.12). The program editconf (page 176) produces
the orientation which has a square intersection with the xy-plane. This orientation was chosen because the first
two box vectors coincide with the x and y-axis, which is easier to comprehend. The other orientation can be useful
for simulations of membrane proteins. In this case the cross-section with the xy-plane is a hexagon, which has
an area which is 14% smaller than the area of a square with the same image distance. The height of the box (c.)
should be changed to obtain an optimal spacing. This box shape not only saves CPU time, it also results in a more
uniform arrangement of the proteins.

Cut-off restrictions

The minimum image convention implies that the cut-off radius used to truncate non-bonded interactions may not
exceed half the shortest box vector:

1 .
Re < g min([lal, |[b, flell), (.13)

because otherwise more than one image would be within the cut-off distance of the force. When a macromolecule,
such as a protein, is studied in solution, this restriction alone is not sufficient: in principle, a single solvent molecule
should not be able to ‘see’ both sides of the macromolecule. This means that the length of each box vector must
exceed the length of the macromolecule in the direction of that edge plus two times the cut-off radius R.. It is,
however, common to compromise in this respect, and make the solvent layer somewhat smaller in order to reduce
the computational cost. For efficiency reasons the cut-off with triclinic boxes is more restricted. For grid search
the extra restriction is weak:

R. < min(ay, by, ¢,) (5.14)
For simple search the extra restriction is stronger:
1 .
R, < 5 min(ag, by, c;) (5.15)
Each unit cell (cubic, rectangular or triclinic) is surrounded by 26 translated images. A particular image can
therefore always be identified by an index pointing to one of 27 translation vectors and constructed by applying

a translation with the indexed vector (see Compute forces (page 380)). Restriction (5.14) ensures that only 26
images need to be considered.

5.4. Algorithms 371

GROMACS Documentation, Release 2026-rc

5.4.2 The group concept

The GROMACS MD and analysis programs use user-defined groups of atoms to perform certain actions on.
The maximum number of groups is 256, but each atom can only belong to six different groups, one each of the
following:

temperature-coupling group
The temperature coupling parameters (reference temperature, time constant, number of degrees of freedom,
see The leap-frog integrator (page 381)) can be defined for each T-coupling group separately. For example,
in a solvated macromolecule the solvent (that tends to generate more heating by force and integration errors)
can be coupled with a shorter time constant to a bath than is a macromolecule, or a surface can be kept cooler
than an adsorbing molecule. Many different T-coupling groups may be defined. See also center of mass
groups below.

freeze group

Atoms that belong to a freeze group are kept stationary in the dynamics. This is useful during equilibration,
e.g. to avoid badly placed solvent molecules giving unreasonable kicks to protein atoms, although the same
effect can also be obtained by putting a restraining potential on the atoms that must be protected. The freeze
option can be used, if desired, on just one or two coordinates of an atom, thereby freezing the atoms in
a plane or on a line. When an atom is partially frozen, constraints will still be able to move it, even in a
frozen direction. A fully frozen atom can not be moved by constraints. Many freeze groups can be defined.
Frozen coordinates are unaffected by pressure scaling; in some cases this can produce unwanted results,
particularly when constraints are also used (in this case you will get very large pressures). Accordingly,
it is recommended to avoid combining freeze groups with constraints and pressure coupling. For the sake
of equilibration it could suffice to start with freezing in a constant volume simulation, and afterward use
position restraints in conjunction with constant pressure.

accelerate group
On each atom in an “accelerate group” an acceleration a¥ is imposed. This is equivalent to a mass-weighted
external force. This feature makes it possible to drive the system into a non-equilibrium state to compute,
for example, transport properties.

energy-monitor group
Mutual interactions between all energy-monitor groups are compiled during the simulation. This is done
separately for Lennard-Jones and Coulomb terms. In principle up to 256 groups could be defined, but that
would lead to 256 x256 items! Better use this concept sparingly.

All non-bonded interactions between pairs of energy-monitor groups can be excluded (see details in the
User Guide). Pairs of particles from excluded pairs of energy-monitor groups are not put into the pair list.
This can result in a significant speedup for simulations where interactions within or between parts of the
system are not required.

center of mass group
In GROMACS, the center of mass (COM) motion can be removed, for either the complete system or for
groups of atoms. The latter is useful, e.g. for systems where there is limited friction (e.g. gas systems) to
prevent center of mass motion to occur. It makes sense to use the same groups for temperature coupling and
center of mass motion removal.

Compressed position output group
In order to further reduce the size of the compressed trajectory file (xtc (page 505) or tng (page 501)), it is
possible to store only a subset of all particles. All x-compression groups that are specified are saved, the
rest are not. If no such groups are specified, than all atoms are saved to the compressed trajectory file.

The use of groups in GROMACS tools is described in sec. Using Groups (page 563).

5.4. Algorithms 372

GROMACS Documentation, Release 2026-rc

5.4.3 Molecular Dynamics

THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interaction V' as a function of atom positions
Positions r of all atoms in the system

Velocities v of all atoms in the system

4

repeat 2,3,4 for the required number of steps:

2. Compute forces
The force on any atom

ov
F,=———

ari
is computed by calculating the force between non-bonded atom pairs:
Fi=5,F

plus the forces due to bonded interactions (which may depend on 1, 2, 3, or 4 atoms), plus restraining and/or
external forces.

The potential and kinetic energies and the pressure tensor may be computed.

I

3. Update configuration

The movement of the atoms is simulated by numerically solving Newton’s equations of motion
d2 r; Fz

ez omy

or

dI‘i dVi Fl
= V'L'; - 0 = 2

dt dt m;

I

4. if required: Output step
write positions, velocities, energies, temperature, pressure, etc.

A global flow scheme for MD is given above. Each MD or EM run requires as input a set of initial coordinates and
— optionally — initial velocities of all particles involved. This chapter does not describe how these are obtained;
for the setup of an actual MD run check the User guide (page 30) in Sections System preparation (page 35) and
Getting started (page 31).

5.4. Algorithms 373

GROMACS Documentation, Release 2026-rc

Initial conditions

Topology and force field

The system topology, including a description of the force field, must be read in. Force fields and topologies are
described in chapter Interaction function and force fields (page 413) and top (page 501), respectively. All this
information is static; it is never modified during the run.

Coordinates and velocities

Velocity

Fig. 5.4: A Maxwell-Boltzmann velocity distribution, generated from random numbers.

Then, before a run starts, the box size and the coordinates and velocities of all particles are required. The box size
and shape is determined by three vectors (nine numbers) by, bo, b3, which represent the three basis vectors of the
periodic box.

If the run starts at t = ¢, the coordinates at ¢ = ¢ty must be known. The leap-frog algorithm, the default algorithm
used to update the time step with At (see The leap-frog integrator (page 381)), also requires that the velocities
att = tog — %At are known. If velocities are not available, the program can generate initial atomic velocities
v;,1 = 1...3N with a Maxwell-Boltzmann distribution (Fig. 5.4) at a given absolute temperature 7":

m; mﬂ}?
p(vi) =4/ 51T P <_2kT) (5.16)

where £ is Boltzmann’s constant (see chapter Definitions and Units (page 366)). To accomplish this, normally
distributed random numbers are generated by adding twelve random numbers Rj, in the range 0 < Rj < 1 and
subtracting 6.0 from their sum. The result is then multiplied by the standard deviation of the velocity distribution
v/ kT /m;. Since the resulting total energy will not correspond exactly to the required temperature 7', a correction
is made: first the center-of-mass motion is removed and then all velocities are scaled so that the total energy
corresponds exactly to 7" (see (5.21)).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step; there is (usually) no net external force acting
on the system and the center-of-mass velocity should remain constant. In practice, however, the update algorithm
introduces a very slow change in the center-of-mass velocity, and therefore in the total kinetic energy of the system
— especially when temperature coupling is used. If such changes are not quenched, an appreciable center-of-mass
motion can develop in long runs, and the temperature will be significantly misinterpreted. Something similar
may happen due to overall rotational motion, but only when an isolated cluster is simulated. In periodic systems
with filled boxes, the overall rotational motion is coupled to other degrees of freedom and does not cause such
problems.

5.4. Algorithms 374

GROMACS Documentation, Release 2026-rc

Neighbor searching

As mentioned in chapter Interaction function and force fields (page 413), internal forces are either generated
from fixed (static) lists, or from dynamic lists. The latter consist of non-bonded interactions between any pair
of particles. When calculating the non-bonded forces, it is convenient to have all particles in a rectangular box.
As shown in Fig. 5.1, it is possible to transform a triclinic box into a rectangular box. The output coordinates
are always in a rectangular box, even when a dodecahedron or triclinic box was used for the simulation. (5.10)
ensures that we can reset particles in a rectangular box by first shifting them with box vector ¢, then with b and
finally with a. Equations (5.12), (5.13) and (5.14) ensure that we can find the 14 nearest triclinic images within a
linear combination that does not involve multiples of box vectors.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairs 4, j for which the distance r;; between ¢ and
the nearest image of j is less than a given cut-off radius R.. Some of the particle pairs that fulfill this criterion are
excluded, when their interaction is already fully accounted for by bonded interactions. But for most electrostatic
treatments, correction forces also need to be computed for such excluded atom pairs. GROMACS employs a
pair list that contains those particle pairs for which non-bonded forces must be calculated. The pair list contains
particles i, a displacement vector for particle ¢, and all particles j that are within r11ist of this particular image
of particle 7. The list is updated every nst1ist steps.

To make the pair list, all atom pairs that are within the pair-list cut-off distance need to be found and stored in a list.
Note that such a list generally does not store all neighbors for each atom, since each atom pair should appear only
once in the list. This searching, usually called neighbor search (NS) or pair search, involves periodic boundary
conditions and determining the image (see sec. Periodic boundary conditions (page 369)). The search algorithm
employed in GROMACS is O(N).

As pair searching is an expensive operation, a generated pair list is retained for a certain number of integration
steps. A buffer is needed to account for relative displacements of atoms over the steps where a fixed pair list is
retained. GROMACS uses a buffered pair list by default. It also uses clusters of particles, but these are not static
as in the old charge group scheme. Rather, the clusters are defined spatially and consist of 4 or 8 particles, which
is convenient for streaming-style computing on parallel hardware in CPUs and GPUs. At neighbor search steps,
a pair list is created with a Verlet buffer, i.e. the pair-list cut-off is larger than the interaction cut-off. In the non-
bonded kernels, interactions are only computed when a particle pair is within the cut-off distance at that particular
time step. This ensures that as particles move between pair search steps, forces between nearly all particles within
the cut-off distance are calculated. We say nearly all particles, because GROMACS uses a fixed pair-list update
frequency for efficiency. A particle-pair, whose distance was outside the cut-off, could possibly move enough
during this fixed number of steps that its distance is now within the cut-off. This small chance results in a small
energy drift, and the size of the chance depends on the temperature. When temperature coupling is used, the
buffer size can be determined automatically, given a certain tolerance on the energy drift. The default tolerance is
0.005 kJ/mol/ps per particle, but in practice the energy drift is usually an order of magnitude smaller. Note that
in single precision for normal atomistic simulations constraints cause a drift somewhere around 0.0001 kJ/mol/ps
per particle, so it does not make sense to go much lower than that.

The pair list is implemented in a very efficient fashion based on clusters of particles. The simplest example is a
cluster size of 4 particles. The pair list is then constructed based on cluster pairs. The cluster-pair search is much
faster searching based on particle pairs, because 4 x4 = 16 particle pairs are put in the list at once. The non-bonded
force calculation kernel can then calculate many particle-pair interactions at once, which maps nicely to SIMD
or SIMT units on modern hardware, which can perform multiple floating operations at once. These non-bonded
kernels are much faster than the kernels used in the group scheme for most types of systems, particularly on newer
hardware. For further information on algorithmic and implementation details of the Verlet cut-off scheme and the
NxM kernels, as well as detailed performance analysis, please consult the following article: /82 (page 597).

Additionally, when the list buffer is determined automatically as described below, we also apply dynamic pair list
pruning. The pair list can be constructed infrequently, but that can lead to a lot of pairs in the list that are outside
the cut-off range for all or most of the life time of this pair list. Such pairs can be pruned out by applying a cluster-
pair kernel that only determines which clusters are in range. Because of the way the non-bonded data is regularized
in GROMACS, this kernel is an order of magnitude faster than the search and the interaction kernel. On the GPU
this pruning can be overlapped with the integration on the CPU, so it is free in some cases. Therefore we can

5.4. Algorithms 375

GROMACS Documentation, Release 2026-rc

prune every 4-10 integration steps with little overhead and significantly reduce the number of cluster pairs in the
interaction kernel. This procedure is applied automatically, unless the user set the pair-list buffer size manually.

Energy drift and pair list buffering

For a canonical (NVT) ensemble, the average energy error caused by diffusion of j particles from outside the pair-
list cut-off 7, to inside the interaction cut-off r. over the lifetime of the list can be determined from the atomic
displacements and the shape of the potential at the cut-off. The displacement distribution along one dimension for
a freely moving particle with mass m over time ¢ at temperature T is a Gaussian G(x) of zero mean and variance

2 = t2kgT/m. For the distance between two particles, the variance changes to 0% = 03, = t?kgT(1/m1 +
1/ms). Note that in practice particles usually interact with (bump into) other particles over time ¢ and therefore
the real displacement distribution is much narrower. Given a non-bonded interaction cut-off distance of r. and a
pair-list cut-off r, = r. + 7}, for the Verlet buffer size r,, we can then write the average energy error after time ¢
for all missing pair interactions between a single ¢ particle of type 1 surrounded by all j particles that are of type
2 with number density ps, when the inter-particle distance changes from rg to 7, as:

(AV) = / ’ / 47rr8p2V(rt)G<rt
0 Te

To evaluate this analytically, we need to make some approximations. First we replace V' (r,) by a Taylor expansion
around r., then we can move the lower bound of the integral over ry to —oo which will simplify the result:

(AV) ~ / / 47rr(2)p2[V(rC)+
—oo Jry

V/<7"0) (rt - 7"0)"’

TO) dro dry (5.17)

1
VH(TC)i(Tt - TC)2+

V'”(rc)é(rt — 1)+
O((Tt — rc)4)]G(Tt . TO) dro dry

Replacing the factor rZ by (r; +)2, which results in a slight overestimate, allows us to calculate the integrals
analytically:

(AV) =~ 4 (re +)2 pa /—: /TOO {V T
V,(TC)(Tt - 7'6)+
V()5 = e+

—To

dro dry

r
b)+

g

V”’(rc)%(rt —re)? (
_ 47T(7‘g+0)2p2{ (re) [O—G() — 1B

=
S

(
%V’(rc) [rwG(Z) (ri+o E(
(3]

L 2 2 T»
6V (re) [U(rb + 20)G(U)—rb ri +30%)E

1
ﬂVv///(rc) |:'rba' Tb + 50’ G(
— (rf +6r2c® + 30%))

5.4. Algorithms 376

GROMACS Documentation, Release 2026-rc

where G(z) is a Gaussian distribution with 0 mean and unit variance and E(z) = %erfc(z/v/2). Note the potential
at the cut-off, V'(r.), is zero by definition. But the same formula can be used to estimate errors in the pressure and
then the force is used for V' in these formulas and this leading term will generally not be zero. We always want to
achieve small energy error, so o will be small compared to both r. and 7y, thus the approximations in the equations
above are good, since the Gaussian distribution decays rapidly. The energy error needs to be averaged over all
particle pair types and weighted with the particle counts. In GROMACS we do not allow cancellation of error
between pair types, so we average the absolute values. To obtain the average energy error per unit time, it needs to
be divided by the neighbor-list life time ¢ = (nstlist — 1) x dt. The function can not be inverted analytically, so
we use bisection to obtain the buffer size r, for a target drift. Again we note that in practice the error we usually
be much smaller than this estimate, as in the condensed phase particle displacements will be much smaller than
for freely moving particles, which is the assumption used here.

For inhomogeneous systems, using the global atom densities p can lead to an underestimate of the energy drift.
To avoid that, an effective density is used. This is computed by putting all atoms on a grid where the cells are
approximately the size of the cut-off. The densities are then averaged over the cells weighted by the density of
each cell. This provides accurate estimates for inhomogeneous systems, e.g. the effective density for a molecule
or a droplet in an otherwise empty box does not depend on the size of the box.

When (bond) constraints are present, some particles will have fewer degrees of freedom. This will reduce the
energy errors. For simplicity, we only consider one constraint per particle, the heaviest particle in case a particle is
involved in multiple constraints. This simplification overestimates the displacement. The motion of a constrained
particle is a superposition of the 3D motion of the center of mass of both particles and a 2D rotation around the
center of mass. The displacement in an arbitrary direction of a particle with 2 degrees of freedom is not Gaussian,
but rather follows the complementary error function:

VT (| >
oo erfc NP (5.18)

where o2 is again t>kpT /m. This distribution can no longer be integrated analytically to obtain the energy error.
But we can generate a tight upper bound using a scaled and shifted Gaussian distribution (not shown). This
Gaussian distribution can then be used to calculate the energy error as described above. The rotation displacement
around the center of mass can not be more than the length of the arm. To take this into account, we scale o in
(5.18) (details not presented here) to obtain an overestimate of the real displacement. This latter effect significantly
reduces the buffer size for longer neighborlist lifetimes in e.g. water, as constrained hydrogens are by far the fastest
particles, but they can not move further than 0.1 nm from the heavy atom they are connected to.

There is one important implementation detail that reduces the energy errors caused by the finite Verlet buffer list
size. The derivation above assumes a particle pair list. However, the GROMACS implementation uses a cluster
pair list for efficiency. The pair list consists of pairs of clusters of 4 particles in most cases, also called a 4 x 4
list, but the list can also be 4 x 8 (GPU CUDA kernels and AVX 256-bit single precision kernels) or 4 x 2 (SSE
double-precision kernels). This means that the pair list is effectively much larger than the corresponding 1 x 1
list. Thus slightly beyond the pair-list cut-off there will still be a large fraction of particle pairs present in the list.
This fraction can be determined in a simulation and accurately estimated under some reasonable assumptions. The
fraction decreases with increasing pair-list range, meaning that a smaller buffer can be used. For typical all-atom
simulations with a cut-off of 0.9 nm this fraction is around 0.9, which gives a reduction in the energy errors of a
factor of 10. This reduction is taken into account during the automatic Verlet buffer calculation and results in a
smaller buffer size.

In Fig. 5.5 one can see that for small buffer sizes the drift of the total energy is much smaller than the pair energy
error tolerance, due to cancellation of errors. For larger buffer size, the error estimate is a factor of 6 higher than
drift of the total energy, or alternatively the buffer estimate is 0.024 nm too large. This is because the protons do
not move freely over 18 fs, but rather vibrate.

The only approximation that can lead to an underestimate of the buffer size is that of homogeneous atom density.
This would be particularly problematic for systems with large amount of empty space in the unit cell. This issue is
largely mitigated by computing the atom density on a grid with cells of the size of the non-bonded cut-off distance
and weighting the density by the atom count in each cell. Thus empty space does not affect the effective atom
density. This effective atom density is computed for the starting configuration passed to mdrun (page 221). Thus
there is only an issue with e.g. phase transitions that start from a gas and end up in a liquid.

5.4. Algorithms 377

GROMACS Documentation, Release 2026-rc

estimate 1x1 .

mixed precision

drift per atom (kd/mol/ps)

0 0.02 0.04 0.06 0.08 0.1
Verlet buffer (nm)

Fig. 5.5: Energy drift per atom for an SPC/E water system at 300K with a time step of 2 fs and a pair-list update
period of 10 steps (pair-list life time: 18 fs). PME was used with ewald-rtol setto 10~7; this parameter affects
the shape of the potential at the cut-off. Error estimates due to finite Verlet buffer size are shown for a 1 x 1 atom
pair list and 4 x 4 atom pair list without and with (dashed line) cancellation of positive and negative errors. Real
energy drift is shown for simulations using double- and mixed-precision settings. Rounding errors in the SETTLE
constraint algorithm from the use of single precision causes the drift to become negative at large buffer size. Note
that at zero buffer size, the real drift is small because positive (H-H) and negative (O-H) energy errors cancel.

Cut-off artifacts and switched interactions

By default, the pair potentials are shifted to be zero at the cut-off, which makes the potential the integral of the
force. However, there can still be energy drift when the forces are non-zero at the cut-off. This effect is extremely
small and often not noticeable, as other integration errors (e.g. from constraints) may dominate. To completely
avoid cut-off artifacts, the non-bonded forces can be switched exactly to zero at some distance smaller than the
neighbor list cut-off (there are several ways to do this in GROMACS, see sec. Modified non-bonded interactions
(page 416)). One then has a buffer with the size equal to the neighbor list cut-off less the longest interaction
cut-off.

Pressure deviations due to cut-off artifacts

The pressure can be affected more than the energy by missing interactions close to the cut-off, as the force gener-
ally has a discontinuity at the cut-off. For Lennard-Jones forces this leads to a consistent increase in pressure as
the age of the pair list increases because all missing dispersion interactions have the same sign. The electrostatic
forces are much larger at the cut-off, but here the errors tend to cancel out due to (local) electroneutrality. We have
not observed errors larger than 0.1 bar due to missing electrostatic interactions in water with PME electrostatics.
In practice the Lennard-Jones errors are small when electrostatics interactions are present, as there will be a suffi-
cient buffer to keep the electrostatic energy drift below the tolerance. The only case where there can be significant
errors in the pressure is when there are no electrostatic interactions at all or the Ewald relative tolerance parameter
is very small, leading to no, or a very small, pair-list buffer. The most common case is coarse-grained systems.
In the log file from mdrun (page 221) one can find an (over)estimate of the error in the average pressure due to
missing Lennard-Jones interactions. The estimate uses (5.18) where we plug in the Lennard-Jones force for V.
The resulting force error is multiplied by the cut-off distance r. and divided by the effective box volume to get the
(over)estimate for the error in the pressure. The effective box volume ignores empty space to get a better, higher,
estimate of the local error in the pressure error in inhomogeneous systems.

When automatically setting the Verlet list life time and buffer, a tolerance on the error in the average pressure
due to missing Lennard-Jones interactions can be provided. This uses the estimation formulas described above
and puts an upper bound on the error of the pressure averaged over the lifetime of the pair list. The default value

5.4. Algorithms 378

GROMACS Documentation, Release 2026-rc

for this tolerance is 0.5 bar. For liquid water this corresponds to a maximum relative deviation of the density of
2 x 107°.

Simple search

Due to (5.10) and (5.15), the vector r;; connecting images within the cut-off 1. can be found by constructing:

= r,—r;
" = 1" —cxround(r! /c
i) (5.19)
r' = r” —bxround(ry/by,)
ri; = 1 —axround(r,/a,)

When distances between two particles in a triclinic box are needed that do not obey (5.10), many shifts of combi-
nations of box vectors need to be considered to find the nearest image.

| i !

141 11 2/ 4

1104 11 1941

11011111 1h 17171

1111 11118 11111 1
11111111121
1111 1l1 10141,
1111191111
11\\1111111’
—

Fig. 5.6: Grid search in two dimensions. The arrows are the box vectors.

Grid search

The grid search is schematically depicted in Fig. 5.6. All particles are put on the NS grid, with the smallest
spacing > R./2 in each of the directions. In the direction of each box vector, a particle ¢ has three images. For
each direction the image may be -1,0 or 1, corresponding to a translation over -1, 0 or +1 box vector. We do
not search the surrounding NS grid cells for neighbors of ¢ and then calculate the image, but rather construct the
images first and then search neighbors corresponding to that image of ¢. As Fig. 5.6 shows, some grid cells may
be searched more than once for different images of ¢. This is not a problem, since, due to the minimum image
convention, at most one image will “see” the j-particle. For every particle, fewer than 125 (5%) neighboring cells
are searched. Therefore, the algorithm scales linearly with the number of particles. Although the prefactor is
large, the scaling behavior makes the algorithm far superior over the standard O(/N?) algorithm when there are
more than a few hundred particles. The grid search is equally fast for rectangular and triclinic boxes. Thus for
most protein and peptide simulations the rhombic dodecahedron will be the preferred box shape.

5.4. Algorithms 379

GROMACS Documentation, Release 2026-rc

Charge groups

Charge groups were originally introduced to reduce cut-off artifacts of Coulomb interactions. This concept has
been superseded by exact atomistic cut-off treatments. For historical reasons charge groups are still defined in the
atoms section for each moleculetype in the topology, but they are no longer used.

Compute forces

Potential energy

When forces are computed, the potential energy of each interaction term is computed as well. The total potential
energy is summed for various contributions, such as Lennard-Jones, Coulomb, and bonded terms. It is also pos-
sible to compute these contributions for energy-monitor groups of atoms that are separately defined (see sec. The
group concept (page 372)).

Kinetic energy and temperature

The temperature is given by the total kinetic energy of the N-particle system:
|
Egin = 5 Z_; miv? (5.20)

From this the absolute temperature 7" can be computed using:

1
5 NarkT = By (5.21)

where £ is Boltzmann’s constant and Ny is the number of degrees of freedom which can be computed from:
Ndf = 3N — Nc - Ncom (522)

Here NN, is the number of constraints imposed on the system. When performing molecular dynamics Neoy = 3
additional degrees of freedom must be removed, because the three center-of-mass velocities are constants of the
motion, which are usually set to zero. When simulating in vacuo, the rotation around the center of mass can also
be removed, in this case N.o, = 6. When more than one temperature-coupling group is used, the number of
degrees of freedom for group ¢ is:

3N — N. — Neom

Ni; = (3N"— NY) NN (5.23)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation in a triclinic system,
or systems where shear forces are imposed:

N
1
Eu, = 5 Z mivi ® v; (5.24)

Pressure and virial

The pressure tensor P is calculated from the difference between kinetic energy Ey;, and the virial =:

2
P— 2 (By, —E 5.5
V(K) (5.25)

where V' is the volume of the computational box. The scalar pressure P, which can be used for pressure coupling
in the case of isotropic systems, is computed as:

P = trace(P)/3

5.4. Algorithms 380

GROMACS Documentation, Release 2026-rc

The virial = tensor is defined as:

M|

1
=3 D ori;@Fy (5.26)

i<j

The GROMACS implementation of the virial computation is described in sec. Virial and pressure (page 456)

The leap-frog integrator

Fig. 5.7: The Leap-Frog integration method. The algorithm is called Leap-Frog because r and v are leaping like
frogs over each other’s backs.

The default MD integrator in GROMACS is the so-called leap-frog algorithm 22 (page 590) for the integration
of the equations of motion. When extremely accurate integration with temperature and/or pressure coupling is
required, the velocity Verlet integrators are also present and may be preferable (see The velocity Verlet integrator
(page 381)). The leap-frog algorithm uses positions r at time ¢ and velocities v at time ¢ — %At; it updates
positions and velocities using the forces F(¢) determined by the positions at time ¢ using these relations:
v(t+ %At) = v(t— %At) + gF(t)
m (5.27)
r(t + At)

r(t) + Atv(t + %At)

The algorithm is visualized in Fig. 5.7. It produces trajectories that are identical to the Verlet 23 (page 590)
algorithm, whose position-update relation is

Pt + At) = 20(t) — r(t — Af) + %F(t)AtQ NG (5.28)

The algorithm is of third order in r and is time-reversible. See ref. 24 (page 590) for the merits of this algorithm
and comparison with other time integration algorithms.

The equations of motion are modified for temperature coupling and pressure coupling, and extended to include
the conservation of constraints, all of which are described below.

The velocity Verlet integrator

The velocity Verlet algorithm 25 (page 590) is also implemented in GROMACS, though it is not yet fully integrated
with all sets of options. In velocity Verlet, positions r and velocities v at time ¢ are used to integrate the equations
of motion; velocities at the previous half step are not required.

Vit + %At) _ V(i) + %F(t)
r(t+At) = r(t)+ Atv(t+ %At) (5.29)

1 At
t+ At) = t+ At —F(t+ At
V(t+ A = v(t+ AN+ 2 R+ A

or, equivalently,

2

r(t+ At) = r(t) + Atv + %F(t)
N m (5.30)
v(t+At) = v(t)+ o [F(t) + F(t + At)]

5.4. Algorithms 381

GROMACS Documentation, Release 2026-rc

With no temperature or pressure coupling, and with corresponding starting points, leap-frog and velocity Verlet
will generate identical trajectories, as can easily be verified by hand from the equations above. Given a single
starting file with the same starting point x(0) and v(0), leap-frog and velocity Verlet will not give identical
trajectories, as leap-frog will interpret the velocities as corresponding to ¢ = f%At, while velocity Verlet will
interpret them as corresponding to the timepoint ¢ = 0.

Understanding reversible integrators: The Trotter decomposition

To further understand the relationship between velocity Verlet and leap-frog integration, we introduce the re-
versible Trotter formulation of dynamics, which is also useful to understanding implementations of thermostats
and barostats in GROMACS.

A system of coupled, first-order differential equations can be evolved from time ¢ = 0 to time ¢ by applying the
evolution operator

TI'(t) = exp(iLt)T(0)
1L = I Vr,

where L is the Liouville operator, and I' is the multidimensional vector of independent variables (positions and
velocities). A short-time approximation to the true operator, accurate at time At = t/P, is applied P times in
succession to evolve the system as

P
I(t) = [exp(iLAH)T(0) (5.31)

i=1

For NVE dynamics, the Liouville operator is

N N
1
L= vi-Vi, +>_ —F(ri) V. (5.32)
i=1 i=1 "

This can be split into two additive operators

N
iLy= Y —F(r;) - Vv,
i=1 "

N
iLQ = E Vi - Vri
i=1

Then a short-time, symmetric, and thus reversible approximation of the true dynamics will be
1 1
exp(iLAt) = exp(iLa5 At) exp(iLi At) exp(iLa 5 At) + O(AF?). (5.33)

This corresponds to velocity Verlet integration. The first exponential term over %At corresponds to a velocity
half-step, the second exponential term over At corresponds to a full velocity step, and the last exponential term
over %At is the final velocity half step. For future times ¢ = nAt, this becomes

exp(iLnAt) =~ (exp(iLg %At) exp(iL1 At) exp(iLQ;At)>

Q

n—1
1
exp(iLo B At) (exp(iL1At) exp(iLo At))
1
exp(iL1 At) exp(iLoy iAt)
This formalism allows us to easily see the difference between the different flavors of Verlet integrators. The leap-
frog integrator can be seen as starting with (5.33) with the exp (¢L1At) term, instead of the half-step velocity

term, yielding

exp(iLnAt) = exp (iL1 At) exp (iLo At) + O(At?). (5.34)

5.4. Algorithms 382

GROMACS Documentation, Release 2026-rc

Here, the full step in velocity is between ¢ — %At and t + %At, since it is a combination of the velocity half steps
in velocity Verlet. For future times ¢ = nAt, this becomes

exp(iLnAt) ~ (exp (1L, At) exp (i Lo At)) : (5.35)

Although at first this does not appear symmetric, as long as the full velocity step is between t — %At and t + %At,
then this is simply a way of starting velocity Verlet at a different place in the cycle.

Even though the trajectory and thus potential energies are identical between leap-frog and velocity Verlet, the
kinetic energy and temperature will not necessarily be the same. Standard velocity Verlet uses the velocities at the
t to calculate the kinetic energy and thus the temperature only at time ¢; the kinetic energy is then a sum over all
particles

KEn(t) = Z <271nz Vi (t)> 2

K2

1 /1 1 1 1 2

%

with the square on the outside of the average. Standard leap-frog calculates the kinetic energy at time ¢ based on
the average kinetic energies at the timesteps ¢t + %At and t — %At, or the sum over all particles

1 1 1 1 1
KEaverage(t) = Z ey <2Vi(t - §At)2 + §Vi(t + 2At)2> ’ (536)

i
where the square is inside the average.

A non-standard variant of velocity Verlet which averages the kinetic energies K E(t + %At) and KE(t —
%At), exactly like leap-frog, is also now implemented in GROMACS (as mdp (page 497) file option
integrator=md-vv-avek (page 44)). Without temperature and pressure coupling, velocity Verlet with half-
step-averaged kinetic energies and leap-frog will be identical up to numerical precision. For temperature- and
pressure-control schemes, however, velocity Verlet with half-step-averaged kinetic energies and leap-frog will be
different, as will be discussed in the section in thermostats and barostats.

The half-step-averaged kinetic energy and temperature are slightly more accurate for a given step size; the dif-
ference in average kinetic energies using the half-step-averaged kinetic energies (integrator=md (page 44)
and integrator=md-vv-avek (page 44)) will be closer to the kinetic energy obtained in the limit of small
step size than will the full-step kinetic energy (using integrator=md-vv (page 44)). For NVE simulations,
this difference is usually not significant, since the positions and velocities of the particles are still identical; it
makes a difference in the way the temperature of the simulations are interpreted, but not in the trajectories that
are produced. Although the kinetic energy is more accurate with the half-step-averaged method, meaning that it
changes less as the timestep gets large, it is also more noisy. The RMS deviation of the total energy of the system
(sum of kinetic plus potential) in the half-step-averaged kinetic energy case will be higher (about twice as high in
most cases) than the full-step kinetic energy. The drift will still be the same, however, as again, the trajectories are
identical.

For NVT simulations, however, there will be a difference, as discussed in the section on temperature control, since
the velocities of the particles are adjusted such that kinetic energies of the simulations, which can be calculated
either way, reach the distribution corresponding to the set temperature. In this case, the three methods will not
give identical results.

Because the velocity and position are both defined at the same time ¢ the velocity Verlet integrator can be used
for some methods, especially rigorously correct pressure control methods, that are not actually possible with leap-
frog. The integration itself takes negligibly more time than leap-frog, but twice as many communication calls
are currently required. In most cases, and especially for large systems where communication speed is important
for parallelization and differences between thermodynamic ensembles vanish in the 1/N limit, and when only
NVT ensembles are required, leap-frog will likely be the preferred integrator. For pressure control simulations
where the fine details of the thermodynamics are important, only velocity Verlet allows the true ensemble to be
calculated. In either case, simulation with double precision may be required to get fine details of thermodynamics
correct.

5.4. Algorithms 383

GROMACS Documentation, Release 2026-rc

Multiple time-stepping

The leap-frog integrator in GROMACS supports a configurable multiple time-stepping scheme. This can be used
to improve performance by computing slowly varying forces less frequently. The RESPA scheme /97 (page 597)
is used, which is based on a TROTTER decomposition and is therefore reversible and symplectic.

In order to allow tuning this for each system, the integrator makes it possible to specify different types of bonded
and non-bonded interactions for multiple-time step integration. To avoid integration errors, it is still imperative
that the integration interval used for each force component is short enough, and there is no universal formula that
allows the algorithm to detect this. Since the slowly-varying forces are often of smaller magnitude, using time
steps that are too large might not result in simulations crashing, so it is recommended to be conservative and
only gradually increase intervals while ensuring you get proper sampling and avoid energy drifts. As an initial
guidance, many of the most common biomolecular force fields appear to run into stability problems when the
period of integrating Lennard-Jones forces is 4 fs or longer, so for now we only recommend computing long-
range electrostatics (PME mesh contribution) less frequently than every step when using a base time step of 2
fs. Another, rather different, scenario is to use a base time step of 0.5 fs with non-constrained harmonic bonds,
and compute other interactions every second or fourth step. Despite these caveats, we encourage users to test the
functionality, assess stability and energy drifts, and either discuss your experience in the GROMACS forums or
suggest improvements to the documentation so we can improve this guidance in the future.

For using larger time steps for all interactions, and integration, angle vibrations involving hydrogen atoms can be
removed using virtual interaction sites (see sec. Removing fastest degrees of freedom (page 538)), which brings
the shortest time step up to PME mesh update frequency of a multiple time stepping scheme. This results in a near
doubling of the simulation performance.

Temperature coupling

While direct use of molecular dynamics gives rise to the NVE (constant number, constant volume, constant energy
ensemble), most quantities that we wish to calculate are actually from a constant temperature (NVT) ensemble,
also called the canonical ensemble. GROMACS can use the weak-coupling scheme of Berendsen 26 (page 590),
stochastic randomization through the Andersen thermostat 27 (page 590), the extended ensemble Nosé-Hoover
scheme 28 (page 590), 29 (page 590), or a velocity-rescaling scheme 30 (page 590) to simulate constant tempera-
ture, with advantages of each of the schemes laid out below.

There are several other reasons why it might be necessary to control the temperature of the system (drift during
equilibration, drift as a result of force truncation and integration errors, heating due to external or frictional forces),
but this is not entirely correct to do from a thermodynamic standpoint, and in some cases only masks the symp-
toms (increase in temperature of the system) rather than the underlying problem (deviations from correct physics
in the dynamics). For larger systems, errors in ensemble averages and structural properties incurred by using tem-
perature control to remove slow drifts in temperature appear to be negligible, but no completely comprehensive
comparisons have been carried out, and some caution must be taking in interpreting the results.

When using temperature and/or pressure coupling the total energy is no longer conserved. Instead there is a
conserved energy quantity the formula of which will depend on the combination or temperature and pressure
coupling algorithm used. For all coupling algorithms, except for Andersen temperature coupling and Parrinello-
Rahman pressure coupling combined with shear stress, the conserved energy quantity is computed and stored in
the energy and log file. Note that this quantity will not be conserved when external forces are applied to the
system, such as pulling on group with a changing distance or an electric field. Furthermore, how well the energy
is conserved depends on the accuracy of all algorithms involved in the simulation. Usually the algorithms that
cause most drift are constraints and the pair-list buffer, depending on the parameters used.

5.4. Algorithms 384

GROMACS Documentation, Release 2026-rc

Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling with first-order kinetics to an external heat bath with given
temperature Tj. See ref. 3/ (page 590) for a comparison with the Nosé-Hoover scheme. The effect of this
algorithm is that a deviation of the system temperature from 7§ is slowly corrected according to:

dT Ty -T

- 5.37
dt T ()

which means that a temperature deviation decays exponentially with a time constant 7. This method of coupling
has the advantage that the strength of the coupling can be varied and adapted to the user requirement: for equili-
bration purposes the coupling time can be taken quite short (e.g. 0.01 ps), but for reliable equilibrium runs it can
be taken much longer (e.g. 0.5 ps) in which case it hardly influences the conservative dynamics.

The Berendsen thermostat suppresses the fluctuations of the kinetic energy. This means that one does not generate
a proper canonical ensemble, so rigorously, the sampling will be incorrect. This error scales with 1/N, so for very
large systems most ensemble averages will not be affected significantly, except for the distribution of the kinetic
energy itself. However, fluctuation properties, such as the heat capacity, will be affected. A similar thermostat
which does produce a correct ensemble is the velocity rescaling thermostat 30 (page 590) described below, so while
the Berendsen thermostat is supported for historical reasons, including the ability to reproduce old simulations,
we strongly recommend against using it for new simulations.

The heat flow into or out of the system is affected by scaling the velocities of each particle every step, or every
nrc steps, with a time-dependent factor A, given by:

nTcAt TO 1/2
A=]1 -1 5.38
[+ T {T(t — %At) }} ()

The parameter 77 is close, but not exactly equal, to the time constant 7 of the temperature coupling ((5.37)):
T = 2CVTT/Ndf]€ (539)

where C'y is the total heat capacity of the system, k is Boltzmann’s constant, and Ny is the total number of
degrees of freedom. The reason that 7 # 7 is that the kinetic energy change caused by scaling the velocities
is partly redistributed between kinetic and potential energy and hence the change in temperature is less than the
scaling energy. In practice, the ratio 7/7r ranges from 1 (gas) to 2 (harmonic solid) to 3 (water). When we use
the term temperature coupling time constant, we mean the parameter 7. Note that in practice the scaling factor
A is limited to the range of 0.8 <= A\ <= 1.25, to avoid scaling by very large numbers which may crash the
simulation. In normal use, A will always be much closer to 1.0.

The thermostat modifies the kinetic energy at each scaling step by:
AE, = (A —1)?Ey (5.40)
The sum of these changes over the run needs to subtracted from the total energy to obtain the conserved energy

quantity.

Velocity-rescaling temperature coupling

The velocity-rescaling thermostat 30 (page 590) is essentially a Berendsen thermostat (see above) with an addi-
tional stochastic term that ensures a correct kinetic energy distribution by modifying it according to

dK = (Ko — K)% +2 KNKOﬂ,
TT f T

where K is the kinetic energy, Ny the number of degrees of freedom and dI¥ a Wiener process. There are no
additional parameters, except for a random seed. This thermostat produces a correct canonical ensemble and still
has the advantage of the Berendsen thermostat: first order decay of temperature deviations and no oscillations.

(5.41)

5.4. Algorithms 385

GROMACS Documentation, Release 2026-rc

Andersen thermostat

One simple way to maintain a thermostatted ensemble is to take an NV E integrator and periodically re-select
the velocities of the particles from a Maxwell-Boltzmann distribution 27 (page 590). This can either be done by
randomizing all the velocities simultaneously (massive collision) every 77/ At steps (andersen-massive), or
by randomizing every particle with some small probability every timestep (andersen), equal to At/7, where in
both cases At is the timestep and 7 is a characteristic coupling time scale. Because of the way constraints operate,
all particles in the same constraint group must be randomized simultaneously. Because of parallelization issues,
the andersen version cannot currently (5.0) be used in systems with constraints. andersen-massive can
be used regardless of constraints. This thermostat is also currently only possible with velocity Verlet algorithms,
because it operates directly on the velocities at each timestep.

This algorithm completely avoids some of the ergodicity issues of other thermostatting algorithms, as energy
cannot flow back and forth between energetically decoupled components of the system as in velocity scaling
motions. However, it can slow down the kinetics of system by randomizing correlated motions of the system,
including slowing sampling when 71 is at moderate levels (less than 10 ps). This algorithm should therefore
generally not be used when examining kinetics or transport properties of the system 32 (page 590).

Nosé-Hoover temperature coupling

The Berendsen weak-coupling algorithm is extremely efficient for relaxing a system to the target temperature, but
once the system has reached equilibrium it might be more important to probe a correct canonical ensemble. This
is unfortunately not the case for the weak-coupling scheme.

To enable canonical ensemble simulations, GROMACS also supports the extended-ensemble approach first pro-
posed by Nosé 28 (page 590) and later modified by Hoover 29 (page 590). The system Hamiltonian is extended by
introducing a thermal reservoir and a friction term in the equations of motion. The friction force is proportional to
the product of each particle’s velocity and a friction parameter, . This friction parameter (or heat bath variable)
is a fully dynamic quantity with its own momentum (p¢) and equation of motion; the time derivative is calculated
from the difference between the current kinetic energy and the reference temperature.

In this formulation, the particles’ equations of motion in the global MD scheme (page 373) are replaced by:

dQI'i - F\z De dI‘i

R A 5 Sl 5.42
a2 m; Q dt’ ©42)
where the equation of motion for the heat bath parameter ¢ is:
d
% = (T — Ty) Nyk. (5.43)

The reference temperature is denoted T, while 1" is the current instantaneous temperature of the system, N is the
total number of degrees of freedom and & is Boltzmann’s constant (see chapter Definitions and Units (page 366)).
The strength of the coupling is determined by the constant @) (usually called the mass parameter of the reservoir)
in combination with the reference temperature.'

The conserved quantity for the Nosé-Hoover equations of motion is not the total energy, but rather

N 2
p; Pg

H = — 4+ U N¢kT 5.44
2mi + (r1?r27 7rN) + 2Q + f §7 ()

In our opinion, the mass parameter is a somewhat awkward way of describing coupling strength, especially due
to its dependence on reference temperature (and some implementations even include the number of degrees of
freedom in your system when defining (). To maintain the coupling strength, one would have to change @ in
proportion to the change in reference temperature. For this reason, we prefer to let the GROMACS user work
with the period 77 of the oscillations of kinetic energy between the system and the reservoir instead. It is directly
related to () and Tj via:

_ T%kajTO.

= (5.45)
™

Q

I Note that some derivations, an alternative notation &,1; = vg = pe/Q is used.

5.4. Algorithms 386

GROMACS Documentation, Release 2026-rc

This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength (similar to the weak-
coupling relaxation), and in addition 77 is independent of system size and reference temperature.

It is, however, important to keep the difference between the weak-coupling scheme and the Nosé-Hoover algorithm
in mind: Using weak coupling you get a strongly damped exponential relaxation, while the Nosé-Hoover approach
produces an oscillatory relaxation. The actual time it takes to relax with Nosé-Hoover coupling is several times
larger than the period of the oscillations that you select. These oscillations (in contrast to exponential relaxation)
also means that the time constant normally should be 4-5 times larger than the relaxation time used with weak
coupling, but your mileage may vary.

Nosé-Hoover dynamics in simple systems such as collections of harmonic oscillators, can be nonergodic, meaning
that only a subsection of phase space is ever sampled, even if the simulations were to run for infinitely long. For
this reason, the Nosé-Hoover chain approach was developed, where each of the Nosé-Hoover thermostats has
its own Nosé-Hoover thermostat controlling its temperature. In the limit of an infinite chain of thermostats, the
dynamics are guaranteed to be ergodic. Using just a few chains can greatly improve the ergodicity, but recent
research has shown that the system will still be nonergodic, and it is still not entirely clear what the practical effect
of this is 33 (page 590). Currently, the default number of chains is 10, but this can be controlled by the user. In
the case of chains, the equations are modified in the following way to include a chain of thermostatting particles
34 (page 590):

d’r; F; pe dr;
dt2 N m; Ql dt
dpe, Pe,
= Nk (T —Tp) — pe, =2
dp§‘72 M—1 pg‘—l V23
i=2... — k3 _ kT _) i+1
dt Qi1 o) P Qi+1
2
dp Pen_y
Em En—1 kTh
dt QnN-1
The conserved quantity for Nosé-Hoover chains is
N p? M2 M
i &k
H = — 4+ U NET kT 5.46
2 o, +U(ry,ra,...,ryN) Jrkzz:l 20, + NpETE + kzzsz (5.46)

The values and velocities of the Nosé-Hoover thermostat variables are generally not included in the output, as they
take up a fair amount of space and are generally not important for analysis of simulations, but by setting an mdp
(page 497) option the values of all the positions and velocities of all Nosé-Hoover particles in the chain are written
to the edr (page 494) file. Leap-frog simulations currently can only have Nosé-Hoover chain lengths of 1, but this
will likely be updated in a later version.

As described in the integrator section, for temperature coupling, the temperature that the algorithm attempts to
match to the reference temperature is calculated differently in velocity Verlet and leap-frog dynamics. Velocity
Verlet (md-vv) uses the full-step kinetic energy, while leap-frog and md-vv-avek use the half-step-averaged kinetic
energy.

We can examine the Trotter decomposition again to better understand the differences between these constant-
temperature integrators. In the case of Nosé-Hoover dynamics (for simplicity, using a chain with N = 1, with
more details in Ref. 35 (page 590)), we split the Liouville operator as

iL =1L, +ilo + tLnuc, 547

where

N o, 9
= Z |:Tnz:| " Or

N
SF g
; pi
=1
: S pe pe 0)
iLnpc = Y —gV Vvt g t ik (T — Tp) o

5.4. Algorithms 387

GROMACS Documentation, Release 2026-rc

For standard velocity Verlet with Nosé-Hoover temperature control, this becomes

exp(iLAt) = exp (iLnucAt/2) exp (iLa At/2)
exp (L1 At) exp (Lo At/2) exp (iLnpcAt/2) + O(AL?).

For half-step-averaged temperature control using md-vv-avek, this decomposition will not work, since we do not
have the full step temperature until after the second velocity step. However, we can construct an alternate decom-
position that is still reversible, by switching the place of the NHC and velocity portions of the decomposition:

exp(iLAt) = exp (iL2At/2) exp (i LnucAt/2) exp (iL1 At)
exp (iLnacAt/2) exp (1L At/2) + O(At?)

This formalism allows us to easily see the difference between the different flavors of velocity Verlet integrator.
The leap-frog integrator can be seen as starting with (5.48) just before the exp (i L1 At) term, yielding:

exp(iLAt) = exp (iL1 At) exp (i LnacAt/2)
exp (iLoAt) exp (iLxucAt/2) + O(At?)

and then using some algebra tricks to solve for some quantities are required before they are actually calculated 36
(page 590).

Group temperature coupling

In GROMACS temperature coupling can be performed on groups of atoms, typically a protein and solvent. The
reason such algorithms were introduced is that energy exchange between different components is not perfect, due
to different effects including cut-offs etc. If now the whole system is coupled to one heat bath, water (which expe-
riences the largest cut-off noise) will tend to heat up and the protein will cool down. Typically 100 K differences
can be obtained. With the use of proper electrostatic methods (PME) these difference are much smaller but still
not negligible. The parameters for temperature coupling in groups are given in the mdp (page 497) file. Recent
investigation has shown that small temperature differences between protein and water may actually be an artifact
of the way temperature is calculated when there are finite timesteps, and very large differences in temperature are
likely a sign of something else seriously going wrong with the system, and should be investigated carefully 37
(page 590).

One special case should be mentioned: it is possible to temperature-couple only part of the system, leaving other
parts without temperature coupling. This is done by specifying —1 for the time constant 77 for the group that
should not be thermostatted. If only part of the system is thermostatted, the system will still eventually converge
to an NVT system. In fact, one suggestion for minimizing errors in the temperature caused by discretized timesteps
is that if constraints on the water are used, then only the water degrees of freedom should be thermostatted, not
protein degrees of freedom, as the higher frequency modes in the protein can cause larger deviations from the true
temperature, the temperature obtained with small timesteps 37 (page 590).

Pressure coupling

In the same spirit as the temperature coupling, the system can also be coupled to a pressure bath. GROMACS
supports both the Berendsen algorithm 26 (page 590) that scales coordinates and box vectors every step (we
strongly recommend not to use it), a new stochastic cell rescaling algorithm, the extended-ensemble Parrinello-
Rahman approach 38 (page 590), 39 (page 590), and for the velocity Verlet variants, the Martyna-Tuckerman-
Tobias-Klein (MTTK) implementation of pressure control 35 (page 590). Parrinello-Rahman and Berendsen can
be combined with any of the temperature coupling methods above. MTTK can only be used with Nosé-Hoover
temperature control. From version 5.1 onwards, it can only used when the system does not have constraints.

5.4. Algorithms 388

GROMACS Documentation, Release 2026-rc

Berendsen pressure coupling

The Berendsen algorithm rescales the coordinates and box vectors every step, or every npc steps, with a matrix
1, which has the effect of a first-order kinetic relaxation of the pressure towards a given reference pressure Py
according to

P _P-P 5.48
a7, (5.48)
The scaling matrix u is given by
npcAt
pig = 0ij — —5—Bij{Poij — Py (t)}- (5.49)
P

Here, [is the isothermal compressibility of the system. In most cases this will be a diagonal matrix, with equal
elements on the diagonal, the value of which is generally not known. It suffices to take a rough estimate because
the value of 5 only influences the non-critical time constant of the pressure relaxation without affecting the average
pressure itself. For water at 1 atm and 300 K 3 = 4.6 x 10719 Pa—! = 4.6 x 10~° bar~!, which is 7.6 x 10~*
MD units (see chapter Definitions and Units (page 366)). Most other liquids have similar values. When scaling
completely anisotropically, the system has to be rotated in order to obey (5.10). This rotation is approximated in
first order in the scaling, which is usually less than 10~*. The actual scaling matrix p’ is

Bax Moy T Uy Moz T Heo
/-/ = 0 Hyy Hyz + fzy . (5.50)

The velocities are neither scaled nor rotated. Since the equations of motion are modified by pressure coupling,
the conserved energy quantity also needs to be modified. For first order pressure coupling, the work the barostat
applies to the system every step needs to be subtracted from the total energy to obtain the conserved energy
quantity:

= (mij = 0i) PV = > 2y — 6i5)E5 (5.51)
i i

where 0;; is the Kronecker delta and Z is the virial. Note that the factor 2 originates from the factor % in the virial
definition (5.26).

In GROMACS, the Berendsen scaling can also be done isotropically, which means that instead of P a diagonal
matrix with elements of size trace(P)/3 is used. For systems with interfaces, semi-isotropic scaling can be
useful. In this case, the = /y-directions are scaled isotropically and the z direction is scaled independently. The
compressibility in the x/y or z-direction can be set to zero, to scale only in the other direction(s).

If you allow full anisotropic deformations and use constraints you might have to scale more slowly or decrease
your timestep to avoid errors from the constraint algorithms.

It is important to note that although the Berendsen pressure control algorithm yields a simulation with the correct
average pressure, it does not yield the exact NPT ensemble, and does not compute the correct fluctuations in
pressure or volume. We strongly advise against using it for new simulations. The only useful role it has had
recently is to ensure fast relaxation without oscillations, e.g. at the start of a simulation for from equilibrium, but
this is now provided by the stochastic cell rescaling, which should be used instead. For full anisotropic simulations
you need to use the Parrinello-Rahman barostat (for now). This does have the same oscillation problems as many
other correct-ensemble barostats, so if you cannot get your initial system stable you might need to use Berendsen
briefly - but the warnings/errors you get are a reminder it should not be used for production runs.

5.4. Algorithms 389

GROMACS Documentation, Release 2026-rc

Stochastic cell rescaling

The stochastic cell rescaling algorithm is a variant of the Berendsen algorithm that allows correct fluctuations to
be sampled. Similarly to the Berendsen algorithm, it rescales the coordinates and box vectors every step, or every
npc steps with the effect of a first-order kinetic relaxation of the pressure towards a given reference pressure Fp.
At variance with the Berendsen algorithm, the rescaling matrix is calculated including a stochastic term that makes
volume fluctuations correct.

The isotropic version can be easily written in term of the strain ¢ = log(V/Vp) that is evolved according to the
following equation of motion

%psT
de= —2(py— Pyar 4+ 2B gy (5.52)
Tp V1,

Here, (3 is the isothermal compressibility of the system. It suffices to take a rough estimate because the value of 5
only influences the non-critical time constant of the pressure relaxation without affecting the volume distribution
itself. For water at 1 atm and 300 K 8 = 4.6 x 10719 Pa=! = 4.6 x 107° bar~!, which is 7.6 x 10~* MD units
(see chapter Definitions and Units (page 366)). Most other liquids have similar values.

Another difference with respect to the Berendsen algorithm is that velocities are scaled with a factor that is the
reciprocal of the scaling factor for positions.

A semi-isotropic implementation is also provided. By defining the variables e, = log(A/Ap) and €, =
log(L/Lg), where A and L are the area of the simulation box in the xy plane and its height, respectively, the
following equations can be obtained:

20 v Per+ Py 4kpTp
deyy = —— (P — — — ———2)dt dW, 5.53
€xy 3Tp(0 i3 9) + SVTp Ty ()
I} 2kgT 3
de, = ——(Py — P,,)dt dw, 5.54
¢ 3Tp(0)dt + 3V, ()

Here + is the external surface tension and P, P,,, and P,, the components of the internal pressure.

More detailed explanations can be found in the original reference /84 (page 597).

Parrinello-Rahman pressure coupling

GROMACS also supports constant-pressure simulations using the Parrinello-Rahman approach 38 (page 590), 39
(page 590), which is similar to the Nosé-Hoover temperature coupling, and in theory gives the true NPT ensemble.
With the Parrinello-Rahman barostat, the box vectors as represented by the matrix b obey the matrix equation of
motion’

db?

— =VW b1 (P-P,.). (5.55)
The volume of the box is denoted V', and W is a matrix parameter that determines the strength of the coupling
(see below). The matrices P and P,..y are the current and reference pressures, respectively. The prime notation
denotes transposition of the matrix.

The equations of motion for the particles are also changed, just as for the Nosé-Hoover coupling. In most cases
you would combine the Parrinello-Rahman barostat with the Nosé-Hoover thermostat, but to keep it simple we
only show the Parrinello-Rahman modification here. The modified Hamiltonian, which will be conserved, is:

1 dbi; \ 2
Epor + Bien +) _ PV +) _ 5 Wi (& > (5.56)
i 2]

2 The box matrix representation in corresponds to the transpose of the box matrix representation in the paper by Nosé and Klein. Because
of this, some of our equations will look slightly different.

5.4. Algorithms 390

GROMACS Documentation, Release 2026-rc

The equations of motion for the atoms obtained from the Hamiltonian are:

d2 r; o Fz M dI‘i

dt? h m; E7
& db (5.57)
M=b"'|b— + —b'|b L
[a T }

This extra term has the appearance of a friction, but it should be noted that it is fictitious, and rather an effect of
the Parrinello-Rahman equations of motion being defined with all particle coordinates represented relative to the
box vectors, while GROMACS uses normal Cartesian coordinates for positions, velocities and forces. It is worth
noting that the kinetic energy too should formally be calculated based on velocities relative to the box vectors.
This can have an effect e.g. for external constant stress, but for now we only support coupling to constant external
pressures, and for any normal simulation the velocities of box vectors should be extremely small compared to
particle velocities. Gang Liu has done some work on deriving this for Cartesian coordinates 40 (page 590) but it
is not implemented in GROMACS.

The (inverse) mass parameter matrix W ~! determines the strength of the coupling, and how the box can be
deformed. The box restriction (5.10) will be fulfilled automatically if the corresponding elements of W~ are
zero. Since the coupling strength also depends on the size of your box, we prefer to calculate it automatically
in GROMACS. You only have to provide the approximate isothermal compressibilities S and the pressure time
constant 7, in the input file (L is the largest box matrix element):
1 472 B,

(W), = 3L (5.58)
Just as for the Nosé-Hoover thermostat, you should realize that the Parrinello-Rahman time constant is not equiv-
alent to the relaxation time used in the Berendsen pressure coupling algorithm. In most cases you will need to use
a 4-5 times larger time constant with Parrinello-Rahman coupling. If your pressure is very far from equilibrium,
the Parrinello-Rahman coupling may result in very large box oscillations that could even crash your run. In that
case you would have to increase the time constant, or (better) use the weak-coupling or stochastic cell rescaling
schemes to reach the target pressure, and then switch to Parrinello-Rahman coupling once the system is in equi-
librium. Additionally, using the leap-frog algorithm, the pressure at time ¢ is not available until after the time step
has completed, and so the pressure from the previous step must be used, which makes the algorithm not directly
reversible, and may not be appropriate for high-precision thermodynamic calculations.

Surface-tension coupling

When a periodic system consists of more than one phase, separated by surfaces which are parallel to the xy-plane,
the surface tension and the z-component of the pressure can be coupled to a pressure bath. Presently, this only
works with the Berendsen pressure coupling algorithm in GROMACS. The average surface tension y(¢) can be
calculated from the difference between the normal and the lateral pressure

v = 1 [P - P a0,

n 2

L. Pux(t) + Pyy (1) }

(5.59)
= ; {Pzz (t) - 2

where L, is the height of the box and 7 is the number of surfaces. The pressure in the z-direction is corrected by
scaling the height of the box with i,

At

APZZ = T{POZZ - Pzz(t>} (560)
p

Hzz = 1+ ﬂzzAPzz (5.61)

This is similar to normal pressure coupling, except that the factor of 1/3 is missing. The pressure correction in
the z-direction is then used to get the correct convergence for the surface tension to the reference value . The
correction factor for the box length in the x/y-direction is

At 70 Py (t) + Pyy(t)
sy =1+ —p —!P + AP, — —z=\W T Tyy) '
:r/y 27—17 a:/y (.. [z { zz (t) zz 2 (5 62)

5.4. Algorithms 391

GROMACS Documentation, Release 2026-rc

The value of 3. is more critical than with normal pressure coupling. Normally an incorrect compressibility will
just scale 7, but with surface tension coupling it affects the convergence of the surface tension. When /3. is set to
zero (constant box height), AP, is also set to zero, which is necessary for obtaining the correct surface tension.

MTTK pressure control algorithms

As mentioned in the previous section, one weakness of leap-frog integration is in constant pressure simulations,
since the pressure requires a calculation of both the virial and the kinetic energy at the full time step; for leap-frog,
this information is not available until after the full timestep. Velocity Verlet does allow the calculation, at the cost
of an extra round of global communication, and can compute, mod any integration errors, the true NPT ensemble.

The full equations, combining both pressure coupling and temperature coupling, are taken from Martyna et al.
35 (page 590) and Tuckerman 4/ (page 590) and are referred to here as MTTK equations (Martyna-Tuckerman-
Tobias-Klein). We introduce for convenience € = (1/3) In(V/Vp), where Vj is a reference volume. The momen-
tum of € is ve = p./W = é = V/SV, and define o = 1 4+ 3/Ng, (see Ref 41 (page 590))

The isobaric equations are

_ bi | Pe
r, = e + WI‘z
Pi 1 De Pi
o —F,—a—--
my; m; W m;
¢ = Pe
w
. N 4
— = —(Pn—P -1 -1,
where
1 N p2
F)int: Pkin*Pvir:W ;(2 Zi - I Fz) (563)

The terms including « are required to make phase space incompressible 4/ (page 590). The e acceleration term
can be rewritten as
Pe. 3V

W - W (apkill - Pvir - P) (564)

In terms of velocities, these equations become

r; = Vi + Vel
. 1

v = —F; —avev;
m;

é = Ve

N
. 3V Z 1 9
Ve = Wr(Pint —P)+(a-1) (n_l QmiVi>

1
Z <2m1V12 —Tr;- Fz>

i=1

1
]Din: Pinfpvirzi
t k 3V

For these equations, the conserved quantity is

N
H =
i=1

De
2w

p;
Qmi

—|—U(I’1,I‘27...,I'N)+ +PV (565)

The next step is to add temperature control. Adding Nosé-Hoover chains, including to the barostat degree of free-
dom, where we use 7) for the barostat Nosé-Hoover variables, and @)’ for the coupling constants of the thermostats

5.4. Algorithms 392

GROMACS Documentation, Release 2026-rc

of the barostats, we get

where

The conserved quantity is now

M 2
Py,
= 20k

ur
I
N
Déar

p"7M

|

_ Pi | Pe
o mi+WrZ
1 Pe Pi De Pi
m; " ani Q1 m;
_ e
w
3V
= W(apkin_Pvir_P)_gi,lpe
_ Pex
Qr
- P
Q.
A =y P T V|
Qr+1
S/ ISR S V|
k+1
— !
— e
p2
P111_Pv1r: _Z'Fi
k 3V ;<2mz ')
N 2
S P Npkr
m;
=1
2
Dey,_,
kKT k=2,...,.M
2Qk -1
2
De
— kT
2W
P
— kT k=2,....M
2Q,_4
LB e py
Qmi (1‘171'2,) N)+2W+ +
M
p"]k

+ NykTE + kTka +ET D mi

=2

k=1

Returning to the Trotter decomposition formalism, for pressure control and temperature control 35 (page 590) we

get:

1L =4l +iLo +iLeq + iLe o + i LNHC—baro + tLNHC

(5.66)

where “NHC-baro” corresponds to the Nose-Hoover chain of the barostat, and NHC corresponds to the NHC of

the particles,

Y)
il = ; {l + ri} . or,;
al)
ilz = Z: N a*pl op: (5.67)
5.4. Algorithms 393

GROMACS Documentation, Release 2026-rc

and where

G. =3V (aPyin — Pyir — P) (5.68)

Using the Trotter decomposition, we get
exp(iLAt) = exp (1 LNHC—baroAt/2) exp (i LnucAt/2
exp (iLe2At/2) exp (1Lo At/2
exp (iL¢ 1 At) exp (i L1 At
exp (1LaAt/2) exp (1L 2 At/2
exp (iLNHcAt/Q) exp (iLNHCfbaroAt/Z) + O(At3)

The action of exp (i L1 At) comes from the solution of the differential equation ¥; = v; + v.r; with v; = p;/m;
and v, constant with initial condition r;(0), evaluate at ¢ = At. This yields the evolution

)
)
)
)

sinh (v At/2
ri(At) =r;(0)e’ > + Atw(O)e”‘At/QUE(At/Q/)~ (5.69)
The action of exp (iL2At/2) comes from the solution of the differential equation v; = % — auevy, yielding
_ At _ sinh (v At/4)
i((At/2) = vi(0)e VA2 4 —F;(0)e e A/ —— 5.70
vi(8t/2) = vi(0)e A2 4 S (0)e e (5.70)

md-vv-avek uses the full step kinetic energies for determining the pressure with the pressure control, but the half-
step-averaged kinetic energy for the temperatures, which can be written as a Trotter decomposition as

exp(iLAt) = exp (iLnuc—baroAt/2) exp (1L 2At/2) exp (iLo At/2)

exp (1LnucAt/2) exp (iLe1 At) exp (iL1At) exp (iLnucAt/2)

exp (iLaAt/2) exp (iLe 2 At/2) exp (iLxHC - baroAt/2) + O(AL?)
With constraints, the equations become significantly more complicated, in that each of these equations need to
be solved iteratively for the constraint forces. Before GROMACS 5.1, these iterative constraints were solved as

described in 42 (page 590). From GROMACS 5.1 onward, MTTK with constraints has been removed because of
numerical stability issues with the iterations.

Infrequent evaluation of temperature and pressure coupling

Temperature and pressure control require global communication to compute the kinetic energy and virial, which
can become costly if performed every step for large systems. We can rearrange the Trotter decomposition to give
alternate symplectic, reversible integrator with the coupling steps every n steps instead of every steps. These
new integrators will diverge if the coupling time step is too large, as the auxiliary variable integrations will not
converge. However, in most cases, long coupling times are more appropriate, as they disturb the dynamics less 35
(page 590).

Standard velocity Verlet with Nosé-Hoover temperature control has a Trotter expansion
exp(iLAt) ~ exp (iLnucAt/2) exp (iLa At/2)
exp (iL1 At) exp (iLaAt/2) exp (i LnacAt/2) .

If the Nosé-Hoover chain is sufficiently slow with respect to the motions of the system, we can write an alternate
integrator over n steps for velocity Verlet as

exp(iLAt) ~ (exp (iLnuc(nAt/2)) [exp (iLaAt/2)
exp (iL1At) exp (1L At/2)]" exp (i Lxuc(nAt/2)) .
For pressure control, this becomes
exp(iLAt) = exp (iLNHC—baro(nAL/2)) exp (iLnuc(nAt/2))
exp (i Le2(nAt/2)) [exp (iL2 At/2)
exp (1Le,1 At) exp (i L1 At)
exp (i L2 At/2)]" exp (iLe2(nAt/2))
exp (iLnuc(nAt/2)) exp (iLNHC—baro (RAE/2))

where the box volume integration occurs every step, but the auxiliary variable integrations happen every n steps.

5.4. Algorithms 394

GROMACS Documentation, Release 2026-rc

The complete update algorithm

THE UPDATE ALGORITHM

Given: Positions r of all atoms at time ¢ Velocities v of all atoms at time ¢ — %At Accelerations F /m
on all atoms at time ¢. (Forces are computed disregarding any constraints) Total kinetic energy and
virial at t — At |}

—

. Compute the scaling factors A and p according to (5.38) and (5.49) |}
2. Update and scale velocities: v/ = A(v + aAt) ||

3. Compute new unconstrained coordinates: r’ = r + v/ At ||

4. Apply constraint algorithm to coordinates: constrain(r’ — r”/ ;)
5. Correct velocities for constraints: v = (r” —r)/At |}

6. Scale coordinates and box: r = ur”’;b = ub

The complete algorithm for the update of velocities and coordinates is given using leap-frog in the outline above
(page 395) The SHAKE algorithm of step 4 is explained below.

GROMACS has a provision to freeze (prevent motion of) selected particles, which must be defined as a freeze
group. This is implemented using a freeze factor £y, which is a vector, and differs for each freeze group (see
sec. The group concept (page 372)). This vector contains only zero (freeze) or one (do not freeze). When we take
this freeze factor and the external acceleration a;, into account the update algorithm for the velocities becomes

A At F
v(t—i-?t) £ A v(t—{)+%)m+ahm , 5.71)

where g and h are group indices which differ per atom.

Output step

The most important output of the MD run is the trajectory file, which contains particle coordinates and (optionally)
velocities at regular intervals. The trajectory file contains frames that could include positions, velocities and/or
forces, as well as information about the dimensions of the simulation volume, integration step, integration time,
etc. The interpretation of the time varies with the integrator chosen, as described above. For Velocity Verlet
integrators, velocities labeled at time ¢ are for that time. For other integrators (e.g. leap-frog, stochastic dynamics),
the velocities labeled at time ¢ are for time ¢ — %At.

Since the trajectory files are lengthy, one should not save every step! To retain all information it suffices to write
a frame every 15 steps, since at least 30 steps are made per period of the highest frequency in the system, and
Shannon’s sampling theorem states that two samples per period of the highest frequency in a band-limited signal
contain all available information. But that still gives very long files! So, if the highest frequencies are not of
interest, 10 or 20 samples per ps may suffice. Also, it can be awkward to down-sample long trajectories because
of numerical difficulties in evaluating the difference in time between frames when that difference is close to the
precision of the float-point data type used.

Be aware of the distortion of high-frequency motions by the stroboscopic effect, called aliasing: higher frequencies
are mirrored with respect to the sampling frequency and appear as lower frequencies. When the simulated system
is very large and/or the simulation times very long, it is often sufficient to write in intervals ranging from 10 ps to
1 ns, depending on what the trajectory will be used for.

GROMACS can also write reduced-precision coordinates for a subset of the simulation system to a special com-
pressed trajectory file format. All the other tools can read and write this format. See the User Guide for details on
how to set up your mdp (page 497) file to have mdrun (page 221) use this feature.

5.4. Algorithms 395

GROMACS Documentation, Release 2026-rc

5.4.4 Shell molecular dynamics

GROMACS can simulate polarizability using the shell model of Dick and Overhauser 43 (page 590). In such
models a shell particle representing the electronic degrees of freedom is attached to a nucleus by a spring. The po-
tential energy is minimized with respect to the shell position at every step of the simulation (see below). Successful
applications of shell models in GROMACS have been published for N, 44 (page 591) and water 45 (page 591).

Optimization of the shell positions

The force Fs on a shell particle S can be decomposed into two components
Fs = Fyona + Frp (5.72)

where Fy,,q denotes the component representing the polarization energy, usually represented by a harmonic
potential and F,;, is the sum of Coulomb and van der Waals interactions. If we assume that F,,;, is almost constant
we can analytically derive the optimal position of the shell, i.e. where F g = 0. If we have the shell S connected
to atom A we have

Fiona = ky (x5 —xa4). (5.73)
In an iterative solver, we have positions xg(n) where n is the iteration count. We now have at iteration n
F,, = Fg—ky(xs(n) —xa) (5.74)

and the optimal position for the shells xg(n + 1) thus follows from

Fs—kp(xs(n) —xa) +kp (xs(n+1) —x4) =0 (5.75)
if we write
Axs =xg(n+1) — xs(n) (5.76)
we finally obtain
Axs = Fs /ky (5.77)

which then yields the algorithm to compute the next trial in the optimization of shell positions

xs(n+1) = xs(n) + Fg/kp. (5.78)

5.4.5 Constraint algorithms

Constraints can be imposed in GROMACS using LINCS (default) or the traditional SHAKE method.

SHAKE

The SHAKE 46 (page 591) algorithm changes a set of unconstrained coordinates r to a set of coordinates r” that
fulfill a list of distance constraints, using a set r reference, as

SHAKE(r —r”;r) (5.79)

This action is consistent with solving a set of Lagrange multipliers in the constrained equations of motion. SHAKE
needs a relative tolerance; it will continue until all constraints are satisfied within that relative tolerance. An error
message is given if SHAKE cannot reset the coordinates because the deviation is too large, or if a given number
of iterations is surpassed.

Assume the equations of motion must fulfill K holonomic constraints, expressed as

o’k(rl...rN):O; k=1...K. (580)

5.4. Algorithms 396

GROMACS Documentation, Release 2026-rc

For example, (r; — r2)? — b? = 0. Then the forces are defined as

8 K
. <V+Z>\kok>7 (5.81)

k=1

where)\j; are Lagrange multipliers which must be solved to fulfill the constraint equations. The second part of this
sum determines the constraint forces G;, defined by

Gi=-Y N 80’? (5.82)

The displacement due to the constraint forces in the leap-frog or Verlet algorithm is equal to (G;/m;)(At)2.
Solving the Lagrange multipliers (and hence the displacements) requires the solution of a set of coupled equations
of the second degree. These are solved iteratively by SHAKE. SETTLE (page 397)

SETTLE

For the special case of rigid water molecules, that often make up more than 80% of the simulation system we have
implemented the SETTLE algorithm 47 (page 591) (sec. Constraint algorithms (page 469)). The implementation
of SETTLE in GROMACS is a slight modification of the original algorithm, in that it completely avoids the
calculation of the center of mass of the water molecule. Apart from saving a few operations, the main gain of this
is a reduction in rounding errors. For large coordinates, the floating pointing precision of constrained distances
is reduced, which leads to an energy drift which usually depends quadratically on the coordinate. For SETTLE
this dependence is now linear, which enables accurate integration of systems in single precision up to 1000 nm in
size. But note that the drift due to SHAKE and LINCS still has a quadratic dependence, which limits the size of
systems with normal constraints in single precision to 100 to 200 nm.

For velocity Verlet, an additional round of constraining must be done, to constrain the velocities of the second
velocity half step, removing any component of the velocity parallel to the bond vector. This step is called RATTLE,
and is covered in more detail in the original Andersen paper 48 (page 591).

LINCS

The LINCS algorithm

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained update 49 (page 591).
The method is non-iterative, as it always uses two steps. Although LINCS is based on matrices, no matrix-
matrix multiplications are needed. The method is more stable and faster than SHAKE, but it can only be used
with bond constraints and isolated angle constraints, such as the proton angle in OH. Because of its stability,
LINCS is especially useful for Brownian dynamics. LINCS has two parameters, which are explained in the
subsection parameters. The parallel version of LINCS, P-LINCS, is described in subsection Constraints in parallel
(page 409).

The LINCS formulas

We consider a system of N particles, with positions given by a 3N vector r(¢). For molecular dynamics the
equations of motion are given by Newton’s Law

2
% — M~'F, (5.83)

where F is the 3V force vector and M is a 3N x 3NN diagonal matrix, containing the masses of the particles. The
system is constrained by K time-independent constraint equations

gi(r):\ril—ri2|—di:0 Zzl,,K (584)

5.4. Algorithms 397

GROMACS Documentation, Release 2026-rc

In a numerical integration scheme, LINCS is applied after an unconstrained update, just like SHAKE. The algo-
rithm works in two steps (see figure Fig. 5.8). In the first step, the projections of the new bonds on the old bonds
are set to zero. In the second step, a correction is applied for the lengthening of the bonds due to rotation. The
numerics for the first step and the second step are very similar. A complete derivation of the algorithm can be
found in 49 (page 591). Only a short description of the first step is given here.

Vi
o
d | "
p | P
V¢ !
. projecting out correction for
unconstrained . .
forces working — rotational
update .
along the bonds lengthening

Fig. 5.8: The three position updates needed for one time Stelf The dashed line is the old bond of length d, the
solid lines are the new bonds. [= dcosf and p = (2d? — [?)=

A new notation is introduced for the gradient matrix of the constraint equations which appears on the right hand
side of this equation:

Ogn

B =
h 8’/‘1‘

(5.85)

Notice that B is a K x 3NN matrix, it contains the directions of the constraints. The following equation shows how
the new constrained coordinates ry, 1 are related to the unconstrained coordinates r;;"9 by

rp1=1-T,B,)r* +T,d =
unc N -1 -1 T+1—1 unc (586)
rptq —M7'B,(B,M™'B,)"(B,r;19 —d)

where
T=M'B'BM 'BT)! (5.87)

The derivation of this equation from (5.83) and (5.84) can be found in 49 (page 591).

This first step does not set the real bond lengths to the prescribed lengths, but the projection of the new bonds onto
the old directions of the bonds. To correct for the rotation of bond i, the projection of the bond, p;, on the old
direction is set to

24?2 — 12, (5.88)
where [; is the bond length after the first projection. The corrected positions are
r:b-‘rl = (I - Tan)rn-i-l +T,p. (5.89)

This correction for rotational effects is actually an iterative process, but during MD only one iteration is applied.
The relative constraint deviation after this procedure will be less than 0.0001 for every constraint. In energy
minimization, this might not be accurate enough, so the number of iterations is equal to the order of the expansion
(see below).

Half of the CPU time goes to inverting the constraint coupling matrix B,,M~'BZ, which has to be done every
time step. This K x K matrix has 1/m;, + 1/m;, on the diagonal. The off-diagonal elements are only non-zero
when two bonds are connected, then the element is cos ¢/m.., where m,. is the mass of the atom connecting the
two bonds and ¢ is the angle between the bonds.

5.4. Algorithms 398

GROMACS Documentation, Release 2026-rc

The matrix T is inverted through a power expansion. A K x K matrix S is introduced which is the inverse square
root of the diagonal of B,, M~'BZ. This matrix is used to convert the diagonal elements of the coupling matrix
to one:

(B,M~1BI)~! =8Ss-1(B,M'BI)-1S-!S

(5.90)
= S(SB,M'B7S)"1S =S(I—- A,)"!S

The matrix A, is symmetric and sparse and has zeros on the diagonal. Thus a simple trick can be used to calculate
the inverse:

I—A,) '=T+A,+A2+A3 4 . (5.91)

This inversion method is only valid if the absolute values of all the eigenvalues of A,, are smaller than one.
In molecules with only bond constraints, the connectivity is so low that this will always be true, even if ring
structures are present. Problems can arise in angle-constrained molecules. By constraining angles with additional
distance constraints, multiple small ring structures are introduced. This gives a high connectivity, leading to large
eigenvalues. Therefore LINCS should NOT be used with coupled angle-constraints.

For molecules with all bonds constrained the eigenvalues of A are around 0.4. This means that with each addi-
tional order in the expansion (5.91) the deviations decrease by a factor 0.4. But for relatively isolated triangles of
constraints the largest eigenvalue is around 0.7. Such triangles can occur when removing hydrogen angle vibra-
tions with an additional angle constraint in alcohol groups or when constraining water molecules with LINCS, for
instance with flexible constraints. The constraints in such triangles converge twice as slow as the other constraints.
Therefore, starting with GROMACS 4, additional terms are added to the expansion for such triangles

I-A,) ' ~I+A,+...+A) + (A?; +...+ A;‘LNi) Al (5.92)

where N; is the normal order of the expansion and A* only contains the elements of A that couple constraints
within rigid triangles, all other elements are zero. In this manner, the accuracy of angle constraints comes close
to that of the other constraints, while the series of matrix vector multiplications required for determining the
expansion only needs to be extended for a few constraint couplings. This procedure is described in the P-LINCS
paper 50 (page 591).

The LINCS Parameters

The accuracy of LINCS depends on the number of matrices used in the expansion (5.91). For MD calculations a
fourth order expansion is enough. For Brownian dynamics with large time steps an eighth order expansion may
be necessary. The order is a parameter in the mdp (page 497) file. The implementation of LINCS is done in such a
way that the algorithm will never crash. Even when it is impossible to to reset the constraints LINCS will generate
a conformation which fulfills the constraints as well as possible. However, LINCS will generate a warning when
in one step a bond rotates over more than a predefined angle. This angle is set by the user in the mdp (page 497)
file.

5.4.6 Simulated Annealing

The well known simulated annealing (SA) protocol is supported in GROMACS, and you can even couple multiple
groups of atoms separately with an arbitrary number of reference temperatures that change during the simula-
tion. The annealing is implemented by simply changing the current reference temperature for each group in the
temperature coupling, so the actual relaxation and coupling properties depends on the type of thermostat you use
and how hard you are coupling it. Since we are changing the reference temperature it is important to remember
that the system will NOT instantaneously reach this value - you need to allow for the inherent relaxation time in
the coupling algorithm too. If you are changing the annealing reference temperature faster than the temperature
relaxation you will probably end up with a crash when the difference becomes too large.

The annealing protocol is specified as a series of corresponding times and reference temperatures for each group,
and you can also choose whether you only want a single sequence (after which the temperature will be coupled
to the last reference value), or if the annealing should be periodic and restart at the first reference point once
the sequence is completed. You can mix and match both types of annealing and non-annealed groups in your
simulation.

5.4. Algorithms 399

GROMACS Documentation, Release 2026-rc

5.4.7 Stochastic Dynamics

Stochastic or velocity Langevin dynamics adds a friction and a noise term to Newton’s equations of motion, as

d’r dr; o
mié = _mi%dit + Fi(r) + 1, (5-93)

where ~; is the friction constant [1/ps] and T;(t) is a noise process with (?’i(t)?’j(t + 5)) = 2m;y;kpT6(s)0;;.
When 1/+; is large compared to the time scales present in the system, one could see stochastic dynamics as
molecular dynamics with stochastic temperature-coupling. But any processes that take longer than 1/7;, e.g.
hydrodynamics, will be dampened. Since each degree of freedom is coupled independently to a heat bath, equi-
libration of fast modes occurs rapidly. For simulating a system in vacuum there is the additional advantage that
there is no accumulation of errors for the overall translational and rotational degrees of freedom. When 1/~; is
small compared to the time scales present in the system, the dynamics will be completely different from MD, but
the sampling is still correct.

In GROMACS there is one simple and efficient implementation. Its accuracy is equivalent to the normal MD
leap-frog and Velocity Verlet integrator. It is nearly identical to the common way of discretizing the Langevin
equation, but the friction and velocity term are applied in an impulse fashion 5/ (page 591). It can be described
as:

, 1 1
= t— —At) + —F(t)At
v v(t -5 AH + —F(1)
1 kpT
Av = —av/(t+ A+ 2B 02— a)rC; (5.94)
1
r(t+ At) = r(t) + (V/ + 2Av) At
(t + 1At) "+ A
v - = A% v
2 (5.95)
a = 1—e At

where r®; is Gaussian distributed noise with = 0, ¢ = 1. The velocity is first updated a full time step without
friction and noise to get v’, identical to the normal update in leap-frog. The friction and noise are then applied
as an impulse at step ¢ + At. The advantage of this scheme is that the velocity-dependent terms act at the full
time step, which makes the correct integration of forces that depend on both coordinates and velocities, such
as constraints and dissipative particle dynamics (DPD, not implemented yet), straightforward. With constraints,
the coordinate update (5.95) is split into a normal leap-frog update and a Av. After both of these updates the
constraints are applied to coordinates and velocities.

SD can be chosen as an integrator by integrator=sd (page 44). The simulations are performed using the
mdrun (page 221) program. When using SD as a thermostat, an appropriate value for v is e.g. 0.5 ps~!, since this
results in a friction that is lower than the internal friction of water, while it still provides efficient thermostatting.

5.4.8 Brownian Dynamics

In the limit of high friction, stochastic dynamics reduces to Brownian dynamics, also called position Langevin
dynamics. This applies to over-damped systems, i.e. systems in which the inertia effects are negligible. The
equation is

dI‘i 1 o
o ” (r)+r (5.96)

where ; is the friction coefficient [amu/ps] and T;(t) is a noise process with (?i(t)?j (t+s)) =25(s)0i;kBT /.
In GROMACS the equations are integrated with a simple, explicit scheme

ri(t+ At) = r(t) + gFi(r(t)) +4 /2/<:BTg r%;, (5.97)
Yi Yi

5.4. Algorithms 400

GROMACS Documentation, Release 2026-rc

where r®; is Gaussian distributed noise with 7 = 0, ¢ = 1. The friction coefficients 7; can be chosen the

same for all particles or as ; = m,; y;, where the friction constants ~y; can be different for different groups of
atoms. Because the system is assumed to be over-damped, large timesteps can be used. LINCS should be used
for the constraints since SHAKE will not converge for large atomic displacements. BD can be activated by using
integrator=bd (page 44) and the simulations are run using the mdrun (page 221) program.

In BD there are no velocities, so there is also no kinetic energy. Still gmx mdrun (page 221) will report a kinetic
energy and temperature based on atom displacements per step Ax. This can be used to judge the quality of the
integration. A too high temperature is an indication that the time step chosen is too large. The formula for the
kinetic energy term reported is:

22 2ar (.99

5.4.9 Energy Minimization

Energy minimization in GROMACS can be done using steepest descent, conjugate gradients, or 1-bfgs (limited-
memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian minimizer. . . we prefer the abbreviation). Whether
to use EM, and which algorithm to use, is specified via the integrator (page 44) setting of the mdrun
(page 221) program.

Steepest Descent

Although steepest descent is certainly not the most efficient algorithm for searching, it is robust and easy to
implement.

We define the vector r as the vector of all 3V coordinates. Initially a maximum displacement hg (e.g. 0.01 nm)
must be given.

First the forces F' and potential energy are calculated. New positions are calculated by

r =r,+ Lh (5.99)
SRR max(|Fy,|) " .

where h,, is the maximum displacement and F,, is the force, or the negative gradient of the potential V. The
notation max(|F,,|) means the largest scalar force on any atom. The forces and energy are again computed for the
new positions

If (V.41 < V,,) the new positions are accepted and hy, 11 = 1.2h,,.
If (V.41 > V,,) the new positions are rejected and h,, = 0.2h,,.

The algorithm stops when either a user-specified number of force evaluations has been performed (e.g. 100), or
when the maximum of the absolute values of the force (gradient) components is smaller than a specified value e.
Since force truncation produces some noise in the energy evaluation, the stopping criterion should not be made
too tight to avoid endless iterations. A reasonable value for e can be estimated from the root mean square force f
a harmonic oscillator would exhibit at a temperature 7". This value is

f=2mvV2mkT, (5.100)

where v is the oscillator frequency, m the (reduced) mass, and k& Boltzmann’s constant. For a weak oscillator with
a wave number of 100 cm~! and a mass of 10 atomic units, at a temperature of 1 K, f = 7.7kJ mol~! nm~1. A
value for e between 1 and 10 is acceptable.

5.4. Algorithms 401

GROMACS Documentation, Release 2026-rc

Conjugate Gradient

Conjugate gradient is slower than steepest descent in the early stages of the minimization, but becomes more
efficient closer to the energy minimum. The parameters and stop criterion are the same as for steepest descent.
The most common use case for conjugate gradient is minimization prior to a normal-mode analysis, which requires
very small forces. For most other purposes steepest descent is efficient enough.

L-BFGS

The original BFGS algorithm works by successively creating better approximations of the inverse Hessian matrix,
and moving the system to the currently estimated minimum. The memory requirements for this are proportional
to the square of the number of particles, so it is not practical for large systems like biomolecules. Instead, we
use the L-BFGS algorithm of Nocedal 52 (page 591), 53 (page 591), which approximates the inverse Hessian
by a fixed number of corrections from previous steps. This sliding-window technique is almost as efficient as the
original method, but the memory requirements are much lower - proportional to the number of particles multiplied
with the correction steps. In practice we have found it to converge faster than conjugate gradients, but due to the
correction steps it is not yet parallelized. It is also noteworthy that switched or shifted interactions usually improve
the convergence, since sharp cut-offs mean the potential function at the current coordinates is slightly different
from the previous steps used to build the inverse Hessian approximation.

5.4.10 Normal-Mode Analysis

Normal-mode analysis 54 (page 591)56 (page 591) can be performed using GROMACS, by diagonalization of the
mass-weighted Hessian H:
RTM~Y?HM™Y?R = diag(\1,...,\sn)

N i (5.101)

where M contains the atomic masses, R is a matrix that contains the eigenvectors as columns, A; are the eigen-
values and w; are the corresponding frequencies.

First the Hessian matrix, which is a 3N x 3N matrix where NN is the number of atoms, needs to be calculated:

0?V
H;; = 5.102
Bmiaxj ()

where z; and z; denote the atomic x, y or z coordinates. In practice, this equation is not used, but the Hessian is
calculated numerically from the force as:

fi(x + hej) — fi(x — he;)

Hy= - 2h

ov (5.103)

fi - B axi

where e; is the unit vector in direction j. It should be noted that for a usual normal-mode calculation, it is
necessary to completely minimize the energy prior to computation of the Hessian. The tolerance required depends
on the type of system, but a rough indication is 0.001 kJ mol~!. Minimization should be done with conjugate
gradients or L-BFGS in double precision.

A number of GROMACS programs are involved in these calculations. First, the energy should be minimized using
mdrun (page 221). Then, mdrun (page 221) computes the Hessian. Note that for generating the run input file, one
should use the minimized conformation from the full precision trajectory file, as the structure file is not accurate
enough. gmx nmeig (page 230) does the diagonalization and the sorting of the normal modes according to their
frequencies. Both mdrun (page 221) and gmx nmeig (page 230) should be run in double precision. The normal
modes can be analyzed with the program gmx anaeig (page 127). Ensembles of structures at any temperature
and for any subset of normal modes can be generated with gmx nmens (page 232). An overview of normal-mode
analysis and the related principal component analysis (see sec. Covariance analysis (page 575)) can be found in 57
(page 591).

5.4. Algorithms 402

GROMACS Documentation, Release 2026-rc

5.4.11 Free energy calculations

Slow-growth methods

Free energy calculations can be performed in GROMACS using a number of methods, including “slow-growth.”
An example problem might be calculating the difference in free energy of binding of an inhibitor I to an enzyme
E and to a mutated enzyme E’. It is not feasible with computer simulations to perform a docking calculation for
such a large complex, or even releasing the inhibitor from the enzyme in a reasonable amount of computer time
with reasonable accuracy. However, if we consider the free energy cycle in Fig. 5.9 A we can write:

AG; — AGy = AGs — AG, (5.104)

If we are interested in the left-hand term we can equally well compute the right-hand term.

Fig. 5.9: Free energy cycles. A: to calculate AG12, the free energy difference between the binding of inhibitor I
to enzymes E respectively E'.

Fig. 5.10: Free energy cycles. B: to calculate AG14, the free energy difference for binding of inhibitors I respec-
tively I to enzyme E.

If we want to compute the difference in free energy of binding of two inhibitors I and I’ to an enzyme E (Fig.
5.10) we can again use (5.104) to compute the desired property.

Free energy differences between two molecular species can be calculated in GROMACS using the “slow-growth”
method. Such free energy differences between different molecular species are physically meaningless, but they
can be used to obtain meaningful quantities employing a thermodynamic cycle. The method requires a simulation

5.4. Algorithms 403

GROMACS Documentation, Release 2026-rc

during which the Hamiltonian of the system changes slowly from that describing one system (A) to that describing
the other system (B). The change must be so slow that the system remains in equilibrium during the process; if
that requirement is fulfilled, the change is reversible and a slow-growth simulation from B to A will yield the same
results (but with a different sign) as a slow-growth simulation from A to B. This is a useful check, but the user
should be aware of the danger that equality of forward and backward growth results does not guarantee correctness
of the results.

The required modification of the Hamiltonian H is realized by making H a function of a coupling parameter
A: H = H(p,q;\) in such a way that A\ = 0 describes system A and A\ = 1 describes system B:

H(p,q;0) = H*(p,q); H(p,q;1) = H(p,q). (5.105)

In GROMACS, the functional form of the A-dependence is different for the various force-field contributions and
is described in section sec. Free energy interactions (page 440).

The Helmholtz free energy A is related to the partition function @) of an N, V, T ensemble, which is assumed to
be the equilibrium ensemble generated by a MD simulation at constant volume and temperature. The generally
more useful Gibbs free energy G is related to the partition function A of an IV, p, T ensemble, which is assumed
to be the equilibrium ensemble generated by a MD simulation at constant pressure and temperature:

A(N) = —kpTInQ
Q- e [[expl-8H .00 dpds

G(\) = —kpTIh A (5.106)
A= C///CXp[—ﬁH(p,q; A) = BpV]dpdqdV
G = A+ pV,

where 3 = 1/(kgT) and ¢ = (N'h3N)~1. These integrals over phase space cannot be evaluated from a simula-
tion, but it is possible to evaluate the derivative with respect to A as an ensemble average:

dA _ [[(0H/OX) exp[~BH (p,¢; \)] dpdg _ < oH > 5107,
dA [J exp[=BH (p,q;)] dp dg N/ nvrn '

with a similar relation for dG/dX in the N, p, T ensemble. The difference in free energy between A and B can be
found by integrating the derivative over A:

B A ' JoH
AB(V,T) — ANV, T) = — d\ (5.108)
0 oA NVT;\
1
GB(p, T) — GA(p,T) = / <%§I> dA. (5.109)
0 NpT;\

If one wishes to evaluate GB(p, T) — G*(p, T), the natural choice is a constant-pressure simulation. However,
this quantity can also be obtained from a slow-growth simulation at constant volume, starting with system A at
pressure p and volume V' and ending with system B at pressure pp, by applying the following small (but, in
principle, exact) correction:

B

G®(p) — GA(p) = AB(V) — ANV — /p VB - V]dpy (5.110)

p

Here we omitted the constant 7' from the notation. This correction is roughly equal to —%(pB — p)AV =
(AV)2/(2kV), where AV is the volume change at p and & is the isothermal compressibility. This is usually
small; for example, the growth of a water molecule from nothing in a bath of 1000 water molecules at constant
volume would produce an additional pressure of as much as 22 bar, but a correction to the Helmholtz free energy
of just -1 kJ mol~!. In Cartesian coordinates, the kinetic energy term in the Hamiltonian depends only on the
momenta, and can be separately integrated and, in fact, removed from the equations. When masses do not change,
there is no contribution from the kinetic energy at all; otherwise the integrated contribution to the free energy is
—3kpT In(m®/m™). Note that this is only true in the absence of constraints.

5.4. Algorithms 404

GROMACS Documentation, Release 2026-rc

Thermodynamic integration

GROMACS offers the possibility to integrate (5.108) or eq. (5.109) in one simulation over the full range from A
to B. However, if the change is large and insufficient sampling can be expected, the user may prefer to determine
the value of (dG/d\) accurately at a number of well-chosen intermediate values of A. This can easily be done
by setting the stepsize delta_lambda to zero. Each simulation can be equilibrated first, and a proper error
estimate can be made for each value of dG/d\ from the fluctuation of 9H/OA. The total free energy change is
then determined afterward by an appropriate numerical integration procedure.

GROMACS now also supports the use of Bennett’s Acceptance Ratio 58 (page 591) for calculating values of AG
for transformations from state A to state B using the program gmx bar (page 136). The same data can also be used
to calculate free energies using MBAR 59 (page 591), though the analysis currently requires external tools from
the external pymbar package.

The A-dependence for the force-field contributions is described in detail in section sec. Free energy interactions
(page 440).

5.4.12 Replica exchange

Replica exchange molecular dynamics (REMD) is a method that can be used to speed up the sampling of any type
of simulation, especially if conformations are separated by relatively high energy barriers. It involves simulating
multiple replicas of the same system at different temperatures and randomly exchanging the complete state of two
replicas at regular intervals with the probability:

1 1

where T and 75 are the reference temperatures and U; and U, are the instantaneous potential energies of replicas
1 and 2 respectively. After exchange the velocities are scaled by (77 /75)*%-> and a neighbor search is performed
the next step. This combines the fast sampling and frequent barrier-crossing of the highest temperature with correct
Boltzmann sampling at all the different temperatures 60 (page 591), 6/ (page 591). We only attempt exchanges for
neighboring temperatures as the probability decreases very rapidly with the temperature difference. One should
not attempt exchanges for all possible pairs in one step. If, for instance, replicas 1 and 2 would exchange, the
chance of exchange for replicas 2 and 3 not only depends on the energies of replicas 2 and 3, but also on the
energy of replica 1. In GROMACS this is solved by attempting exchange for all odd pairs on odd attempts and
for all even pairs on even attempts. If we have four replicas: 0, 1, 2 and 3, ordered in temperature and we attempt
exchange every 1000 steps, pairs 0-1 and 2-3 will be tried at steps 1000, 3000 etc. and pair 1-2 at steps 2000, 4000
etc.

How should one choose the temperatures? The energy difference can be written as:
c
U - U, :NdfikB(Tl — 1) (5.112)

where Ny is the total number of degrees of freedom of one replica and c is 1 for harmonic potentials and around
2 for protein/water systems. If T, = (1 + €)T the probability becomes:

e2¢ N, c
P(1 ¢+ 2) = exp (—M) A~ exp (—62§Ndf) (5.113)

Thus for a probability of e~2 = 0.135 one obtains € &~ 2/,/c Ngs. With all bonds constrained one has Ny ~
2 Nutoms and thus for ¢ = 2 one should choose € as 1/v/Nytoms. However there is one problem when using
pressure coupling. The density at higher temperatures will decrease, leading to higher energy 62 (page 591),

which should be taken into account. Using a so-called REMD calculator, you can type in the temperature range
and the number of atoms. The tool then proposes a set of temperatures.

An extension to the REMD for the isobaric-isothermal ensemble was proposed by Okabe et al. 63 (page 591). In
this work the exchange probability is modified to:

. 1 1 PP
P(1+ 2) = min (1,exp |:(k'BTl - k‘BT2> (U —Us) + (kBTl — kBTg> (W1 — Vg)}) (5.114)

5.4. Algorithms 405

https://SimTK.org/home/pymbar
https://virtualchemistry.org/remd-temperature-generator/

GROMACS Documentation, Release 2026-rc

where P; and P, are the respective reference pressures and V; and Vs are the respective instantaneous volumes in
the simulations. In most cases the differences in volume are so small that the second term is negligible. It only
plays a role when the difference between P; and P is large or in phase transitions.

Hamiltonian replica exchange is also supported in GROMACS. In Hamiltonian replica exchange, each replica has
a different Hamiltonian, defined by the free energy pathway specified for the simulation. The exchange probability
to maintain the correct ensemble probabilities is:

P(1 4 2) = min (1,exp L{BIT(Ul(m) Uy (as) + Us(zs) — U2(x1>)D (5.115)

The separate Hamiltonians are defined by the free energy functionality of GROMACS, with swaps made between
the different values of A\ defined in the mdp file.

Hamiltonian and temperature replica exchange can also be performed simultaneously 64 (page 591), using the
acceptance criteria:

(5.116)

P(1 ¢ 2) = min (1,exp [Ul(ml) — Ui(z2) | Un(z2) - Uz(xl)D

kT kT

Gibbs sampling replica exchange has also been implemented in GROMACS 64 (page 591). In Gibbs sampling
replica exchange, all possible pairs are tested for exchange, allowing swaps between replicas that are not neighbors.

Gibbs sampling replica exchange requires no additional potential energy calculations. However there is an addi-
tional communication cost in Gibbs sampling replica exchange, as for some permutations, more than one round
of swaps must take place. In some cases, this extra communication cost might affect the efficiency.

All replica exchange variants are set using mdp (page 497) options and performed using the mdrun (page 221)
program. It will only work when MPI is installed, due to the inherent parallelism in the algorithm. For efficiency
each replica can run on a separate rank. See the manual page of mdrun (page 221) on how to use these multinode
features.

5.4.13 Essential Dynamics sampling

The results from Essential Dynamics (see sec. Covariance analysis (page 575)) of a protein can be used to guide
MD simulations. The idea is that from an initial MD simulation (or from other sources) a definition of the
collective fluctuations with largest amplitude is obtained. The position along one or more of these collective
modes can be constrained in a (second) MD simulation in a number of ways for several purposes. For example,
the position along a certain mode may be kept fixed to monitor the average force (free-energy gradient) on that
coordinate in that position. Another application is to enhance sampling efficiency with respect to usual MD 65
(page 591), 66 (page 591). In this case, the system is encouraged to sample its available configuration space more
systematically than in a diffusion-like path that proteins usually take.

Another possibility to enhance sampling is flooding. Here a flooding potential is added to certain (collective)
degrees of freedom to expel the system out of a region of phase space 67 (page 592).

The procedure for essential dynamics sampling or flooding is as follows. First, the eigenvectors and eigenvalues
need to be determined using covariance analysis (gmx covar (page 153)) or normal-mode analysis (gmx nmeig
(page 230)). Then, this information is fed into make_edi (page 215), which has many options for selecting vectors
and setting parameters, see gmx make_edi -h. The generated edi (page 494) input file is then passed to mdrun
(page 221).

5.4. Algorithms 406

GROMACS Documentation, Release 2026-rc

5.4.14 Expanded Ensemble

In an expanded ensemble simulation 68 (page 592), both the coordinates and the thermodynamic ensemble are
treated as configuration variables that can be sampled over. The probability of any given state can be written as:

P(Z,k) o< exp (—BrUk + gk) , (5.117)

where B = ﬁ is the 3 corresponding to the kth thermodynamic state, and g is a user-specified weight
factor corresponding to the kth state. This space is therefore a mixed, generalized, or expanded ensemble which
samples from multiple thermodynamic ensembles simultaneously. gj is chosen to give a specific weighting of
each subensemble in the expanded ensemble, and can either be fixed, or determined by an iterative procedure. The
set of g;, is frequently chosen to give each thermodynamic ensemble equal probability, in which case gy, is equal
to the free energy in non-dimensional units, but they can be set to arbitrary values as desired. Several different
algorithms can be used to equilibrate these weights, described in the mdp option listings.

In GROMACS, this space is sampled by alternating sampling in the k and Z directions. Sampling in the & direction
is done by standard molecular dynamics sampling; sampling between the different thermodynamics states is done
by Monte Carlo, with several different Monte Carlo moves supported. The k states can be defined by different
temperatures, or choices of the free energy A variable, or both. Expanded ensemble simulations thus represent
a serialization of the replica exchange formalism, allowing a single simulation to explore many thermodynamic
states.

5.4.15 Parallelization

The CPU time required for a simulation can be reduced by running the simulation in parallel over more than one
core. Ideally, one would want to have linear scaling: running on /V cores makes the simulation /V times faster. In
practice this can only be achieved for a small number of cores. The scaling will depend a lot on the algorithms
used. Also, different algorithms can have different restrictions on the interaction ranges between atoms.

5.4.16 Domain decomposition

Since most interactions in molecular simulations are local, domain decomposition is a natural way to decompose
the system. In domain decomposition, a spatial domain is assigned to each rank, which will then integrate the
equations of motion for the particles that currently reside in its local domain. With domain decomposition, there
are two choices that have to be made: the division of the unit cell into domains and the assignment of the forces to
domains. Most molecular simulation packages use the half-shell method for assigning the forces. But there are two
methods that always require less communication: the eighth shell 69 (page 592) and the midpoint 70 (page 592)
method. GROMACS currently uses the eighth shell method, but for certain systems or hardware architectures it
might be advantageous to use the midpoint method. Therefore, we might implement the midpoint method in the
future. Most of the details of the domain decomposition can be found in the GROMACS 4 paper 5 (page 589).

Coordinate and force communication

In the most general case of a triclinic unit cell, the space in divided with a 1-, 2-, or 3-D grid in parallelepipeds that
we call domain decomposition cells. Each cell is assigned to a particle-particle rank. The system is partitioned
over the ranks at the beginning of each MD step in which neighbor searching is performed. The minimum unit of
partitioning can be an atom, or a charge group with the (deprecated) group cut-off scheme or an update group. An
update group is a group of atoms that has dependencies during update, which occurs when using constraints and/or
virtual sites. Thus different update groups can be updated independently. Currently update groups can only be
used with at most two sequential constraints, which is the case when only constraining bonds involving hydrogen
atoms. The advantages of update groups are that no communication is required in the update and that this allows
updating part of the system while computing forces for other parts. Atom groups are assigned to the cell where
their center of geometry resides. Before the forces can be calculated, the coordinates from some neighboring cells
need to be communicated, and after the forces are calculated, the forces need to be communicated in the other
direction. The communication and force assignment is based on zones that can cover one or multiple cells. An
example of a zone setup is shown in Fig. 5.11.

5.4. Algorithms 407

GROMACS Documentation, Release 2026-rc

Fig. 5.11: A non-staggered domain decomposition grid of 3x2x2 cells. Coordinates in zones 1 to 7 are commu-
nicated to the corner cell that has its home particles in zone 0. 7. is the cut-off radius.

The coordinates are communicated by moving data along the “negative” direction in z, y or 2 to the next neighbor.
This can be done in one or multiple pulses. In Fig. 5.11 two pulses in x are required, then one in y and then one in
z. The forces are communicated by reversing this procedure. See the GROMACS 4 paper 5 (page 589) for details
on determining which non-bonded and bonded forces should be calculated on which rank.

Dynamic load balancing

When different ranks have a different computational load (load imbalance), all ranks will have to wait for the one
that takes the most time. One would like to avoid such a situation. Load imbalance can occur due to four reasons:

 inhomogeneous particle distribution

» inhomogeneous interaction cost distribution (charged/uncharged, water/non-water due to GROMACS water
innerloops)

* statistical fluctuation (only with small particle numbers)

* differences in communication time, due to network topology and/or other jobs on the machine interfering
with our communication

So we need a dynamic load balancing algorithm where the volume of each domain decomposition cell can be
adjusted independently. To achieve this, the 2- or 3-D domain decomposition grids need to be staggered. Fig. 5.12
shows the most general case in 2-D. Due to the staggering, one might require two distance checks for deciding if
an update group needs to be communicated: a non-bonded distance and a bonded distance check.

By default, mdrun (page 221) automatically turns on the dynamic load balancing during a simulation when the
total performance loss due to the force calculation imbalance is 2% or more. Note that the reported force load
imbalance numbers might be higher, since the force calculation is only part of work that needs to be done during
an integration step. The load imbalance is reported in the log file at log output steps and when the —v option is
used also on screen. The average load imbalance and the total performance loss due to load imbalance are reported
at the end of the log file.

There is one important parameter for the dynamic load balancing, which is the minimum allowed scaling. By
default, each dimension of the domain decomposition cell can scale down by at least a factor of 0.8. For 3-D
domain decomposition this allows cells to change their volume by about a factor of 0.5, which should allow for
compensation of a load imbalance of 100%. The minimum allowed scaling can be changed with the —dds option
of mdrun (page 221).

The load imbalance is measured by timing a single region of the MD step on each MPI rank. This region can
not include MPI communication, as timing of MPI calls does not allow separating wait due to imbalance from
actual communication. The domain volumes are then scaled, with under-relaxation, inversely proportional with

5.4. Algorithms 408

GROMACS Documentation, Release 2026-rc

i
\
e e
P/P
.
o

N\

-

i (N

SRR RERR
R
Nd

Sl b
1

prpppppsb

prppRpppphe e
HP?**H
AN
A

Fig. 5.12: The zones to communicate to the rank of zone 0, see the text for details. r. and r, are the non-bonded
and bonded cut-off radii respectively, d is an example of a distance between following, staggered boundaries of
cells.

the measured time. This procedure will decrease the load imbalance when the change in load in the measured
region correlates with the change in domain volume and the load outside the measured region does not depend
strongly on the domain volume. In CPU-only simulations, the load is measured between the coordinate and the
force communication. In simulations with non-bonded work on GPUs, we overlap communication and work
on the CPU with calculation on the GPU. Therefore we measure from the last communication before the force
calculation to when the CPU or GPU is finished, whichever is last. When not using PME ranks, we subtract the
time in PME from the CPU time, as this includes MPI calls and the PME load is independent of domain size.
This generally works well, unless the non-bonded load is low and there is imbalance in the bonded interactions.
Then two issues can arise. Dynamic load balancing can increase the imbalance in update and constraints and with
PME the coordinate and force redistribution time can go up significantly. Although dynamic load balancing can
significantly improve performance in cases where there is imbalance in the bonded interactions on the CPU, there
are many situations in which some domains continue decreasing in size and the load imbalance increases and/or
PME coordinate and force redistribution cost increases significantly. As of version 2016.1, mdrun (page 221)
disables the dynamic load balancing when measurement indicates that it deteriorates performance. This means
that in most cases the user will get good performance with the default, automated dynamic load balancing setting.

Constraints in parallel

Since with domain decomposition parts of molecules can reside on different ranks, bond constraints can cross
cell boundaries. This will not happen in GROMACS when update groups are used, which happens when only
bonds involving hydrogens are constrained. Then atoms connected by constraints are assigned to the same do-
main. But without update groups a parallel constraint algorithm is required. GROMACS uses the P-LINCS algo-
rithm 50 (page 591), which is the parallel version of the LINCS algorithm 49 (page 591) (see The LINCS algorithm
(page 397)). The P-LINCS procedure is illustrated in Fig. 5.13. When molecules cross the cell boundaries, atoms
in such molecules up to (1incs_order + 1) bonds away are communicated over the cell boundaries. Then,
the normal LINCS algorithm can be applied to the local bonds plus the communicated ones. After this proce-
dure, the local bonds are correctly constrained, even though the extra communicated ones are not. One coordinate
communication step is required for the initial LINCS step and one for each iteration. Forces do not need to be
communicated.

5.4. Algorithms 409

GROMACS Documentation, Release 2026-rc

..
-
R
'
:

Fig. 5.13: Example of the parallel setup of P-LINCS with one molecule split over three domain decomposition
cells, using a matrix expansion order of 3. The top part shows which atom coordinates need to be communicated
to which cells. The bottom parts show the local constraints (solid) and the non-local constraints (dashed) for each
of the three cells.

Interaction ranges

Domain decomposition takes advantage of the locality of interactions. This means that there will be limitations
on the range of interactions. By default, mdrun (page 221) tries to find the optimal balance between interaction
range and efficiency. But it can happen that a simulation stops with an error message about missing interactions,
or that a simulation might run slightly faster with shorter interaction ranges. A list of interaction ranges and their
default values is given in Table 5.7

Table 5.7: The interaction ranges with domain decomposition.

interaction range option default

non-bonded re=max(riis,"vdw,"Coul) mdp (page 497) file

two-body bonded max(Tmp,"c) mdrun (page 221) —rdd starting conf. + 10%
multi-body bonded 7, mdrun (page 221) —rdd starting conf. + 10%
constraints e mdrun (page 221) —rcon est. from bond lengths
virtual sites Tcon mdrun (page 221) —rcon 0

In most cases the defaults of mdrun (page 221) should not cause the simulation to stop with an error message
of missing interactions. The range for the bonded interactions is determined from the distance between bonded
update groups in the starting configuration, with 10% added for headroom. For the constraints, the value of 7oy, is
determined by taking the maximum distance that (1incs_order + 1) bonds can cover when they all connect
at angles of 120 degrees. The actual constraint communication is not limited by 7., but by the minimum cell
size L, which has the following lower limit:

LC > maX(Tmba Tcon) (5.118)

Without dynamic load balancing the system is actually allowed to scale beyond this limit when pressure scaling is
used. Note that for triclinic boxes, L¢ is not simply the box diagonal component divided by the number of cells
in that direction, rather it is the shortest distance between the triclinic cells borders. For rhombic dodecahedra this
is a factor of 1/3/2 shorter along = and y.

When r,p, > 7., mdrun (page 221) employs a smart algorithm to reduce the communication. Simply communicat-
ing all update groups within 7,;, would increase the amount of communication enormously. Therefore only update

5.4. Algorithms 410

GROMACS Documentation, Release 2026-rc

groups that are connected by bonded interactions to update groups which are not locally present are communi-
cated. This leads to little extra communication, but also to a slightly increased cost for the domain decomposition
setup. In some cases, e.g. coarse-grained simulations with a very short cut-off, one might want to set r,;, by hand
to reduce this cost.

Multiple-Program, Multiple-Data PME parallelization

Electrostatics interactions are long-range, therefore special algorithms are used to avoid summation over many
atom pairs. In GROMACS this is usually PME (sec. PME (page 454)). Since with PME all particles interact with
each other, global communication is required. This will usually be the limiting factor for scaling with domain
decomposition. To reduce the effect of this problem, we have come up with a Multiple-Program, Multiple-Data
approach 5 (page 589). Here, some ranks are selected to do only the PME mesh calculation, while the other ranks,
called particle-particle (PP) ranks, do all the rest of the work. For rectangular boxes the optimal PP to PME rank
ratio is usually 3:1, for rhombic dodecahedra usually 2:1. When the number of PME ranks is reduced by a factor
of 4, the number of communication calls is reduced by about a factor of 16. Or put differently, we can now scale
to 4 times more ranks. In addition, for modern 4 or 8 core machines in a network, the effective network bandwidth
for PME is quadrupled, since only a quarter of the cores will be using the network connection on each machine
during the PME calculations.

8 PP/PME ranks 6 PP ranks 2 PME ranks

£ T ST
2 i
3y y

7 7 7

Fig. 5.14: Example of 8 ranks without (left) and with (right) MPMD. The PME communication (red arrows) is
much higher on the left than on the right. For MPMD additional PP - PME coordinate and force communication
(blue arrows) is required, but the total communication complexity is lower.

mdrun (page 221) will by default interleave the PP and PME ranks. If the ranks are not number consecutively
inside the machines, one might want to use mdrun (page 221) ~ddorder pp_pme. For machines with a real
3-D torus and proper communication software that assigns the ranks accordingly one should use mdrun (page 221)
—ddorder cartesian.

To optimize the performance one should usually set up the cut-offs and the PME grid such that the PME load
is 25 to 33% of the total calculation load. grompp (page 196) will print an estimate for this load at the end and
also mdrun (page 221) calculates the same estimate to determine the optimal number of PME ranks to use. For
high parallelization it might be worthwhile to optimize the PME load with the mdp (page 497) settings and/or the
number of PME ranks with the —npme option of mdrun (page 221). For changing the electrostatics settings it is
useful to know the accuracy of the electrostatics remains nearly constant when the Coulomb cut-off and the PME
grid spacing are scaled by the same factor. Note that it is usually better to overestimate than to underestimate the
number of PME ranks, since the number of PME ranks is smaller than the number of PP ranks, which leads to less
total waiting time.

The PME domain decomposition can be 1-D or 2-D along the and/or y axis. 2-D decomposition is also known as
pencil decomposition because of the shape of the domains at high parallelization. 1-D decomposition along the y
axis can only be used when the PP decomposition has only 1 domain along x. 2-D PME decomposition has to have
the number of domains along x equal to the number of the PP decomposition. mdrun (page 221) automatically
chooses 1-D or 2-D PME decomposition (when possible with the total given number of ranks), based on the
minimum amount of communication for the coordinate redistribution in PME plus the communication for the grid
overlap and transposes. To avoid superfluous communication of coordinates and forces between the PP and PME
ranks, the number of DD cells in the z direction should ideally be the same or a multiple of the number of PME
ranks. By default, mdrun (page 221) takes care of this issue.

5.4. Algorithms 411

GROMACS Documentation, Release 2026-rc

Domain decomposition flow chart

In Fig. 5.15 a flow chart is shown for domain decomposition with all possible communication for different algo-
rithms. For simpler simulations, the same flow chart applies, without the algorithms and communication for the
algorithms that are not used.

Real space (particle) node PME node
< Start B>
O e ot e | Y

Neighborsearch step?
Construct virtual sites

Y Receive charges fro
Neighborsearch step? peer real space
processors
N Domain L |
decomposition

I Receive x and box from
Send charges to peer peer real space processors
PME processor
| ——
Send x and box to
peer PME processor
T

All local coordiantes
received?

to neighbor PME proc's
|

Spread charges on grid

Communicate x with real D
space neighbor processors C Communicate some atoms

Neighborsearch step?

(local) |
neighborsearching Communicate grid overlap
with PME neighbor proc's

|
parallel 3D FFT
[
Solve PME (convolution)
|

parallel inverse 3D FFT

Evaluate potential/forces

I
Communicate f with real
space neighbor processors
T
Spread real space forces on
virtual sites
T
Receive forces/energy/virial
from peer PME processor |

| Communicate grid overlap A
Spread PME forces on D with PME neighbor proc's
virtual sites |

T
Interpolate forces from grid

AWA

R &J

F\

F\

Integrate coordinates
I
T

Constrain bond lengths C Communicate some forces
(parallel LINCS) to neighbor PME proc's

T I
Sum energies of all real Send forces/energy/virial to
space processors peer real space processors

RJ RJ

Fig. 5.15: Flow chart showing the algorithms and communication (arrows) for a standard MD simulation with
virtual sites, constraints and separate PME-mesh ranks.

5.4. Algorithms 412

GROMACS Documentation, Release 2026-rc

5.5 Interaction function and force fields

To accommodate the potential functions used in some popular force fields (see Interaction function and force
Jields (page 413)), GROMACS offers a choice of functions, both for non-bonded interaction and for dihedral
interactions. They are described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modified Coulomb. The non-bonded inter-
actions are computed on the basis of a neighbor list (a list of non-bonded atoms within a certain radius), in
which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals. These are
computed on the basis of fixed lists.

3. Restraints: position restraints, angle restraints, distance restraints, orientation restraints and dihedral re-
straints, all based on fixed lists.

4. Applied Forces: externally applied forces, see chapter Special Topics (page 507).

5.5.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive:

Vl‘l,... ZV;] rzg (5119)
1<J
AVij(rij) vij
Z T (5.120)

Since the potential only depends on the scalar d1stance, interactions will be centro-symmetric, i.e. the vectorial
partial force on particle ¢ from the pairwise interaction V;;(r;;) has the opposite direction of the partial force on
particle j. For efficiency reasons, interactions are calculated by loops over interactions and updating both partial
forces rather than summing one complete nonbonded force at a time. The non-bonded interactions contain a
repulsion term, a dispersion term, and a Coulomb term. The repulsion and dispersion term are combined in either
the Lennard-Jones (or 6-12 interaction), or the Buckingham (or exp-6 potential). In addition, (partially) charged
atoms act through the Coulomb term.

The Lennard-Jones interaction

The Lennard-Jones potential V7 ; between two atoms equals:

o2 6
_ 1]
Vislry) = 2 = s (5.121)

See also Fig. 5.16 The parameters C;; (12) and C (7) depend on pairs of atom types; consequently they are taken
from a matrix of LJ-parameters. In the Verlet cut-off scheme, the potential is shifted by a constant such that it is
zero at the cut-off distance.

The force derived from this potential is:
c? C9N 1,
Fi<r¢j>=—() T .122)
)

The LJ potential may also be written in the following form:
o\ 12 o\ 6
Vig(rij) = 4eij ((ﬂ) - (J)) (5.123)
Tij Tij

5.5. Interaction function and force fields 413

GROMACS Documentation, Release 2026-rc

0.4

02 r

V (kJ mole™)

0.0 -

0.4 0.5 0.6 0.7 0.8
r (nm)

Fig. 5.16: The Lennard-Jones interaction.

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of combination rules can be
used within GROMACS, only geometric averages (type 1 in the input section of the force-field file):

c© _ () A0
* v (5.124)
e = (cPcl?)

or, alternatively the Lorentz-Berthelot rules can be used. An arithmetic average is used to calculate o;;, while a
geometric average is used to calculate ¢;; (type 2):

R
O35 B 2 (Uu +1(;—é]) (5.125)
€ij = (€ii€sy)

finally an geometric average for both parameters can be used (type 3):

)1/2

oij = (0ii0j;
1/2

(5.126)
€ = (€i€j5)
This last rule is used by the OPLS force field.

Buckingham potential

The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones interaction, but
is also more expensive to compute. Note that the Buckingham potential is no longer supported by gmx mdrun
(page 221). The potential form is:

Von(rij) = Aij exp(—Bijrij) — —% (5.127)

Tij

See also Fig. 5.17. The force derived from this is:

Co:7 1
il (5.128)

rij" | i

Fi(’l“ij) = AijBij eXp(—BijTij) —6

5.5. Interaction function and force fields 414

GROMACS Documentation, Release 2026-rc

05

V (kJ mole™)

0.0 -

02 03 04 05 06 07 08
r (nm)

Fig. 5.17: The Buckingham interaction.

Coulomb interaction

The Coulomb interaction between two charge particles is given by:

V(i) = f-1di (5.129)

ErTij

See also Fig. 5.18, where f = —— = 138.935458 (see chapter Definitions and Units (page 366))

47T€0

1500
Coulomb
---- With RF
| —-— RF-C
1000 1
TB
€
2
>
500 1
0
0.0 1.0

Fig. 5.18: The Coulomb interaction (for particles with equal signed charge) with and without reaction field. In the
latter case €, was 1, €,.y was 78, and r. was 0.9 nm. The dot-dashed line is the same as the dashed line, except for

a constant.

The force derived from this potential is:

idj Tij
Fi(r;) = —f%ﬁ (5.130)
A plain Coulomb interaction should only be used without cut-off or when all pairs fall within the cut-off, since
there is an abrupt, large change in the force at the cut-off. In case you do want to use a cut-off, the potential can
be shifted by a constant to make the potential the integral of the force. With the group cut-off scheme, this shift is
only applied to non-excluded pairs. With the Verlet cut-off scheme, the shift is also applied to excluded pairs and
self interactions, which makes the potential equivalent to a reaction field with €,y = 1 (see below).

In GROMACS the relative dielectric constant £, may be set in the in the input for grompp (page 196).

5.5. Interaction function and force fields 415

GROMACS Documentation, Release 2026-rc

Coulomb interaction with reaction field

The Coulomb interaction can be modified for homogeneous systems by assuming a constant dielectric environment
beyond the cut-off 7. with a dielectric constant of €, . The interaction then reads:

%4 {1 Erf —&r Tij‘”’} %l 3y (5.131)

Very = - o —
erf ferrij 2e,f +ep T3 ErTe 26,5 + &
in which the constant expression on the right makes the potential zero at the cut-off .. For charged cut-off spheres
this corresponds to neutralization with a homogeneous background charge. We can rewrite (5.131) for simplicity
as

g [1
Vg = f2% [+ kg — Crf:| (5.132)
Er 7"1‘]‘
with
1 efp—er
k’r - T — .
f 3 (260, + o) (5.133)
1 1 3¢,
r= — +kopr? = L S .
Crf " +krpre re @ers+20) (5.134)

For large ¢,; the k,.; goes to rc_3/2, while for €,y = ¢, the correction vanishes. In Fig. 5.18 the modified
interaction is plotted, and it is clear that the derivative with respect to r;; (= -force) goes to zero at the cut-off
distance. The force derived from this potential reads:

Gt | 1o | T 5.135

c, 9 rfTig | —— (.)

’I"ij

Fi(rij) =—f

)

The reaction-field correction should also be applied to all excluded atoms pairs, including self interactions, in
which case the normal Coulomb term in (5.131) and (5.135) is absent. For the self interactions the constant is
halved, leading to this constant potential term:
2
q; 3e,
—ft f

V p— —_—
self 26,1 26,5 + £r

Modified non-bonded interactions

All physical forces are conservative, meaning that it is possible to assign a numerical value for the potential at any
point (which thus does not depend on the path taken), and the force is the negative gradient of this potential. Based
on the definitions of the potentials above, this derivative (i.e., the force) is always zero at infinite separation, and in
the context of pair potentials this means the potential for each pair contribution must be the integral of the force out
from infinity back to the current interaction distance. While it is perfectly valid to have an arbitrary constant factor
in the potential, a natural choice is to define the pair interaction to be zero at infinite separation when particles
are not really interacting. However, when these definitions using infinite-range potentials are combined with a
cutoff for pair interactions we violate their consistency, and the force would no longer be conservative - which in
particular means the total energy will no longer be conserved. One way to circumvent this is to instead modify the
non-bonded interaction potentials such that they only have finite range, after which the cutoff can be applied. This
can either be done as a switching function that changes the shape of the potential and force over a small range,
or by shifting the entire potential by a constant factor such that it becomes zero at the cutoff. The advantage of
the shifted interaction modification is that it does not influence the force at all, and since only forces enter the
equations of motion it will not influence the dynamics of the system. The drawback is that the total change in the
potential is larger. Presently GROMACS only supports this shifted modification, and it is even applied by default
(but possible to turn off). Note that we also shift the direct-space component of the PME interaction; the potential
difference will be negligible since it has already decayed to the specified PME tolerance at the cutoff, but this
improves energy conservation.

When used with reaction-field electrostatics ((5.131)), the self-energy term will effectively make the electrostatic
potential constant (but non-zero) outside the cutoff.

5.5. Interaction function and force fields 416

GROMACS Documentation, Release 2026-rc

For implementation reasons, GROMACS presently uses the reaction-field kernel for normal Coulomb interactions
too (with g,y = ¢,). Note that this will give the appearance of a similar constant potential outside the cutoff for
plain Coulomb electrostatics too. We will try to fix this in a future kernel, but since there are very few (if any)
cases where plain Coulomb is a good choice for electrostatics it has not been a high priority.

Although the present kernels only support shifting the potential, we do plan to bring back complete functionality
for switch functions, so for completeness in the interface we have retained that documentation below.

While the shift modifier will yield conservative forces, the forces will still have an abrupt change at the cutoff,
which among other things can make it difficult to efficiently minimize the energy of a system prior to normal
mode calculation. The force-switch function replaces the truncated forces by forces that are continuous and have
continuous derivatives at the cut-off radius. With such forces the time integration produces smaller errors, although
for Lennard-Jones interactions other errors tend to dominate, such as integration errors at the repulsive part of the
potential. For Coulomb interactions we advise against using switch modifiers since it can lead to large peaks in
the force close to the cutoff; we strongly recommend considering reaction-field or a proper long-range method
such as PME instead.

We apply the switch function to the force F'(r) describing either the electrostatic or van der Waals force acting on
particle ¢ by particle j as:
rij
F, =cF(ryj)— (5.136)

’I“,j

For pure Coulomb or Lennard-Jones interactions F(r) = F,(r) = ar~(®+1)_ The switched force F,(r) can
generally be written as:

Fy(r) = Fo(r) r<r
Fo(r) = Fo(r)+S(r) m<r<re (5.137)
Fy(r) = 0 re <7

When r; = 0 this is a traditional shift function, otherwise it acts as a switch function. The corresponding shifted
potential function then reads:

Vi(r) = /OO Fy(z)dx (5.138)

The GROMACS force switch function Sg(r) should be smooth at the boundaries, therefore the following bound-
ary conditions are imposed on the switch function:

SF (7‘1) =0
S/F (7“1) = 0
Sp(re) = —F(re) (5.139)
Sp(re) = —Fi(re)
A 37? degree polynomial of the form
Sp(r)=A(r —ry)* + B(r —r)? (5.140)
fulfills these requirements. The constants A and B are given by the boundary condition at r:
A = —a (a+4r. — (a+ 1)
ret? (re —)2 (5.141)
(a+3)r. — (a+1)m :
B = « 3
Tec ({rc - 7“1)3
Thus the total force function is:
Fy(r) = it Alr—rm)?*+B(r—mr)?3 (5.142)
and the potential function reads:
1 A B
V)= o= Sr=m) = Jr=m)=C (5.143)
710(

5.5. Interaction function and force fields 417

GROMACS Documentation, Release 2026-rc

where

B
(re —r1)® — Z(rc —r)t (5.144)
The GROMACS potential-switch function Sy (1) scales the potential between 71 and ., and has similar boundary
conditions, intended to produce smoothly-varying potential and forces:

SV(T‘l) = 1
Si,(r1) = 0
S”(Tl) = 0
S‘;(r,;) ~ . (5.145)
S (re) = 0
Sy(re) = 0

The fifth-degree polynomial that has these properties is

3 4 5
SV(T§7"177”0):1—10<T_TI> +15(T_T1> —6<r_r1) (5.146)

Te —T1 Te—T1 Te—T1

This implementation is found in several other simulation packages,’3 (page 592)75 (page 592) but differs from
that in CHARMM.76 (page 592) Switching the potential leads to artificially large forces in the switching region,
therefore it is not recommended to switch Coulomb interactions using this function,”2 (page 592) but switching
Lennard-Jones interactions using this function produces acceptable results.

Modified short-range interactions with Ewald summation

When Ewald summation or particle-mesh Ewald is used to calculate the long-range interactions, the short-range
Coulomb potential must also be modified. Here the potential is switched to (nearly) zero at the cut-off, instead of
the force. In this case the short range potential is given by:
erfc(Br;;
Vi(r)= fi(lj)f}i‘]ja (5.147)
Tij

where [is a parameter that determines the relative weight between the direct space sum and the reciprocal space
sum and erfc(x) is the complementary error function. Note that GROMACS by default shifts this potential by
a constant to ensure that the potential is zero at the cut-off. For further details on long-range electrostatics, see
sec. Long Range Electrostatics (page 452).

5.5.2 Bonded interactions
Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interactions, but include 3-
and 4-body interactions as well. There are bond stretching (2-body), bond angle (3-body), and dihedral angle

(4-body) interactions. A special type of dihedral interaction (called improper dihedral) is used to force atoms to
remain in a plane or to prevent transition to a configuration of opposite chirality (a mirror image).

Bond stretching
Harmonic potential

The bond stretching between two covalently bonded atoms ¢ and j is represented by a harmonic potential (see also
Fig. 5.19):

1
Vi (rig) = ki (rig = big)? (5.148)
With the corresponding force given by:
r;;
Fi(rij) = kjj(rij = bij) = (5.149)

ij

5.5. Interaction function and force fields 418

GROMACS Documentation, Release 2026-rc

Fig. 5.19: Principle of bond stretching.

Fourth power potential

In the GROMOS-96 force field 77 (page 592), the covalent bond potential is, for reasons of computational effi-
ciency, written as:

1 2
Vo (rig) = ki (rig” = b3;) (5.150)
The corresponding force is:
Fi(ri;) = k¥ (ri;® — b3;) v (5.151)

The force constants for this form of the potential are related to the usual harmonic force constant k"™ (sec. Bond
stretching (page 418)) as

2k°b7; = k> (5.152)

The force constants are mostly derived from the harmonic ones used in GROMOS-87 78 (page 592). Although
this form is computationally more efficient (because no square root has to be evaluated), it is conceptually more
complex. One particular disadvantage is that since the form is not harmonic, the average energy of a single bond
is not equal to %kT as it is for the normal harmonic potential.

Morse potential bond stretching

For some systems that require an anharmonic bond stretching potential, the Morse potential 79 (page 592) between
two atoms i and j is available in GROMACS. This potential differs from the harmonic potential in that it has an
asymmetric potential well and a zero force at infinite distance. The functional form is:

Vinorse(Tij) = Di;[1 — exp(—Bi;(rij — bi;))]?, (5.153)

See also Fig. 5.20, and the corresponding force is:

Friorse(Tij) = 2D;;Bi; exp(—pij(rij; — bij))*
5.154
[1 — exp(—Pi;(rij — bij))]%v ()

where D;; is the depth of the well in kJ/mol, 3;; defines the steepness of the well (in nm~ 1), and b;; is the
equilibrium distance in nm. The steepness parameter 3;; can be expressed in terms of the reduced mass of the
atoms 7 and j, the fundamental vibration frequency w;; and the well depth D;;:

i
Bij = wij/ 2Djij (5.155)

and because w = +/k/pu, one can rewrite 3;; in terms of the harmonic force constant k;

kij
= 5.156
Bij 2D, (5.156)

For small deviations (r;; — b;;), one can approximate the exp-term to first-order using a Taylor expansion:

exp(—z)~1—=z (5.157)

5.5. Interaction function and force fields 419

GROMACS Documentation, Release 2026-rc

and substituting (5.156) and (5.157) in the functional form:

Vmorse(rij) = D”[]. — exp(—BZ—j (Tij — b”))]z
= Dyll = (1= /55 (riy = b)) (5.158)

= gkij(riy — bij))?

we recover the harmonic bond stretching potential.

400

300

n
o
Is]

v, (kd / mol)

100

0 ‘ ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5 0.6
r, (nm)

Fig. 5.20: The Morse potential well, with bond length 0.15 nm.

Cubic bond stretching potential

Another anharmonic bond stretching potential that is slightly simpler than the Morse potential adds a cubic term
in the distance to the simple harmonic form:

Vi (rig) = kij(rij — big)® + kijk§s® (rij — bi)? (5.159)
A flexible water model (based on the SPC water model 80 (page 592)) including a cubic bond stretching potential
for the O-H bond was developed by Ferguson 8/ (page 592). This model was found to yield a reasonable infrared
spectrum. The Ferguson water model is available in the GROMACS library (f lexwat-ferguson.itp). It
should be noted that the potential is asymmetric: overstretching leads to infinitely low energies. The integration
timestep is therefore limited to 1 fs.

The force corresponding to this potential is:

T cu r;;
Fi(ri;) = 2k, (rij — bij) TJ + kY kS (rij — big)? =L (5.160)
]

LYY rij

FENE bond stretching potential

In coarse-grained polymer simulations the beads are often connected by a FENE (finitely extensible nonlinear
elastic) potential 82 (page 592):

1 T2
VEENE(7i5) = —§k§’jbfj log (1 - b;_ > (5.161)
()

The potential looks complicated, but the expression for the force is simpler:

—1
T‘Z"Q

FRENE (vij) = —k; (1 - b;_) ry (5.162)
¥

At short distances the potential asymptotically goes to a harmonic potential with force constant k°, while it di-
verges at distance b.

5.5. Interaction function and force fields 420

GROMACS Documentation, Release 2026-rc

Harmonic angle potential

The bond-angle vibration between a triplet of atoms i - j - k (Fig. 5.19) is also represented by a harmonic potential
on the angle 0,

oy
Y~ O\

Fig. 5.21: Principle of angle vibration.

1
Va(Oi1) = 5lscfjk(eijk — 01,°)? (5.163)
As the bond-angle vibration is represented by a harmonic potential, the form is the same as the bond stretching.

The force equations are given by the chain rule:

P dValO)
dr; (rij - Thj)
Fo — dVa(0ijr) where 0, = arccos —2—22 (5.164)
k - dl‘k TijTkj
F, = F, - F,

The numbering i, j, k is in sequence of covalently bonded atoms. Atom j is in the middle; atoms 7 and k are at
the ends (see Fig. 5.21). Note that in the input in topology files, angles are given in degrees and force constants in
kJ/mol/rad?.

Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

1
Va(gijk) = ikfjk (COS(Qijk) — COS(@ijkO))Q (5165)
where
r;; Tgi
cos(8;;) = —L—2
(0ijk) riTh (5.166)

The corresponding force can be derived by partial differentiation with respect to the atomic positions. The force
constants in this function are related to the force constants in the harmonic form k% Pa™ (Harmonic angle potential
(page 421)) by:

ke Sin2 (eijko) _ ké,harm (5167)
In the GROMOS-96 manual there is a much more complicated conversion formula which is temperature depen-

dent. The formulas are equivalent at O K and the differences at 300 K are on the order of 0.1 to 0.2%. Note that in
the input in topology files, angles are given in degrees and force constants in kJ/mol.

5.5. Interaction function and force fields 421

GROMACS Documentation, Release 2026-rc

Restricted bending potential

The restricted bending (ReB) potential 83 (page 592) prevents the bending angle 6 from reaching the 180° value.
In this way, the numerical instabilities due to the calculation of the torsion angle and potential are eliminated when
performing coarse-grained molecular dynamics simulations.

To systematically hinder the bending angles from reaching the 180° value, the bending potential (5.165) is divided
by a sin? @ factor:

(cos B; — cos Bp)?

1
Vee(0:) = le (5.168)

sin2 91

Figure 5.22 shows the comparison between the ReB potential, (5.168), and the standard one (5.165).

40 ™ T T T T T T T T
L \ -
35— \\ —— Cosine harmonic 1
= i \ — — Angle harmonic)
S 3 g
L \ —
S L \ —— ReB I'—
;q 25— \\ Cosine harmonic + ReB Il —
» i /7
= 20 /-
=i L / N
2L /
g 15 / -
> o
"E 10— m
|5}
2 L N
s =
0 | | | Lo 1

60 70 80 9 100 110 120> 130 140 150 160 170 180

Bending angle 6 [deg]

Fig. 5.22: Bending angle potentials: cosine harmonic (solid black line), angle harmonic (dashed black line) and
restricted bending (red) with the same bending constant kg = 85 kJ mol~! and equilibrium angle 6y = 130°. The
orange line represents the sum of a cosine harmonic (k = 50 kJ mol~!) with a restricted bending (k = 25 kJ
mol 1) potential, both with 6, = 130°.

The wall of the ReB potential is very repulsive in the region close to 180° and, as a result, the bending angles are
kept within a safe interval, far from instabilities. The power 2 of sin §; in the denominator has been chosen to
guarantee this behavior and allows an elegant differentiation:

ks (cos; — cosbp)(1 — cosb; cos 90)8COS 92»'

Fe 02 - - =
ren (0:) sin® 6; T,

(5.169)

Due to its construction, the restricted bending potential cannot be used for equilibrium 6, values too close to
0° or 180° (from experience, at least 10° difference is recommended). It is very important that, in the starting
configuration, all the bending angles are in the safe interval to avoid initial instabilities. This bending potential can
be used in combination with any form of torsion potential. It will always prevent three consecutive particles from
becoming collinear and, as a result, any torsion potential will remain free of singularities. It can be also added to a
standard bending potential to affect the angle around 180°, but to keep its original form around the minimum (see
the orange curve in Fig. 5.22).

5.5. Interaction function and force fields 422

GROMACS Documentation, Release 2026-rc

Urey-Bradley potential

The Urey-Bradley bond-angle vibration between a triplet of atoms ¢ - j - k is represented by a harmonic potential
on the angle 0,1 and a harmonic correction term on the distance between the atoms ¢ and k. Although this can be
easily written as a simple sum of two terms, it is convenient to have it as a single entry in the topology file and in
the output as a separate energy term. It is used mainly in the CHARMM force field 84 (page 592). The energy is
given by:

Va(Oiji) = %k?jk(eijk —0:°)% + %k%f(rik —r)” (5.170)

The force equations can be deduced from sections Harmonic potential (page 418) and Harmonic angle potential
(page 421).

Linear Angle potential

The linear angle potential was designed especially for linear compounds such as nitriles and for carbon dioxide
190 (page 597). It avoids the calculation of the angle per se, since the angle force is not well-defined if the angle
is 180 degrees. Rather, it computes the deviation of a central atom in a triplet i,j,k from a reference position

xg =ax; + (1 — a)xg

where a is defined by the bond-length i-j and j-k, in a symmetric molecule such as carbon dioxide a = 1/2. If the
compound has different bond lengths b;; and b;;, respectively, we instead have
b
a=—32"
bij + bjk
If the order of atoms is changed to k,j,i, a needs to be replaced by /-a. The energy is now given by

klin
Win =

with kj;,, the force constant. For examples, and a derivation of the forces from the energy function, see ref. /90
(page 597).

Bond-Bond cross term

The bond-bond cross term for three particles 4, j, & forming bonds 7 — j and k — j is given by 85 (page 592):
Virr = kpp (Jr; — 1] — r1e) ([t — 15| — 72¢) (5.171)

where k... is the force constant, and r1. and ry. are the equilibrium bond lengths of the ¢ — j and k — j bonds
respectively. The force associated with this potential on particle ¢ is:

I'Z'—I‘j

r; — 1y

F’L‘ = _k’l"!‘/ (|I'k — I'J| - TQC) | (5.172)
The force on atom k can be obtained by swapping ¢ and k in the above equation. Finally, the force on atom j
follows from the fact that the sum of internal forces should be zero: F; = —F; — Fy.

Bond-Angle cross term

The bond-angle cross term for three particles ¢, j, k forming bonds ¢ — j and k — j is given by 85 (page 592):
Vig = kg (Iri — x| —73¢) (Iri — 5] = 716 + |1 — 15| = 72¢) (5.173)

where k¢ is the force constant, r3, is the 7 — k distance, and the other constants are the same as in (5.171). The
force associated with the potential on atom ¢ is:

r,—r; r, —Ig
Fi = —kjrg (‘I’i — I'k| — 7‘36) |I‘- _ I‘]| —|— (|I‘l — I‘j| — T1e —|— |I‘]€ — I'j‘ — 7“26) m (5174)
7 Fi 7

5.5. Interaction function and force fields 423

GROMACS Documentation, Release 2026-rc

Quartic angle potential

For special purposes there is an angle potential that uses a fourth order polynomial:

4
Va(Oiji) = D Cu(Biji — 0:1°)" (5.175)

n=0

Improper dihedrals

Improper dihedrals are meant to keep planar groups (e.g. aromatic rings) planar, or to prevent molecules from
flipping over to their mirror images, see Fig. 5.23.

i 1

Fig. 5.23: Principle of improper dihedral angles. Out of plane bending for rings. The improper dihedral angle £ is
defined as the angle between planes (i,j,k) and (j,k,]1).

Fig. 5.24: Principle of improper dihedral angles. Out of tetrahedral angle. The improper dihedral angle ¢ is
defined as the angle between planes (i,j,k) and (j,k,I).

Improper dihedrals: harmonic type

The simplest improper dihedral potential is a harmonic potential; it is plotted in Fig. 5.25.

1
Via(&ijrt) = ikﬁ(gijkl —&)? (5.176)

Since the potential is harmonic it is discontinuous, but since the discontinuity is chosen at 180° distance from
&o this will never cause problems. Note that in the input in topology files, angles are given in degrees and force
constants in kJ/mol/rad?.

5.5. Interaction function and force fields 424

GROMACS Documentation, Release 2026-rc

V; (kJ mol™)

Fig. 5.25: Improper dihedral potential.

Improper dihedrals: periodic type

This potential is identical to the periodic proper dihedral (see below). There is a separate dihedral type for this
(type 4) only to be able to distinguish improper from proper dihedrals in the parameter section and the output.

Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic function or a function based
on expansion in powers of cos ¢ (the so-called Ryckaert-Bellemans potential). This choice has consequences
for the inclusion of special interactions between the first and the fourth atom of the dihedral quadruple. With the
periodic GROMOS potential a special 1-4 LJ-interaction must be included; with the Ryckaert-Bellemans potential
for alkanes the 1-4 interactions must be excluded from the non-bonded list. Note: Ryckaert-Bellemans potentials
are also used in e.g. the OPLS force field in combination with 1-4 interactions. You should therefore not modify
topologies generated by pdb2gmx (page 241) in this case.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the [IUPAC/IUB convention, where ¢ is the angle between the ¢5k
and the jkl planes, with zero corresponding to the cis configuration (¢ and [on the same side). There are two
dihedral function types in GROMACS topology files. There is the standard type 1 which behaves like any other
bonded interactions. For certain force fields, type 9 is useful. Type 9 allows multiple potential functions to be
applied automatically to a single dihedral in the [dihedral] section when multiple parameters are defined
for the same atomtypes in the [dihedraltypes] section.

Vi(@ijir) = ko(1 4 cos(ng — ¢s)) (5.177)

5.5. Interaction function and force fields 425

GROMACS Documentation, Release 2026-rc

60.0

0.0 90.0 180.0 2700 360.0
0

Fig. 5.26: Principle of proper dihedral angle (left, in trans form) and the dihedral angle potential (right).

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 5.27):

5

Vo (bijr) = Z Ch(cos(y))™, (5.178)

n=0

where 1) = ¢ — 180°.
Note: A conversion from one convention to another can be achieved by multiplying every coefficient C), by

(=D

Note: In a force field, the C,, coefficients for each Ryckaert-Bellemans dihedral should sum to the same value,
ideally zero, to ensure consistency in the zero point of the potential energy. Failing that, energy values and
free energy determination (through 0 H/9\) might have an undesirable offset, though the dynamics itself will be
unaffected.

An example of constants for C' is given in Table 5.8.

Table 5.8: Constants for Ryckaert-Bellemans potential (kJ mol ™).

Co 928 (Cy -13.12 C; 2624
Cy 1216 Cs -306 Cs -31.5

(Note: The use of this potential implies exclusion of LJ interactions between the first and the last atom of the
dihedral, and v is defined according to the “polymer convention” (¢t,-qns = 0).)

The RB dihedral function can also be used to include Fourier dihedrals (see below):

1

5 [F1(1 + cos(@)) + Fa(1 — cos(2¢)) + F5(1 + cos(3¢)) + Fu(1 — cos(4¢))]

(5.179)

Vi (dijr) =

Because of the equalities cos(2¢) = 2 cos?(¢) — 1, cos(3¢) = 4 cos®(¢) — 3 cos(¢) and
cos(4¢) = 8cos*(¢) — 8 cos?(¢) + 1 one can translate the OPLS parameters to Ryckaert-Bellemans parameters
as follows:

5.5. Interaction function and force fields 426

GROMACS Documentation, Release 2026-rc

)

—~ 300

(kJ mole

200

V.

10.0

Fig. 5.27: Ryckaert-Bellemans dihedral potential.

Co
Cy
Co
C3
Cy
Cs

180.0 270.0 360.0

Fy + 3(Fy + F3)
%(_Fl + 3 F3)
-+ 4F,
—9F

—4 Fy

0

(5.180)

with OPLS parameters in protein convention and RB parameters in polymer convention (this yields a minus sign

for the odd powers of cos(¢)).

Note: Mind the conversion from keal mol~! for literature OPLS and RB parameters to kJ mol~! in GROMACS.

Proper dihedrals: Fourier function

The OPLS potential function is given as the first three 86 (page 592) or four 87 (page 592) cosine terms of a
Fourier series. In GROMACS the four term function is implemented:

Vi (Piji) = % [C1(1 + cos(¢)) + Ca(1 — cos(2¢)) + C3(1 + cos(3¢)) + Ca(1 — cos(4¢))] ,

(5.181)

Internally, GROMACS uses the Ryckaert-Bellemans code to compute Fourier dihedrals (see above), because this

is more efficient.

Note: Mind the conversion from keal mol~! for literature OPLS parameters to kJ mol~! in GROMACS.

5.5. Interaction function and force fields

427

GROMACS Documentation, Release 2026-rc

Proper dihedrals: Restricted torsion potential

In a manner very similar to the restricted bending potential (see Restricted bending potential (page 422)), a re-
stricted torsion/dihedral potential is introduced:

1 s s — cos bg)?
VReT (¢1) = Sk (cos d)sing(j;-b %)

. (5.182)

with the advantages of being a function of cos ¢ (no problems taking the derivative of sin ¢) and of keeping the
torsion angle at only one minimum value. In this case, the factor sin® ¢ does not allow the dihedral angle to move
from the [—180°:0] to [0:180°] interval, i.e. it cannot have maxima both at —¢(and +¢y maxima, but only one of
them. For this reason, all the dihedral angles of the starting configuration should have their values in the desired
angles interval and the equilibrium ¢ value should not be too close to the interval limits (as for the restricted
bending potential, described in Restricted bending potential (page 422), at least 10° difference is recommended).

Proper dihedrals: Combined bending-torsion potential

When the four particles forming the dihedral angle become collinear (this situation will never happen in atomistic
simulations, but it can occur in coarse-grained simulations) the calculation of the torsion angle and potential leads
to numerical instabilities. One way to avoid this is to use the restricted bending potential (see Restricted bending
potential (page 422)) that prevents the dihedral from reaching the 180° value.

Another way is to disregard any effects of the dihedral becoming ill-defined, keeping the dihedral force and
potential calculation continuous in entire angle range by coupling the torsion potential (in a cosine form) with the
bending potentials of the adjacent bending angles in a unique expression:

4
VCBT(GZ-,;L, 61‘, (Z)Z) = k‘¢ sin3 91‘,1 sin3 0, Z QAp, cos” ¢z (5183)

n=0

This combined bending-torsion (CBT) potential has been proposed by 88 (page 592) for polymer melt simulations
and is extensively described in 83 (page 592).

This potential has two main advantages:

¢ it does not only depend on the dihedral angle ¢; (between the ¢+ — 2, ¢ — 1, ¢ and ¢ 4+ 1 beads) but also on
the bending angles #;_; and 6, defined from three adjacent beads (— 2,7 — 1 and ¢, and ¢ — 1,7 and ¢ + 1,
respectively). The two sin® pre-factors, tentatively suggested by 89 (page 592) and theoretically discussed
by 90 (page 593), cancel the torsion potential and force when either of the two bending angles approaches
the value of 180°.

« its dependence on ¢; is expressed through a polynomial in cos ¢; that avoids the singularities in ¢ = 0° or
180° in calculating the torsional force.

These two properties make the CBT potential well-behaved for MD simulations with weak constraints on the
bending angles or even for steered / non-equilibrium MD in which the bending and torsion angles suffer major
modifications. When using the CBT potential, the bending potentials for the adjacent #;_; and ; may have any
form. It is also possible to leave out the two angle bending terms (6;_; and 6;) completely. Fig. 5.28 illustrates
the difference between a torsion potential with and without the sin® 6 factors (blue and gray curves, respectively).

Additionally, the derivative of Vo pr with respect to the Cartesian variables is straightforward:

aVCBT(eiflygia(bi):aVCBT 06,1 OVemr 09; OVempr 09;
o) 00,1 07 00, 0r do; Or)

The CBT is based on a cosine form without multiplicity, so it can only be symmetrical around 0°. To obtain an
asymmetrical dihedral angle distribution (e.g. only one maximum in [—180°:180°] interval), a standard torsion
potential such as harmonic angle or periodic cosine potentials should be used instead of a CBT potential. However,
these two forms have the inconveniences of the force derivation (1/sin ¢) and of the alignment of beads (6; or
6;_1 = 0°,180°). Coupling such non-cos ¢ potentials with sin® # factors does not improve simulation stability
since there are cases in which 6 and ¢ are simultaneously 180°. The integration at this step would be possible (due
to the cancelling of the torsion potential) but the next step would be singular (6 is not 180° and ¢ is very close to
180°).

(5.184)

5.5. Interaction function and force fields 428

GROMACS Documentation, Release 2026-rc

V7 [kJ mol ']

Fig. 5.28: Blue: surface plot of the combined bending-torsion potential ((5.183) with k = 10kJ mol %, ag = 2.41,
a1 = —2.95, a; = 0.36, ag = 1.33) when, for simplicity, the bending angles behave the same (6; = 6 = 6).
Gray: the same torsion potential without the sin® # terms (Ryckaert-Bellemans type). ¢ is the dihedral angle.

Bonded pair and 1-4 interactions

Most force fields do not use normal Lennard-Jones and Coulomb interactions for atoms separated by three bonds,
the so-called 1-4 interactions. These interactions are still affected by the modified electronic distributions due to
the chemical bonds and they are modified in the force field by the dihedral terms. For this reason the Lennard-Jones
and Coulomb 1-4 interactions are often scaled down, by a fixed factor given by the force field. These factors can
be supplied in the topology and the parameters can also be overriden per 1-4 interaction or atom type pair. The pair
interactions can be used for any atom pair in a molecule, not only 1-4 pairs. The non-bonded interactions between
such pairs should be excluded to avoid double interactions. Plain Lennard-Jones and Coulomb interactions are
used which are not affected by the non-bonded interaction treatment and potential modifiers.

Tabulated bonded interaction functions
Tabulated bonded interactions are currently (since version 2020) disabled in GROMACS. The aim is to re-enable
this functionality in the future. The section below is kept for reference.

For full flexibility, any functional shape can be used for bonds, angles and dihedrals through user-supplied tabu-
lated functions. The functional shapes are:

Vi(rij) = Kk fi(rij)
Va(Oije) =k £ (0ijk) (5.185)
Vadiji) =k fH(dijr)

where k is a force constant in units of energy and f is a cubic spline function; for details see Cubic splines for
potentials (page 543). For each interaction, the force constant k and the table number n are specified in the
topology. There are two different types of bonds, one that generates exclusions (type 8) and one that does not
(type 9). For details see Table 5.14. The table files are supplied to the mdrun (page 221) program. After the table
file name an underscore, the letter “b” for bonds, “a” for angles or “d” for dihedrals and the table number must be
appended. For example, a tabulated bond with n = 0 can be read from the file table_b0.xvg. Multiple tables can
be supplied simply by adding files with different values of n, and are applied to the appropriate bonds, as
specified in the topology (Table 5.14). The format for the table files is three fixed-format columns of any suitable
width. These columns must contain , f(z), —f’(x), and the values of = should be uniformly spaced.
Requirements for entries in the topology are given in Table 5.14. The setup of the tables is as follows:

5.5. Interaction function and force fields 429

GROMACS Documentation, Release 2026-rc

bonds: z is the distance in nm. For distances beyond the table length, mdrun (page 221) will quit with an error
message.

angles: z is the angle in degrees. The table should go from O up to and including 180 degrees; the derivative is
taken in degrees.

dihedrals: z is the dihedral angle in degrees. The table should go from -180 up to and including 180 degrees; the
IUPAC/IUB convention is used, i.e. zero is cis, the derivative is taken in degrees.

5.5.3 Restraints

Special potentials are used for imposing restraints on the motion of the system, either to avoid disastrous de-
viations, or to include knowledge from experimental data. In either case they are not really part of the force
field and the reliability of the parameters is not important. The potential forms, as implemented in GROMACS,
are mentioned just for the sake of completeness. Restraints and constraints refer to quite different algorithms in
GROMACS.

Position restraints

These are used to restrain particles to fixed reference positions R,;. They can be used during equilibration in order
to avoid drastic rearrangements of critical parts (e.g. to restrain motion in a protein that is subjected to large solvent
forces when the solvent is not yet equilibrated). Another application is the restraining of particles in a shell around
a region that is simulated in detail, while the shell is only approximated because it lacks proper interaction from
missing particles outside the shell. Restraining will then maintain the integrity of the inner part. For spherical
shells, it is a wise procedure to make the force constant depend on the radius, increasing from zero at the inner
boundary to a large value at the outer boundary. This feature has not, however, been implemented in GROMACS.

The following form is used:
1 2
Vir (r3) = ik:pr\ri - Ry (5.186)

The potential is plotted in Fig. 5.29.

8.0

6.0

. (kJ mole™)

ervs«
s
s

20

Fig. 5.29: Position restraint potential.

The potential form can be rewritten without loss of generality as:

1 x S ~ z ~
Vir (1) = 5 [k (s — Xi)? X+ k(i — Y2)? 9 + k(2 — Z4)* 2] (5.187)
Now the forces are:
Fro= <k (zi — X5)
FY = =k (yi = Yi) (5.188)
Fro= —ky (20— Zi)

5.5. Interaction function and force fields 430

GROMACS Documentation, Release 2026-rc

Using three different force constants the position restraints can be turned on or off in each spatial dimension; this
means that atoms can be harmonically restrained to a plane or a line. Position restraints are applied to a special
fixed list of atoms. Such a list is usually generated by the pdb2gmx (page 241) program.

Note that position restraints make the potential dependent on absolute coordinates in space. Therefore, in general
the pressure (and virial) is not well defined, as the pressure is the derivative of the free-energy of the system with
respect to the volume. When the reference coordinates are scaled along with the system, which can be selected
with the mdp option refcoord-scaling=all (page 57), the pressure and virial are well defined.

Flat-bottomed position restraints

Flat-bottomed position restraints can be used to restrain particles to part of the simulation volume. No force
acts on the restrained particle within the flat-bottomed region of the potential, however a harmonic force acts to
move the particle to the flat-bottomed region if it is outside it. It is possible to apply normal and flat-bottomed
position restraints on the same particle (however, only with the same reference position R;). The following general
potential is used (Figure 5.30 A):

Vfb(ri) = %k’fb[dg@'i; Rl) — be}Z H[dg(ri; Rl) — ’I"fb], (5189)

where R;; is the reference position, rg, is the distance from the center with a flat potential, k¢, the force constant,
and H is the Heaviside step function. The distance d,(r;; R;) from the reference position depends on the geometry
g of the flat-bottomed potential.

50

50 T T T T T

40 40

w
o

S
T T T T

30

20

V() [kd/mol]

o

LI I N L B L B B
PR I IR R

o

o
o
o
o
(&
o
o
o
o
o

r [nm] r[nm]

Fig. 5.30: Flat-bottomed position restraint potential. (A) Not inverted, (B) inverted.

The following geometries for the flat-bottomed potential are supported:

Sphere (g = 1): The particle is kept in a sphere of given radius. The force acts towards the center of the sphere.
The following distance calculation is used:

Cylinder (g = 6,7, 8): The particle is kept in a cylinder of given radius parallel to the x (¢ = 6), y (g = 7), or
z-axis (¢ = 8). For backwards compatibility, setting g = 2 is mapped to g = 8 in the code so that old 7pr

(page 503) files and topologies work. The force from the flat-bottomed potential acts towards the axis of the
cylinder. The component of the force parallel to the cylinder axis is zero. For a cylinder aligned along the z-axis:

dy(ri;Ri) = /(zi — Xi)2 + (i — Y3)? (5.191)

5.5. Interaction function and force fields 431

GROMACS Documentation, Release 2026-rc

Layer (g = 3,4, 5): The particle is kept in a layer defined by the thickness and the normal of the layer. The layer
normal can be parallel to the z, y, or z-axis. The force acts parallel to the layer normal.

dg(rl,Rl) = |£L’1 — Xz|; or dg(I'“RZ) = |y1 — sz'» or dg(I‘l,Rl) = |Zz — Z1| (5192)

It is possible to apply multiple independent flat-bottomed position restraints of different geometry on one particle.
For example, applying a cylinder and a layer in z keeps a particle within a disk. Applying three layers in z, y, and
z keeps the particle within a cuboid.

In addition, it is possible to invert the restrained region with the unrestrained region, leading to a potential that
acts to keep the particle outside of the volume defined by R;, g, and rg,. That feature is switched on by defining a
negative rg, in the topology. The following potential is used (Figure 5.30 B):

: 1
Vi (i) = Sheldy (ri; Ri) — [reo]]” H[—(dy (ri; Rs) = |res])]. (5.193)

Angle restraints

These are used to restrain the angle between two pairs of particles or between one pair of particles and the z-axis.
The functional form is similar to that of a proper dihedral. For two pairs of atoms:

Var(ri,rj,r5,17) = kor(1 — cos(n(f — 6p))), where 6 = arccos (LT T Tk > (5.194)

[rj —rill vy — x|

For one pair of atoms and the z-axis:

Var(ri,rj) = kor (1 — cos(n(0 — 6y))), where 6 = arccos LTt
[ej —will | 4

(5.195)

A multiplicity (n) of 2 is useful when you do not want to distinguish between parallel and anti-parallel vectors.
The equilibrium angle € should be between 0 and 180 degrees for multiplicity 1 and between 0 and 90 degrees for
multiplicity 2.

Dihedral restraints

These are used to restrain the dihedral angle ¢ defined by four particles as in an improper dihedral (sec. Improper
dihedrals (page 424)) but with a slightly modified potential. Using:

¢ = (¢ — o) MOD 27 (5.196)

where ¢y is the reference angle, the potential is defined as:

skaine (¢ — Ag)? for [l¢'| > Ag

Vainr(¢') = 0 for o] < Ad (5.197)

where A¢ is a user defined angle and kg, is the force constant. Note that in the input in topology files, angles
are given in degrees and force constants in kJ/mol/rad?.

5.5. Interaction function and force fields 432

GROMACS Documentation, Release 2026-rc

Distance restraints

Distance restraints add a penalty to the potential when the distance between specified pairs of atoms exceeds a
threshold value. They are normally used to impose experimental restraints from, for instance, experiments in
nuclear magnetic resonance (NMR), on the motion of the system. Thus, MD can be used for structure refinement
using NMR data. In GROMACS there are three ways to impose restraints on pairs of atoms:

» Simple harmonic restraints: use [bonds] type 6 (see sec. Exclusions (page 469)).

* Piecewise linear/harmonic restraints: [bonds] type 10.

* Complex NMR distance restraints, optionally with pair, time and/or ensemble averaging.
The last two options will be detailed now.

The potential form for distance restraints is quadratic below a specified lower bound and between two specified
upper bounds, and linear beyond the largest bound (see Fig. 5.31).

1
§kdr(rij — 7”0)2 for Tij < 79
0 for ro < 1y < M
Var(rij) = (5.198)
1
§kdr(rij — T1)2 for r < Tij < 7o
1
§kdr(r2 — 7‘1)(27‘@' — T — 7‘1) for T2 S Tij
15 ; ‘ ‘
_ 10 i fo i r i r, 1
s | | |
1S I | |
2 | | |
> 51 : : /]
0 ‘ l ‘ l l
0 0.1 0.2 0.3 0.4 0.5
r (nm)
Fig. 5.31: Distance Restraint potential.
The forces are
—k:dr(rij — To)% for ri; < To
0 for rg < ri;g < T
F, = . (5.199)
716(17)(7’“‘ — 7’1) 7;; for r < Tij < T9
—kar(rg — 7’1):—: for o < 1y

For restraints not derived from NMR data, this functionality will usually suffice and a section of [bonds] type
10 can be used to apply individual restraints between pairs of atoms, see Topology file (page 477). For applying
restraints derived from NMR measurements, more complex functionality might be required, which is provided
through the [distance_restraints] section and is described below.

5.5. Interaction function and force fields 433

GROMACS Documentation, Release 2026-rc

Time averaging

Distance restraints based on instantaneous distances can potentially reduce the fluctuations in a molecule signifi-
cantly. This problem can be overcome by restraining to a time averaged distance 9/ (page 593). The forces with
time averaging are:

—ksr(ﬁj — To)% for ri; < To
0 for rg < Ty < T
F, = ~ . ~ (5.200)
7kgr(rij - Tl)ﬁ; for 1 S Tij < T9
—kg,.(r2 — Tl)% for oy < Ty
where 7;; is given by an exponential running average with decay time 7:
ry =<y >3 (5.201)

The force constant k3, is switched on slowly to compensate for the lack of history at the beginning of the simula-

tion:
t
kg, = kar (1 — exp (—)) (5.202)
T

Because of the time averaging, we can no longer speak of a distance restraint potential.

This way an atom can satisfy two incompatible distance restraints on average by moving between two positions.
An example would be an amino acid side-chain that is rotating around its x dihedral angle, thereby coming close
to various other groups. Such a mobile side chain can give rise to multiple NOEs that can not be fulfilled by a
single structure.

The computation of the time averaged distance in the mdrun (page 221) program is done in the following fashion:

r=3;(0) = 7r;(0)73

r=3;(t) = r73;;(t — At) exp (7%) + (1) [1 — exp (7%)} (5.203)

When a pair is within the bounds, it can still feel a force because the time averaged distance can still be beyond
a bound. To prevent the protons from being pulled too close together, a mixed approach can be used. In this
approach, the penalty is zero when the instantaneous distance is within the bounds, otherwise the violation is the
square root of the product of the instantaneous violation and the time averaged violation:

kgr\/(n—j - T’o)(’ﬂ'j — 7"0) :Z for Tij <70 and fij <7
F; = ¢ —k¢ min (\/(rij —r1)(Fij —r1),m2 — rl) e for rij >r1 and 7 >rp (5.204)
i
0 otherwise

Averaging over multiple pairs

Sometimes it is unclear from experimental data which atom pair gives rise to a single NOE, in other occasions
it can be obvious that more than one pair contributes due to the symmetry of the system, e.g. a methyl group
with three protons. For such a group, it is not possible to distinguish between the protons, therefore they should
all be taken into account when calculating the distance between this methyl group and another proton (or group
of protons). Due to the physical nature of magnetic resonance, the intensity of the NOE signal is inversely
proportional to the sixth power of the inter-atomic distance. Thus, when combining atom pairs, a fixed list of NV
restraints may be taken together, where the apparent “distance” is given by:

N ~1/6
ra(t) = lz rn(t)‘ﬁl (5.205)

where we use r;; or (5.201) for the 7,,. The r of the instantaneous and time-averaged distances can be combined
to do a mixed restraining, as indicated above. As more pairs of protons contribute to the same NOE signal, the

5.5. Interaction function and force fields 434

GROMACS Documentation, Release 2026-rc

intensity will increase, and the summed “distance” will be shorter than any of its components due to the reciprocal
summation.

There are two options for distributing the forces over the atom pairs. In the conservative option, the force is
defined as the derivative of the restraint potential with respect to the coordinates. This results in a conservative
potential when time averaging is not used. The force distribution over the pairs is proportional to »~%. This means
that a close pair feels a much larger force than a distant pair, which might lead to a molecule that is “too rigid.”
The other option is an equal force distribution. In this case each pair feels 1/N of the derivative of the restraint
potential with respect to . The advantage of this method is that more conformations might be sampled, but the
non-conservative nature of the forces can lead to local heating of the protons.

It is also possible to use ensemble averaging using multiple (protein) molecules. In this case the bounds should be
lowered as in:

1 ryx M—L/6
ro = rox M1/

(5.206)

where M is the number of molecules. The GROMACS preprocessor grompp (page 196) can do this automatically
when the appropriate option is given. The resulting “distance” is then used to calculate the scalar force according
to:

0 ry <r
F, = kar(rn — 7‘1):; rp <ry <7To (5.207)
kar(ra —m1)72 N 271

where ¢ and j denote the atoms of all the pairs that contribute to the NOE signal.

Using distance restraints

A list of distance restrains based on NOE data can be added to a molecule definition in your topology file, like in
the following example:

[distance_restraints]

; ai aj type index type' low upl up?2 fac
10 16 1 0 1 0.0 0.3 0.4 1.0
10 28 1 1 1 0.0 0.3 0.4 1.0
10 46 1 1 1 0.0 0.3 0.4 1.0
16 22 1 2 1 0.0 0.3 0.4 2.5
16 34 1 3 1 0.0 0.5 0.6 1.0

In this example a number of features can be found. In columns ai and aj you find the atom numbers of the particles
to be restrained. The type column should always be 1. As explained in Distance restraints (page 433), multiple
distances can contribute to a single NOE signal. In the topology this can be set using the index column. In our
example, the restraints 10-28 and 10-46 both have index 1, therefore they are treated simultaneously. An extra
requirement for treating restraints together is that the restraints must be on successive lines, without any other
intervening restraint. The type’ column will usually be 1, but can be set to 2 to obtain a distance restraint that
will never be time- and ensemble-averaged; this can be useful for restraining hydrogen bonds. The columns 1ow,
up1l, and up2 hold the values of g, 1, and ro from (5.198). In some cases it can be useful to have different force
constants for some restraints; this is controlled by the column fac. The force constant in the parameter file is
multiplied by the value in the column fac for each restraint. Information for each restraint is stored in the energy
file and can be processed and plotted with gmx nmr (page 233).

5.5. Interaction function and force fields 435

GROMACS Documentation, Release 2026-rc

Orientation restraints

This section describes how orientations between vectors, as measured in certain NMR experiments, can be calcu-
lated and restrained in MD simulations. The presented refinement methodology and a comparison of results with
and without time and ensemble averaging have been published 92 (page 593).

Theory

In an NMR experiment, orientations of vectors can be measured when a molecule does not tumble completely
isotropically in the solvent. Two examples of such orientation measurements are residual dipolar couplings (be-
tween two nuclei) or chemical shift anisotropies. An observable for a vector r; can be written as follows:

2
0; = gtr(SDi) (5.208)
where S is the dimensionless order tensor of the molecule. The tensor D; is given by:
o 3zx —1 3y 3xz
D, = 71(1 3xy 3yy —1 3yz (5.209)
(el 3xz 3yz 3zz —1
T T 74
with: o= =%, y=20 2= s 5210
il il Il 6210
For a dipolar coupling r; is the vector connecting the two nuclei, & = 3 and the constant c¢; is given by:
= 0 D (5.211)

= gy W2
where ¢ and ~4 are the gyromagnetic ratios of the two nuclei.

The order tensor is symmetric and has trace zero. Using a rotation matrix T it can be transformed into the
following form:

,%(1 -n) 0 0
TTST = s 0 —2(1+mn) 0 (5.212)
0 0 1

where —1 < s < land 0 < n < 1. sis called the order parameter and 7 the asymmetry of the order tensor S.
When the molecule tumbles isotropically in the solvent, s is zero, and no orientational effects can be observed
because all §; are zero.

Calculating orientations in a simulation

For reasons which are explained below, the D matrices are calculated which respect to a reference orientation of
the molecule. The orientation is defined by a rotation matrix R, which is needed to least-squares fit the current
coordinates of a selected set of atoms onto a reference conformation. The reference conformation is the starting
conformation of the simulation. In case of ensemble averaging, which will be treated later, the structure is taken
from the first subsystem. The calculated D matrix is given by:

DS(t) = R(t)D; (1) R (2) (5.213)
The calculated orientation for vector ¢ is given by:
2
5(t) = gtr(S(t)Df(t)) (5.214)

The order tensor S(t) is usually unknown. A reasonable choice for the order tensor is the tensor which minimizes
the (weighted) mean square difference between the calculated and the observed orientations:
-1
N

N
MSD(t) = (Z wi> Zwi(éf(t) — 552 (5.215)

To properly combine different types of measurements, the unit of w; should be such that all terms are dimension-
less. This means the unit of w; is the unit of J; to the power —2. Note that scaling all w; with a constant factor
does not influence the order tensor.

5.5. Interaction function and force fields 436

GROMACS Documentation, Release 2026-rc

Time averaging

Since the tensors D, fluctuate rapidly in time, much faster than can be observed in an experiment, they should be
averaged over time in the simulation. However, in a simulation the time and the number of copies of a molecule are
limited. Usually one can not obtain a converged average of the D; tensors over all orientations of the molecule.
If one assumes that the average orientations of the r; vectors within the molecule converge much faster than
the tumbling time of the molecule, the tensor can be averaged in an axis system that rotates with the molecule,
as expressed by (5.213)). The time-averaged tensors are calculated using an exponentially decaying memory

function:
t
t _
/ D¢ (u) exp (u> du
_ T
Dy (1) = =,

t —
/ exp (— u) du
u=t0 T

Assuming that the order tensor S fluctuates slower than the D,, the time-averaged orientation can be calculated
as:

(5.216)

2
0 (t) = gtr(S(t)D?(t)) (5.217)
where the order tensor S(t) is calculated using expression (5.215) with ¢ (¢) replaced by 6% (¢).
Restraining

The simulated structure can be restrained by applying a force proportional to the difference between the calculated
and the experimental orientations. When no time averaging is applied, a proper potential can be defined as:

N
1) erp\2
i (5S(t) — & 5.218
V 2/{}_1 w; (05 (t) — 0;™F) ()

where the unit of £ is the unit of energy. Thus the effective force constant for restraint ¢ is kw;. The forces are
given by minus the gradient of V. The force F; working on vector r; is:

av
Fi(t) = T
do; (t
- —kw; (85(t) — (Sfi”p)ﬁ (5.219)
dI‘i
= —kw;(55(t) — 55°P) ” i; <2RTSRr,- - wtr(RTSRrirf)ri)
r o r ’

Ensemble averaging

Ensemble averaging can be applied by simulating a system of M subsystems that each contain an identical set of
orientation restraints. The systems only interact via the orientation restraint potential which is defined as:

N
1 c exrp\ 2
V= Mk > " wi(dg(t) — 65°7) (5.220)

i=1
The force on vector r; ,, in subsystem m is given by:

dse (¢
WV s(oe(t) — geony i@ (5.221)

Fn(t) =
m () drim

dI‘iym

5.5. Interaction function and force fields 437

GROMACS Documentation, Release 2026-rc

Time averaging

When using time averaging it is not possible to define a potential. We can still define a quantity that gives a rough
idea of the energy stored in the restraints:

K2

N
1
— M=k i (0% () — erpy2 5.222
V= M3k ;lew@(t) 557 (5.222)

The force constant k, is switched on slowly to compensate for the lack of history at times close to . It is exactly
proportional to the amount of average that has been accumulated:

I -
kK =k 7/ exp (—t u) du (5.223)
T Ju=t, T

What really matters is the definition of the force. It is chosen to be proportional to the square root of the prod-
uct of the time-averaged and the instantaneous deviation. Using only the time-averaged deviation induces large
oscillations. The force is given by:

0 for ab<0
. — dse, (t
F, (1) k“wiﬁ Jab dm() for ab>0 (5.224)
a r'im

(5.225)

Using orientation restraints

Orientation restraints can be added to a molecule definition in the topology file in the section [
orientation_restraints]. Here we give an example section containing five N-H residual dipolar cou-
pling restraints:

[orientation_restraints |

; ail aj type exp. label alpha const. obs. weight
A Hz nm” 3 Hz Hz"-2
31 32 1 1 3 3 6.083 -6.73 1.0
43 44 1 1 4 3 6.083 -7.87 1.0
55 56 1 1 5 3 6.083 -7.13 1.0
65 66 1 1 6 3 6.083 -2.57 1.0
73 74 1 1 7 3 6.083 -2.10 1.0

The unit of the observable is Hz, but one can choose any other unit. In columns ai and aj you find the atom
numbers of the particles to be restrained. The t ype column should always be 1. The exp. column denotes the
experiment number, starting at 1. For each experiment a separate order tensor S is optimized. The label should
be a unique number larger than zero for each restraint. The alpha column contains the power « that is used in
(5.209)) to calculate the orientation. The const . column contains the constant c¢; used in the same equation. The
constant should have the unit of the observable times nm®. The column obs . contains the observable, in any unit
you like. The last column contains the weights w;; the unit should be the inverse of the square of the unit of the
observable.

Some parameters for orientation restraints can be specified in the grompp (page 196) mdp (page 497) file, for
a study of the effect of different force constants and averaging times and ensemble averaging see 92 (page 593).
Information for each restraint is stored in the energy file and can be processed and plotted with gmx nmr (page 233).

5.5. Interaction function and force fields 438

GROMACS Documentation, Release 2026-rc

5.5.4 Polarization
Polarization can be treated by GROMACS by attaching shell (Drude) particles to atoms and/or virtual sites. The

energy of the shell particle is then minimized at each time step in order to remain on the Born-Oppenheimer
surface.

Simple polarization

This is implemented as a harmonic potential with equilibrium distance 0. The input given in the topology file is
the polarizability o (in GROMACS units) as follows:

[polarization]
; Atom i Jj type alpha
1 2 1 0.001

in this case the polarizability volume is 0.001 nm? (or 1 A3). In order to compute the harmonic force constant k.,
(where cs stands for core-shell), the following is used 45 (page 591):
2
koo = L5 (5.226)
o

where ¢, is the charge on the shell particle.

Anharmonic polarization

For the development of the Drude force field by Roux and McKerell 93 (page 593) it was found that some particles
can overpolarize and this was fixed by introducing a higher order term in the polarization energy:

kcs 2

VPOl :7Tcs Tes < 1)
. (5.227)
:§r33 + knyp(Tes — O Tes > 6

where ¢ is a user-defined constant that is set to 0.02 nm for anions in the Drude force field 94 (page 593). Since
this original introduction it has also been used in other atom types 93 (page 593).

[polarization]
;Atom 1 type alpha (nm”3) delta khyp
1 2 2 0.001786 0.02 16.736e8

The above force constant kp,,;, corresponds to 4-10% kcal/mol/nm*, hence the strange number.

Water polarization

A special potential for water that allows anisotropic polarization of a single shell particle 45 (page 591).

Thole polarization

Based on early work by Thole 95 (page 593), Roux and coworkers have implemented potentials for molecules like
ethanol 96 (page 593), 98 (page 593). Within such molecules, there are intra-molecular interactions between shell
particles, however these must be screened because full Coulomb would be too strong. The potential between two
shell particles ¢ and j is:

144 777,] s
Vihote = 243 {1 - (1 + 73) exp } (5.228)
ij
Note that there is a sign error in Equation 1 of Noskov ez al. 98 (page 593):

Tij

Tij = 0——77=
Y (o)t

(5.229)

5.5. Interaction function and force fields 439

GROMACS Documentation, Release 2026-rc

where a is a magic (dimensionless) constant, usually chosen to be 2.6 98 (page 593); «; and «; are the polariz-
abilities of the respective shell particles.

5.5.5 Free energy interactions

This section describes the A\-dependence of the potentials used for free energy calculations (see sec. Free energy
calculations (page 403)). All common types of potentials and constraints can be interpolated smoothly from state
A (A = 0) to state B (A = 1) and vice versa. All bonded interactions are interpolated by linear interpolation of the
interaction parameters. Non-bonded interactions can be interpolated linearly or via soft-core interactions.

Starting in GROMACS 4.6, A is a vector, allowing different components of the free energy transformation to
be carried out at different rates. Coulomb, Lennard-Jones, bonded, and restraint terms can all be controlled
independently, as described in the mdp (page 497) options.

Harmonic potentials

The example given here is for the bond potential, which is harmonic in GROMACS. However, these equations
apply to the angle potential and the improper dihedral potential as well.

1
V= 5 [=N+ Mk [— (1= Wbt = M)
Vi 1 2
= 5 (B = k') [b— (1= b + 20§ +

(bg' = bg') [b— (1= 2)bg = A5] [(1 = N)ki' + Aky’]

GROMOS-96 bonds and angles

Fourth-power bond stretching and cosine-based angle potentials are interpolated by linear interpolation of the
force constant and the equilibrium position. Formulas are not given here.

Proper dihedrals

For the proper dihedrals, the equations are somewhat more complicated:
Vy= (1= NEG + MeZ] (1 + cos [ngd — (1 — Aot — ApF])
% = (k2 —k3) (14 cos [npd — (1 — N)o2 — AoP]) +
(657 = 6) [(1 = kg = M sin [ng6 — (1= g = A]]
Note: that the multiplicity n4 can not be parameterized because the function should remain periodic on the interval

[0, 27].

Tabulated bonded interactions

For tabulated bonded interactions only the force constant can interpolated:

V= ((1=NE*+ B f
ov 54 (5.230)
D (k7 — k%) f

5.5. Interaction function and force fields 440

GROMACS Documentation, Release 2026-rc

Coulomb interaction

The Coulomb interaction between two particles of which the charge varies with A is:

!
Ve = (1= Mg + N gPq?]
“rilis (5.231)
Ve _ gt 4 qPeP]
3)\ 5rfrij vt v

where f = — = . see chapter Definitions and Units (page .
here f 1 138.935 458 (see chap ofi 1 (page 366))

4meg

Coulomb interaction with reaction field

The Coulomb interaction including a reaction field, between two particles of which the charge varies with A is:

1
Vo= f [7,,_ + ey rig? — Crf} (1= Mg + XaPq?]
)

(5.232)

v, 1
o = f Lij + kg rig? = Crf} [—%Aqf‘ + quqf]

Note that the constants %, and ¢,y are defined using the dielectric constant €,y of the medium (see sec. Coulomb
interaction with reaction field (page 416)).

Lennard-Jones interaction

For the Lennard-Jones interaction between two particles of which the atom type varies with A we can write:

(1-=NCh+ACE (1= NC¢+ACP

VLJ = Tile Tij6
(5.233)
Wiy _ ch-cfh cf-cg
(9)\ Tij12 T’ijG

It should be noted that it is also possible to express a pathway from state A to state B using o and e (see (5.123)).
It may seem to make sense physically to vary the force field parameters ¢ and e rather than the derived parameters
C12 and Cg. However, the difference between the pathways in parameter space is not large, and the free energy
itself does not depend on the pathway, so we use the simple formulation presented above.

Kinetic Energy

When the mass of a particle changes, there is also a contribution of the kinetic energy to the free energy (note

that we can not write the momentum p as mv, since that would result in the sign of agi’“ being incorrect 99

(page 593)):

1 p>
E,. = —
2(1—X)mA + dmbB
4 (5.234)
0B, _ 1 p2(mP —m*)
X 2((1 = XN)mA + AmB)2
after taking the derivative, we can insert p = mv, such that:
OB _ L2 _ A (5.235)

oA 2

5.5. Interaction function and force fields 4141

GROMACS Documentation, Release 2026-rc

Constraints

The constraints are formally part of the Hamiltonian, and therefore they give a contribution to the free energy. In
GROMACS this can be calculated using the LINCS or the SHAKE algorithm. If we have £ = 1... K constraint
equations gy, for LINCS, then

gk = || — di (5.236)

where rj, is the displacement vector between two particles and dj, is the constraint distance between the two
particles. We can express the fact that the constraint distance has a A dependency by

dr, = (1 =N + \dP (5.237)
Thus the A-dependent constraint equation is
gk = [rx| = (1= Ndi +2dif) - (5.238)

The (zero) contribution G to the Hamiltonian from the constraints (using Lagrange multipliers Az, which are
logically distinct from the free-energy) is

K
G = Z Akgk
k
oG 0G Ody,
o _ g7 TPk 5.239
oA ody, OA ()
K
= —ZM (dF —dit)
k
For SHAKE, the constraint equations are
gr =i, —di (5.240)
with dj, as before, so
oG X N
o = 2 ;Ak (df —) (5.241)

Soft-core interactions: Beutler et al.

5 T T T T T
= — LJ, a=0
4t \ —— W, a=15
L\ - L, o=2
’’’’ T —— 8/r, 0=0
31 | —— 3na=15 |
\ - 8/, 0=2
O
N
1k WA
W
A
0 [

Fig. 5.32: Soft-core interactions at A = 0.5, with p = 2 and C§' = C{5, = CB = CE = 1.

In a free-energy calculation where particles grow out of nothing, or particles disappear, using the simple linear
interpolation of the Lennard-Jones and Coulomb potentials as described in (5.233) and (5.232) may lead to poor

5.5. Interaction function and force fields 442

GROMACS Documentation, Release 2026-rc

convergence. When the particles have nearly disappeared, or are close to appearing (at A close to 0 or 1), the
interaction energy will be weak enough for particles to get very close to each other, leading to large fluctuations
in the measured values of 9V /O (which, because of the simple linear interpolation, depends on the potentials at
both the endpoints of \).

To circumvent these problems, the singularities in the potentials need to be removed. This can be done by mod-
ifying the regular Lennard-Jones and Coulomb potentials with “soft-core” potentials that limit the energies and
forces involved at A values between 0 and 1, but notat A = 0 or 1.

In GROMACS the soft-core potentials V.. are shifted versions of the regular potentials, so that the singularity in
the potential and its derivatives at » = 0 is never reached. This formulation was introduced by Beutler et al. 100
(page 593):

Vie(r) = (1 =NVA(ra) + AVE(rp)

o=

T4 = (ao NP+ (5.242)

°)°
rp = (ac% (1 — AP +19)8
where V4 and VE are the normal “hard core” Van der Waals or electrostatic potentials in state A (A = 0) and
state B (A = 1) respectively, « is the soft-core parameter (set with sc_alpha in the mdp (page 497) file), p is
the soft-core A power (set with sc_power), o is the radius of the interaction, which is (C12/ 06)1/ 6 or an input
parameter (sc_sigma) when Cg or C5 is zero. Beutler er al. 100 (page 593) probed various combinations of the
r power values for the Lennard-Jones and Coulombic interactions. GROMACS uses % for both, van der Waals

and electrostatic interactions.

For intermediate \, 4 and rp alter the interactions very little for » > o'/65 and quickly switch the soft-core
interaction to an almost constant value for smaller r (Fig. 5.32). The force is:

Fye(r) = —6‘/;7?(7") = (1= NF4(ra) (;)5 + A\FB(rp) (;)5 (5.243)

where F'4 and F'Z are the “hard core” forces. The contribution to the derivative of the free energy is:

OVise(r)

8VA(7~A) 87’,4 8VB(T‘B) 8rB
E)) “ora o) ey

ora OM org O\
= VB(TB) — VA(TA)+

a 75 p— . _
B P aayrptol (1= NP = (1= NFA () Podar

= VBrg) = VA +(1-N)

The original GROMOS Lennard-Jones soft-core function /00 (page 593) uses p = 2, but p = 1 gives a smoother
OH /O curve. Another issue that should be considered is the soft-core effect of hydrogens without Lennard-Jones
interaction. Their soft-core o is set with sc_sigma. These hydrogens produce peaks in 9H /I at A is 0 and/or
1 for p = 1 and close to 0 and/or 1 with p = 2. Lowering sc_sigma will decrease this effect, but it will also
increase the interactions with hydrogens relative to the other interactions in the soft-core state.

When soft-core potentials are selected (by setting sc_alpha >0), and the Coulomb and Lennard-Jones po-
tentials are turned on or off sequentially, then the Coulombic interaction is turned off linearly, rather than using
soft-core interactions, which should be less statistically noisy in most cases. This behavior can be overwritten by
setting sc—coul=yes. Note that sc-coul (page 74) is only taken into account when lambda states are used,
and you can still turn off soft-core interactions by setting sc—alpha=0. Additionally, the soft-core interaction
potential is only applied when either the A or B state has zero interaction potential. If both A and B states have
nonzero interaction potential, default linear scaling described above is used. When both Coulombic and Lennard-
Jones interactions are turned off simultaneously, a soft-core potential is used, and a hydrogen is being introduced
or deleted, the sigma is set to sc—sigma-min, which itself defaults to sc-sigma-default.

5.5. Interaction function and force fields 443

GROMACS Documentation, Release 2026-rc

Soft-core interactions: Gapsys et al.

In this section we describe the functional form and parameters for the soft-cored non-bonded interactions using
the formalism by Gapsys et al. 183 (page 597).

The Gapsys et al. soft-core is formulated to act on the level of van der Waals and electrostatic forces: the
non-bonded interactions are linearized at a point defined as, rs.rj or rs.qg, respectively. The linearization
point depends on the state of the system as controlled by the A parameter and two parameters cg (set with
sc—gapsys—-scale-linpoint—q (page 74)) and oy ; (set with sc—gapsys-scale-linpoint—17j
(page 74)). The dependence on A guarantees that the end-states are properly represented by their hard-core po-
tentials. Fig. 5.33 illustrates the behaviour of the linearization point, forces and integrated potential energies with
respect to the parameters g and «z, ;. The optimal choices of the parameter values have been systematically
explored in /83 (page 597). These recommended values are set by default when sc—function=gapsys is
selected: sc—gapsys—scale-linpoint—-g=0.3 and sc-gapsys—-scale-linpoint-13j=0.85.

0.4 1.2
. 1.0 B
03 -t y
_ o« —~ 0.8 -
£ - E 1
£ 02 e £06 -
< o)
S = S04 A
0‘1 . -) L]
- 0.2 .
Ll .) ']
0.0 . 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 06 08 10 1.2 1.4
ay ao (nm/e?)
1000 1000
—_— a;=0.0 -_— =0.
= 800 y = 800 ao=0.0
£ 600 ay= 1.0 £ ap=1.5
5 o 600
£ 400 £
™ X 400
= 200 <
< < 200
—-200 0
0.0 0.2 0.4 06 0.8 1.0 1.2 1.4 1.0 1.2 1.4
r(nm)
1000 1000
800 ‘ — ay=00 800 — %=00
3 ay=1.0 5 ap=15
£ 600 g 600 ¢
=)
=< 400 5 400
s N
200 200
0 0 -
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r(nm) r(nm)

Fig. 5.33: Illustration of the soft-core parameter influence on the linearization point (top row), forces (middle row)
and energies (bottom row) for van der Waals (left column) and electrostatic interactions (right column). The case
of two interacting atoms is considered. In state A both atoms have charges of 0.5 and ¢ = 0.3 nm, ¢ = 0.5 kJ/mol.
In state B all the non-bonded interactions are set to zero. The parameter A is set to 0.5 and electrostatic interaction
cutoff is 1 nm.

The parameter oy, is a unitless scaling factor in the range [0, 1). It scales the position of the point from which
the van der Waals force will be linearized. The linearization of the force is allowed in the range [0, F.L/), where
setting vy, ; = 0 results in a standard hard-core van der Waals interaction. Setting «y, ; closer to 1 brings the force
linearization point towards the minimum in the Lennard-Jones force curve (F'2/). This construct allows retaining

the repulsion between two particles with non-zero C12 parameter at any A value.

The parameter cg has a unit of 27 and is defined in the range [0, inf). It scales the position of the point from
which the Coulombic force will be linearized. Even though in theory a can be set to an arbitrarily large value,

algorithmically the linearization point for the force is bound in the range [0, ngoul)’ where setting avg = 0 results

in a standard hard-core Coulombic interaction. Setting c¢ to a larger value softens the Coulombic force.

5.5. Interaction function and force fields 444

GROMACS Documentation, Release 2026-rc

In all the notations below, for simplicity, the distance between two atoms ¢ and j is noted as r, i.e. r = 7;;.

Forces: van der Waals interactions

12032 6c©®
— — —F)T if r>r
F%J(I’) — (13 7)r’ = T'scLJ (5244)

dFl’
ij LJ 3
dr r=reepy + Fij (rserg), if 7 <rsers

where the switching point between the soft and hard-core Lennard-Jones forces rs.r.; = ar, J(§06)\)% for state
A, and reerg = o, J(%UG(l -)\))% for state B. In analogy to the Beutler et al. soft core version, o is the radius
of the interaction, which is (Cy2/Cs)'/® or an input parameter (set with sc—sigma-LJ-gapsys) when C6 or

C12 is zero. The default value for this parameter is sc-sigma-LJ-gapsys=0.3.

Explicit expression:

12¢(12) 6C) \ r

if 7 Z TscLJ

13 7)
Fry(r)= Yoo 4om(®) (12) © (5.245)
136007 | 4200) p 4 L69CUD _ 4800 if < ey
scLJ scLJ scLJ scLJ
Forces: Coulomb interactions
471'%;%%’ if r > TscQ < Tcutof fQ
dF< .
Fg (I') = d;J T:T‘SCQT + FS (TSCQ)) if r< TscQ < Tcutof fQ (5246)
dF&
ij

dar 'f'=7"uutofoT + Fg (Tcutofo), if r< TSCQ > Teutof fQ

where the switching point 7°¢ between the soft and hard-core electrostatic forces is rs.q = ag(1 + |gig; |))\% for

state A, and 7.0 = ag(1 + |gig;|) (1 — A)© for state B. The A dependence of the linearization point for both van
der Waals and Coulombic interactions is of the same power 1/6.

Explicit expression:

4#22(;17‘2 f; if 7 > TscQ < Teutof fQ
1 2q:q; 3qiq; .
Fo(r) = — iy 4 2), if 7 <7rseq < TeutoffQ 5.247
Q 4mege, r3. r2,
1 2qiq4 ~ 3qiq; :
471'5057‘(rgumfor+ riutofo)7 if r< T'scQ > Tcutof fQ
Energies: van der Waals interactions
Explicit definition of energies:
(12) (6) .
c;l? - Cre) if r>rers
Ves(r) =94 (1sc0® " 21c®\ 5 (160D asc® 91012 28¢® . (5.248)
TieLs N oLy T TioLg B Tiers Tt TioLg B Toers i r < TseLs

5.5. Interaction function and force fields 445

GROMACS Documentation, Release 2026-rc

Energies: Coulomb interactions

qi4;

Amwegeyrt) 5 5 if r> TscQ < Teutof fQ
9495 .2 qi9; qi4; :
Vo (r) = i, Tt — = T+ Tood if 7 <7rQ < TeutoffQ (5.249)
q:q; 2 3giq; 3¢:q; :
e — T+ if mr<r >
Tgutofo T?utofo Teutof fQ scQ = Teutof fQ

OH/OA: van der Waals interactions

Here we provide the explicit expressions of 9 H /O for Lennard-Jones potential, when r < rs.r, ;. For simplicity,
in the expression below we use the notation rs.1,.7, = 7'sca and r'scr.j; = T'seB-

oOH oV (r) oVE(r)
e VE () = V) + (1 =N gi + A gi
78cU? 2109\, [168CU? 48Cl® 91cy? 23¢9
= A T T8 - 13 I T+ 2,6
scB scB scB scB scB scB
(e ac o 168C* 4scf - 910(* 2scf
Tita TSeA i rla riZa 0.4 (5.250)
1uA-1) [(13c{? 200 , [26c(? acl®) 13¢(® 2c®
+ b\ IS S r= oS B r+ 2 6
scA scA scA scA scA scA
1x [(13¢h? 209 , [26c(? acl® 13¢4? 2c®
TY 4 38 - 3 7 Tt —3% T %
TseB TseB TseB TseB TseB TseB

OH /O for Lennard-Jones potential, when r > r.r, is calculated as a standard hard-core contribution to 0 H /O A:
L =VE) - V(o).

O0H /oA for Coulomb interactions

Here we provide the explicit expressions of H /O for Coulomb potential, when 7 < rscq < TeutoffQ. FOr
simplicity, in the expression below we use the notation r5.q, = Tsca and 75, = T'scB-

OH ovg(ry avE(r)
——=VEr) -V 1-x)—2 A—2
a’af 5, 3dPqf | 34lq]
=T - — T+
TseB TseB T'scB
R 2 3q2“q;»“T . 3¢ ¢3!
T34 24 TscA (5.251)
A—1 (gt , 240t aiqd
3 -zt
2X TscA TscA TscA
R T i T
2(1 - /\) TECB TECB TscB

OH /O for Coulomb potential, when r < rs.q > Treytorsg is calculated using the same expression above by
setting rgc4 = Tcutof fQ and r,.p = Tcutof fQ-

OH /O for Coulomb potential, when 7 > 7.0 < Teutoffo is calculated as a standard hard-core contribution to
OH/oX: ZEL = VE (r) — Vi (r).

5.5. Interaction function and force fields 446

GROMACS Documentation, Release 2026-rc

5.5.6 Methods

Exclusions and 1-4 Interactions.

Atoms within a molecule that are close by in the chain, i.e. atoms that are covalently bonded, or linked by one
or two atoms are called first neighbors, second neighbors and third neighbors, respectively (see Fig. 5.34). Since
the interactions of atom i with atoms i+1 and i+2 are mainly quantum mechanical, they can not be modeled by a
Lennard-Jones potential. Instead it is assumed that these interactions are adequately modeled by a harmonic bond
term or constraint (i, i+1) and a harmonic angle term (i, i+2). The first and second neighbors (atoms i+1 and i+2)
are therefore excluded from the Lennard-Jones interaction list of atom i; atoms i+1 and i+2 are called exclusions
of atom i.

i+1 i+3

i i+2 i+4
Fig. 5.34: Atoms along an alkane chain.

For third neighbors, the normal Lennard-Jones repulsion is sometimes still too strong, which means that when
applied to a molecule, the molecule would deform or break due to the internal strain. This is especially the case
for carbon-carbon interactions in a cis-conformation (e.g. cis-butane). Therefore, for some of these interactions,
the Lennard-Jones repulsion has been reduced in the GROMOS force field, which is implemented by keeping a
separate list of 1-4 and normal Lennard-Jones parameters. In other force fields, such as OPLS /03 (page 593), the
standard Lennard-Jones parameters are reduced by a factor of two, but in that case also the dispersion (r~%) and
the Coulomb interaction are scaled. GROMACS can use either of these methods.

Treatment of Cut-offs

GROMACS is quite flexible in treating cut-offs, which implies there can be quite a number of parameters to set.
These parameters are set in the input file for grompp. There are two sort of parameters that affect the cut-off
interactions; you can select which type of interaction to use in each case, and which cut-offs should be used in the
neighbor searching.

For both Coulomb and van der Waals interactions there are interaction type selectors (termed vdwtype and
coulombtype) and two parameters, for a total of six non-bonded interaction parameters. See the User Guide
for a complete description of these parameters.

Table 5.9 lists the parameters for the available functional forms and cut-off modifications. See Pair lists generation
(page 375) for more details about pair-list generation regarding cut-offs.

Table 5.9: Parameters for the different functional forms of the non-
bonded interactions.

Type Parameters
Coulomb Plain cut-off Tey Ep
Reaction field Te, Erf
Shift function 1, T'cs Er
Switch function 71, r¢, €,
Vdw Plain cut-off Te
Shift function 1, Te

Switch function 74, 7,

5.5. Interaction function and force fields 447

GROMACS Documentation, Release 2026-rc

5.5.7 Virtual interaction sites

Virtual interaction sites (called dummy atoms in GROMACS versions before 3.3) can be used in GROMACS in
a number of ways. We write the position of the virtual site rg as a function of the positions of other particles r;:
rs = f(ry..r,). The virtual site, which may carry charge or be involved in other interactions, can now be used in
the force calculation. The force acting on the virtual site must be redistributed over the particles with mass in a
consistent way. A good way to do this can be found in ref. /04 (page 593). We can write the potential energy as:

V=V(rs,r1,...,00) =V*(r1,...,1,) (5.252)

The force on the particle ¢ is then:
_ovr 9V OV Or
or; Or; Or, Or;

The first term is the normal force. The second term is the force on particle 7 due to the virtual site, which can be
written in tensor notation:

F; =

= Fdirect L R, (5.253)

Oxrs Oys 0z
Fo— | o= 2 %5 g (5.254)
Oyi Oyi Oy,
Oxrs Oys 0z
8zi 6zi 82’1'

where F'; is the force on the virtual site and g, ys and z, are the coordinates of the virtual site. In this way, the
total force and the total torque are conserved /04 (page 593).

The computation of the virial ((5.26)) is non-trivial when virtual sites are used. Since the virial involves a sum-
mation over all the atoms (rather than virtual sites), the forces must be redistributed from the virtual sites to the
atoms (using (5.254)) before computation of the virial. In some special cases where the forces on the atoms can
be written as a linear combination of the forces on the virtual sites (types 2 and 3 below) there is no difference be-
tween computing the virial before and after the redistribution of forces. However, in the general case redistribution
should be done first.

|d] ° c]|

] ©

a T1-a
® 0 @

2 3fad 3out 4fd

Fig. 5.35: The seven different types of virtual site construction. The constructing atoms are shown as black circles,
the virtual sites in gray.

There are six ways to construct virtual sites from surrounding atoms in GROMACS, which we classify by the
number of constructing atoms. Note that all site types mentioned can be constructed from types 3fd (normal-
ized, in-plane) and 3out (non-normalized, out of plane). However, the amount of computation involved increases
sharply along this list, so we strongly recommended using the first adequate virtual site type that will be sufficient
for a certain purpose. Fig. 5.35 depicts 6 of the available virtual site constructions. The conceptually simplest
construction types are linear combinations:

N
ro=> wir (5.255)
=1

The force is then redistributed using the same weights:
F, = w; F, (5.256)

The types of virtual sites supported in GROMACS are given in the list below. Constructing atoms in virtual sites
can be virtual sites themselves, but only if they are higher in the list, i.e. virtual sites can be constructed from
“particles” that are simpler virtual sites. The virtual site velocities are reported, but not used in the integration of
the virtual site positions.

5.5. Interaction function and force fields 448

GROMACS Documentation, Release 2026-rc

On top of an atom

e This allows giving an atom multiple atom types and with that also assigned multiple, different bonded
interactions. This can especially be of use in free-energy calculations.

* The coordinates of the virtual site equal that of the constructing atom:

rs = T; (5.257)

* The force is moved to the constructing atom:

F, =F; (5.258)

 The velocity of the virtual site equals that of the constructing atom:

Vs = V; (5.259)

As a linear combination of two atoms (Fig. 5.35 2)

* The weights are calculated as

w;=1-a, wj=a (5.260)

¢ In this case the virtual site is on the line through atoms ¢ and ;.

* The velocity of the virtual site is a linear combination of the velocities of the constructing atoms

On the line through two atoms, with a fixed distance (Fig. 5.35 2fd)

* The position is calculated as:

rij
Irij

rs =r;+a (5.261)

* In this case the virtual site is on the line through the other two particles at a distance of |a| from 4. The force
on particles ¢ and j due to the force on the virtual site can be computed as:

a
F, = F,—7(Fi—p) 7 ey
F, — +(Fs — p) where r,.-F, (5.262)
P= s
s Tis
* The velocity is calculated as:
a Vij - Tij
Vs =V; + — | Vi — ri-“”> (5.263)
v (T eyl
As a linear combination of three atoms (Fig. 5.35 3)
» The weights are calculated as:
wi=1—a—-b, wyj=a, wy="»> (5.264)

* In this case the virtual site is in the plane of the other three particles.

5.5. Interaction function and force fields 449

GROMACS Documentation, Release 2026-rc

In the plane of three atoms, with a fixed distance (Fig. 5.35 3fd)

* The position is calculated as:

ik
Tk

ri =r;+5b where r;;, = r;; +arj; (5.265)

* In this case the virtual site is in the plane of the other three particles at a distance of |b| from i. The force on
particles 7, j and k due to the force on the virtual site can be computed as:

F, = F,—v(F;—p) __ b
T= |ri; + ar x|
F, = (1—-a)y(F;—p) where r‘f F J (5.2606)
= — p = = > riS
Fi ay(Fs —p) Tis - Tis
* The velocity is calculated as:
b ik * Tij
Ve = Vi+ —— | Fyjr — rijkM (5.267)
Irijl Irijel®
In the plane of three atoms, with a fixed angle and distance (Fig. 5.35 3fad)
* The position is calculated as:
r;; P 5 rj;-T;
rs = r; + dcosﬁ|r4]‘| + dsm@ﬁ where r| = rj; — I‘Jirjkrm (5.268)
ij 1 1] 1]

* In this case the virtual site is in the plane of the other three particles at a distance of |d| from i at an angle of
o with r;;. Atom k defines the plane and the direction of the angle. Note that in this case b and o must be
specified, instead of a and b (see also sec. Virtual sites (page 464)). The force on particles ¢, j and k due to
the force on the virtual site can be computed as (with r | as defined in (5.268)):

F, — F, _ dcosOF1 . dsin@ (rij'rij2+F3>
Iris lro| \rij-ri
dcosf dsin@ i T
F, - cos L sin F2+r] r]kF2+F3
Iris Ty rij - Tij
deind (5.269)
sin
Fr, = 2
T
ZFS Fs st
where F1:FS—I‘J7rij,F2:F1—rJ‘ r, and ngrjill
Tij - Tij r,-ry rij - Tij
* The velocity is calculated as:
0 T 0 r|
s=vi+dcos ——L +dsinf ——
v V; + acos 5t|rij|+ sin 5t|rl\
where
5 rij 1 vij’rij
ot [rij[[ri] (V” e (5.270)
5 r| 1 (I"L~I‘L)
S R
5t‘I‘J_| ‘I‘J_| |rJ_|2
. riil2(Vii T 4+ 15 - Vik) — (Tig - Tag) (2055 - Vs rji-T;
Il:ij_rij| ANACRRIT: j Vik) — (rij - k) (2ry; J)_ J ka,j

riz|* ;|2 "

5.5. Interaction function and force fields 450

GROMACS Documentation, Release 2026-rc

As a non-linear combination of three atoms, out of plane (Fig. 5.35 3out)
* The position is calculated as:

r¢{ = r;+ ar;; + br,;k + C(I‘ij X rik) (5271)

* This enables the construction of virtual sites out of the plane of the other atoms. The force on particles ¢, j
and k due to the force on the virtual site can be computed as:

[a —CZik CUYik
F; = CZik a —cxir | Fy
—CYik CTik a
) Czij —CYij (5.272)
F, = —C2ij b CTyj F,
L CYij —CZTij b
F, = F,-F,-F;
* The velocity is calculated as:
Ve = vi+ —— (fm - rmr’”'rm) (5.273)
[T [T |2

From four atoms, with a fixed distance, see separate Fig. 5.36

* This construction is a bit complex, in particular since the previous type (4fd) could be unstable which forced
us to introduce a more elaborate construction:

0%

Fig. 5.36: The new 4fdn virtual site construction, which is stable even when all constructing atoms are in the same
plane.

* The position is calculated as

rja = ar;r — rij =a (Xk — Xi) — (Xj — Xi)
I'jb = bI‘il — rij = b(Xl — Xi) — (Xj — Xi)
ry, = Ijqg X Tjp
rm
rs = r; +c—
T

* The velocity is calculated as:

5.5. Interaction function and force fields 451

GROMACS Documentation, Release 2026-rc

(5.274)
I, = f‘ja X Tjp+ Tjg X I"jb

* In this case the virtual site is at a distance of |c| from ¢, while a and b are parameters. Note that the vectors
r;; and r;; are not normalized to save floating-point operations. The force on particles 7, j, k and [due
to the force on the virtual site are computed through chain rule derivatives of the construction expression.
This is exact and conserves energy, but it does lead to relatively lengthy expressions that we do not include
here (over 200 floating-point operations). The interested reader can look at the source code in vsite.c.
Fortunately, this vsite type is normally only used for chiral centers such as C', atoms in proteins.

The new 4fdn construct is identified with a ‘type’ value of 2 in the topology. The earlier 4fd type is still
supported internally (‘type’ value 1), but it should not be used for new simulations. All current GROMACS
tools will automatically generate type 4fdn instead.

A linear combination of N atoms with relative weights a;

* The weight for atom 7 is:
-1

N
wi=a; | Y a; (5.275)
j=1

* There are three options for setting the weights:
* center of geometry: equal weights

e center of mass: a; is the mass of atom ¢; when in free-energy simulations the mass of the atom is changed,
only the mass of the A-state is used for the weight

* center of weights: a; is defined by the user

5.5.8 Long Range Electrostatics

Ewald summation

The total electrostatic energy of N particles and their periodic images is given by

N N
vzgzzzzzf;}i (5.276)
J ’

Mg Ny Nz* 1

(ng,ny,n.) = nis the box index vector, and the star indicates that terms with ¢ = j should be omitted when
(ng, ny,n.) = (0,0,0). The distance r;; ,, is the real distance between the charges and not the minimum-image.
This sum is conditionally convergent, but very slow.

Ewald summation was first introduced as a method to calculate long-range interactions of the periodic images
in crystals /05 (page 593). The idea is to convert the single slowly-converging sum (5.276) into two quickly-

5.5. Interaction function and force fields 452

GROMACS Documentation, Release 2026-rc

converging terms and a constant term:
V= Vdir + Vrec + VO

N
Vair = g Z Z Z Z 4iq;j erfciiijj’“)

,J Mz Ny Nz*

N 24 2mim- (v; — 1
V= 5l S 3030 3 A i ()

(5.277)

2V m?

Mg My My*

N
Vo = _\f/ﬁ%zi:%zv

where [is a parameter that determines the relative weight of the direct and reciprocal sums and m =
(mg, my, m;). In this way we can use a short cut-off (of the order of 1 nm) in the direct space sum and a
short cut-off in the reciprocal space sum (e.g. 10 wave vectors in each direction). Unfortunately, the computa-
tional cost of the reciprocal part of the sum increases as N2 (or N3/2 with a slightly better algorithm) and it is
therefore not realistic for use in large systems.

There are two sources of error in the Ewald method. One is due to the truncation of the Fourier sum and another
is due to the truncation of the direct space interaction at the cut-off. If one would use the potential as given by
(5.276), energy conservation would be violated due to the jump in energy at a direct space cut-off distance. To
maintain energy conservation, GROMACS by default shifts the pair potential in Vg;, by a constant such that the
potential is zero at the cut-off. This shift is also applied with PME.

In the log file and energy file that gmx mdrun (page 221) outputs the EWALD/PME energy contributions are
reported in two terms. The term Coulomb (SR) contains the Vg, with the constant shift applied minus the
reciprocal contribution for excluded atom pairs. The term Coul. recip. contains the reciprocal sum Vi,
including contributions of excluded atoms pairs, plus the charge correction V; plus an optional surface correction
term that depends on the system dipole.

Using Ewald

Do not use Ewald unless you are absolutely sure this is what you want - for almost all cases the PME method
below will perform much better. If you still want to employ classical Ewald summation enter this in your mdp
(page 497) file, if the side of your box is about 3 nm:

coulombtype = Ewald
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.6
ewald-rtol = le-5

The ratio of the box dimensions and the fourierspacing parameter determines the highest magnitude of wave
Vectors my;, My, M., to use in each direction. With a 3-nm cubic box this example would use 11 wave vectors (from
—5 to 5) in each direction. The ewald-rtol parameter is the relative strength of the electrostatic interaction at
the cut-off. Decreasing this gives you a more accurate direct sum, but a less accurate reciprocal sum.

5.5. Interaction function and force fields 453

GROMACS Documentation, Release 2026-rc

PME

Particle-mesh Ewald is a method proposed by Tom Darden /4 (page 589) to improve the performance of the
reciprocal sum. Instead of directly summing wave vectors, the charges are assigned to a grid using interpolation.
The implementation in GROMACS uses cardinal B-spline interpolation /5 (page 589), which is referred to as
smooth PME (SPME). The grid is then Fourier transformed with a 3D FFT algorithm and the reciprocal energy
term obtained by a single sum over the grid in k-space.

The potential at the grid points is calculated by inverse transformation, and by using the interpolation factors we
get the forces on each atom.

The PME algorithm scales as N log(/N'), and is substantially faster than ordinary Ewald summation on medium to
large systems. On very small systems it might still be better to use Ewald to avoid the overhead in setting up grids
and transforms. For the parallelization of PME see the section on MPMD PME (Multiple-Program, Multiple-Data
PME parallelization (page 411)).

With the Verlet cut-off scheme, the PME direct space potential is shifted by a constant such that the potential is
zero at the cut-off. This shift is small and since the net system charge is close to zero, the total shift is very small,
unlike in the case of the Lennard-Jones potential where all shifts add up. We apply the shift anyhow, such that the
potential is the exact integral of the force.

Using PME

As an example for using Particle-mesh Ewald summation in GROMACS, specify the following lines in your mdp
(page 497) file:

coulombtype = PME
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme—-order = 4

ewald-rtol = le-5

J

In this case the fourierspacing parameter determines the maximum spacing for the FFT grid (i.e. minimum
number of grid points), and pme—order controls the interpolation order. Using fourth-order (cubic) interpolation
and this spacing should give electrostatic energies accurate to about 5 - 102, Since the Lennard-Jones energies
are not this accurate it might even be possible to increase this spacing slightly.

Pressure scaling works with PME, but be aware of the fact that anisotropic scaling can introduce artificial ordering
in some systems.

P3M-AD

The Particle-Particle Particle-Mesh methods of Hockney & Eastwood can also be applied in GROMACS for the
treatment of long range electrostatic interactions /06 (page 593). Although the P3M method was the first efficient
long-range electrostatics method for molecular simulation, the smooth PME (SPME) method has largely replaced
P3M as the method of choice in atomistic simulations. One performance disadvantage of the original P3M method
was that it required 3 3D-FFT back transforms to obtain the forces on the particles. But this is not required for P3M
and the forces can be derived through analytical differentiation of the potential, as done in PME. The resulting
method is termed P3M-AD. The only remaining difference between P3M-AD and PME is the optimization of the
lattice Green influence function for error minimization that P3M uses. However, in 2012 it has been shown that
the SPME influence function can be modified to obtain P3M /07 (page 593). This means that the advantage of
error minimization in P3M-AD can be used at the same computational cost and with the same code as PME, just
by adding a few lines to modify the influence function. However, at optimal parameter setting the effect of error
minimization in P3M-AD is less than 10%. P3M-AD does show large accuracy gains with interlaced (also known
as staggered) grids, but that is not supported in GROMACS (yet).

P3M is used in GROMACS with exactly the same options as used with PME by selecting the electrostatics type:

5.5. Interaction function and force fields 454

GROMACS Documentation, Release 2026-rc

[coulombtype = P3M-AD

Optimizing Fourier transforms and PME calculations

It is recommended to optimize the parameters for calculation of electrostatic interaction such as PME grid dimen-
sions and cut-off radii. This is particularly relevant to do before launching long production runs.

gmx mdrun (page 221) will automatically do a lot of PME optimization, and GROMACS also includes a special
tool, gmx tune_pme (page 292), which automates the process of selecting the optimal number of PME-only ranks.

5.5.9 Long Range Van der Waals interactions
Dispersion correction

In this section, we derive long-range corrections due to the use of a cut-off for Lennard-Jones or Buckingham
interactions. We assume that the cut-off is so long that the repulsion term can safely be neglected, and therefore
only the dispersion term is taken into account. Due to the nature of the dispersion interaction (we are truncating
a potential proportional to —r~%), energy and pressure corrections are both negative. While the energy correc-
tion is usually small, it may be important for free energy calculations where differences between two different
Hamiltonians are considered. In contrast, the pressure correction is very large and can not be neglected under any
circumstances where a correct pressure is required, especially for any NPT simulations. Although it is, in princi-
ple, possible to parameterize a force field such that the pressure is close to the desired experimental value without
correction, such a method makes the parameterization dependent on the cut-off and is therefore undesirable.

Energy

The long-range contribution of the dispersion interaction to the virial can be derived analytically, if we assume a
homogeneous system beyond the cut-off distance .. The dispersion energy between two particles is written as:

V(ry) = —Ceriyy™° (5.278)
and the corresponding force is:
Fij = —6Csr;, (5.279)

In a periodic system it is not easy to calculate the full potentials, so usually a cut-off is applied, which can be
abrupt or smooth. We will call the potential and force with cut-off V. and F.. The long-range contribution to the
dispersion energy in a system with IV particles and particle density p = N/V is:

Vi = %Np/oo drr?g(r) (V(r) — Vi(r)) dr (5.280)
0

We will integrate this for the shift function, which is the most general form of van der Waals interaction available
in GROMACS. The shift function has a constant difference S from 0 to r; and is O beyond the cut-off distance 7.
We can integrate (5.280), assuming that the density in the sphere within r; is equal to the global density and the
radial distribution function g(r) is 1 beyond ry:

Vi = %N (p/ 4rr2g(r) Cs Sdr—i—p/ C47r7"2 (V(r)— Vc(r))dr—i—p/ 4mr?V (r) dr)
0 T1 Tc
(5.281)

1 4 Te 4
38 (et~ 1) Costp [amrt (V) - Vi ar - SanpCors?)

where the term —1 corrects for the self-interaction. For a plain cut-off we only need to assume that g(r) is 1
beyond 7. and the correction reduces to /08 (page 593):

2
- = _ngp Cor.® (5.282)

5.5. Interaction function and force fields 455

GROMACS Documentation, Release 2026-rc

If we consider, for example, a box of pure water, simulated with a cut-off of 0.9 nm and a density of 1 g cm~3 this
correction is —0.75 kJ mol~! per molecule.

For a homogeneous mixture we need to define an average dispersion constant:

5 N N
(Ce) = mzzcﬁ(@j) (5.283)

i g>i
In GROMACS, excluded pairs of atoms do not contribute to the average.

In the case of inhomogeneous simulation systems, e.g. a system with a lipid interface, the energy correction can
be applied if (Cs) for both components is comparable.

Virial and pressure

The scalar virial of the system due to the dispersion interaction between two particles ¢ and j is given by:

1

= = — 5T Fyj = 3Cs r;jG (5.284)
The pressure is given by:
2
P = 3V (Egin — E) (5.285)
The long-range correction to the virial is given by:
1 o0
i = 5Np / 42 g(r) (B — Z.) dr (5.286)
0

We can again integrate the long-range contribution to the virial assuming g(r) is 1 beyond r;:

1 e o0
Elr = §N‘0 </ 4WT2(E - Ec) dr + / 47'1'7’23 CG Tij76 d?”')

1 Te
Te

1 >
= §Np (/ 4172 (2 — B,) dr + 47Cy rc_3>
T

1

For a plain cut-off the correction to the pressure is /08 (page 593):
4
P, = —57706 p2r;3 (5.287)

Using the same example of a water box, the correction to the virial is 0.75 kJ mol~! per molecule, the correspond-
ing correction to the pressure for SPC water is approximately —280 bar.

For homogeneous mixtures, we can again use the average dispersion constant (Cs) ((5.283)):
4
P, = —§7r<06>p2rg3 (5.288)
For inhomogeneous systems, (5.288) can be applied under the same restriction as holds for the energy (see sec. En-

ergy (page 455)).

Lennard-Jones PME

In order to treat systems, using Lennard-Jones potentials, that are non-homogeneous outside of the cut-off distance,
we can instead use the Particle-mesh Ewald method as discussed for electrostatics above. In this case the modified
Ewald equations become

V= Vdir+vvrcc+‘/0

1 Cg(Brijm (5.289)
Var= LT T

— Tijmn
i,j Mp My Nk Js

5.5. Interaction function and force fields 456

GROMACS Documentation, Release 2026-rc

N
Viee = 6 ZZZJ“ lm|/B) x Y Cglexp [~2mim - (r; — 13)]
Mg My Mz* ¥

(5.290)
Vo

4t

where m = (mg, my, m;), B is the parameter determining the weight between direct and reciprocal space, and
Céj is the combined dispersion parameter for particle ¢ and j. The star indicates that terms with 7 = j should
be omitted when ((nz,ny,n,) = (0,0,0)), and r;; , is the real distance between the particles. Following the
derivation by Essmann /5 (page 589), the functions f and g introduced above are defined as

fl@) = 1/3[(1 = 22%)exp(—a®) + 22°/m erfc(z)]

) , at (5.291)
g(x) = exp(—2)(1+2° + 7).
The above methodology works fine as long as the dispersion parameters can be combined geometrically ((5.124))
in the same way as the charges for electrostatics

cy

ii i) 2
6,geom (C6 Cv6) (5292)
For Lorentz-Berthelot combination rules ((5.125)), the reciprocal part of this sum has to be calculated seven times
due to the splitting of the dispersion parameter according to

Cop_p = (01 +0;)° Z Poofol®™™, (5.293)

for P, the Pascal triangle coefficients. This introduces a non-negligible cost to the reciprocal part, requiring
seven separate FFTs, and therefore this has been the limiting factor in previous attempts to implement LJ-PME. A
solution to this problem is to use geometrical combination rules in order to calculate an approximate interaction
parameter for the reciprocal part of the potential, yielding a total interaction of

Vir<r.) = Csg(Br)r™ éegcfia}c))m[]‘ —g(Br)r°
= OO+ (Cir - cen) 9By
Vir>r.) = C(rsegcégm[—g(Br)]r—°

Reciprocal space

This will preserve a well-defined Hamiltonian and significantly increase the performance of the simulations. The
approximation does introduce some errors, but since the difference is located in the interactions calculated in
reciprocal space, the effect will be very small compared to the total interaction energy. In a simulation of a lipid
bilayer, using a cut-off of 1.0 nm, the relative error in total dispersion energy was below 0.5%. A more thorough
discussion of this can be found in /09 (page 593).

In GROMACS we now perform the proper calculation of this interaction by subtracting, from the direct-space
interactions, the contribution made by the approximate potential that is used in the reciprocal part

Vair = Cr™0 — G5 [1 — g(Br)]r°. (5.294)
This potential will reduce to the expression in (5.289) when C{'* = C’gedp, and the total interaction is given by

V(r<re)= O30 CrP[1 — g(Br)]r= 5 + 51 — g(Br))r°
Direct space Reciprocal space

= Cdlr —6

Vir>ry) = CEP[1—g(Br)r°. (5.295)

5.5. Interaction function and force fields 457

GROMACS Documentation, Release 2026-rc

For the case when C§'™ Céedp this will retain an unmodified LJ force up to the cut-off, and the error is an order
of magnitude smaller than in simulations where the direct-space interactions do not account for the approximation
used in reciprocal space. When using a VAW interaction modifier of potential-shift, the constant

(—03“ + L~ g(ﬁrc)]) e’ (5.296)

is added to (5.295) in order to ensure that the potential is continuous at the cutoff. Note that, in the same way as
(5.294), this degenerates into the expected —Cgg(Br.)r. ¢ when CI* = Cg*“'P. In addition to this, a long-range
dispersion correction can be applied to correct for the approximation using a combination rule in reciprocal space.
This correction assumes, as for the cut-off LJ potential, a uniform particle distribution. But since the error of the
combination rule approximation is very small this long-range correction is not necessary in most cases. Also note
that this homogenous correction does not correct the surface tension, which is an inhomogeneous property.

Using LJ-PME

As an example for using Particle-mesh Ewald summation for Lennard-Jones interactions in GROMACS, specify
the following lines in your mdp (page 497) file:

vdwtype = PME
rvdw =
vdw-modifier =
rlist =

otential-Shift

rcoulomb =

= o O d

fourierspacing =
pme—-order =
ewald-rtol-1j =
l1j-pme—comb-rule

o N O O O "o

.001
geometric

The same Fourier grid and interpolation order are used if both LJ-PME and electrostatic PME are active, so the
settings for fourierspacing and pme-order are common to both. ewald-rtol-1j controls the splitting
between direct and reciprocal space in the same way as ewald-rtol. In addition to this, the combination rule
to be used in reciprocal space is determined by 1 j-pme-comb-rule. If the current force field uses Lorentz-
Berthelot combination rules, it is possible to set 1 j-pme—comb-rule = geometric in order to gain a sig-
nificant increase in performance for a small loss in accuracy. The details of this approximation can be found in the
section above.

Note that the use of a complete long-range dispersion correction means that as with Coulomb PME, rvdw is
now a free parameter in the method, rather than being necessarily restricted by the force-field parameterization
scheme. Thus it is now possible to optimize the cutoff, spacing, order and tolerance terms for accuracy and best
performance.

Naturally, the use of LJ-PME rather than LJ cut-off adds computation and communication done for the reciprocal-
space part, so for best performance in balancing the load of parallel simulations using PME-only ranks, more such
ranks should be used. It may be possible to improve upon the automatic load-balancing used by mdrun (page 221).

5.5.10 Force field

A force field is built up from two distinct components:

» The set of equations (called the potential functions) used to generate the potential energies and their deriva-
tives, the forces. These are described in detail in the previous chapter.

e The parameters used in this set of equations. These are not given in this manual, but in the data files
corresponding to your GROMACS distribution.

Within one set of equations various sets of parameters can be used. Care must be taken that the combination of
equations and parameters form a consistent set. It is in general dangerous to make ad hoc changes in a subset
of parameters, because the various contributions to the total force are usually interdependent. This means in

5.5. Interaction function and force fields 458

GROMACS Documentation, Release 2026-rc

principle that every change should be documented, verified by comparison to experimental data and published in
a peer-reviewed journal before it can be used.

GROMACS 2026-rc includes several force fields, and additional ones are available on the website. If you do
not know which one to select we recommend GROMOS-96 for united-atom setups and OPLS-AA/L for all-atom
parameters. That said, we describe the available options in some detail.

GROMOS-96

A Warning

The GROMOS force fields have been parametrized with a physically incorrect multiple-time-stepping scheme
for a twin-range cut-off. When used with a single-range cut-off (or a correct Trotter multiple-time-stepping
scheme), physical properties, such as the density, might differ from the intended values. Since there are
researchers actively working on validating GROMOS with modern integrators we have not yet removed the
GROMOS force fields, but you should be aware of these issues and check if molecules in your system are
affected before proceeding. Further information is available in GitLab Issue 2884 , and a longer explanation of
our decision to remove physically incorrect algorithms can be found at DOI:10.26434/chemrxiv.11474583.v1

GROMACS supports the GROMOS-96 force fields 77 (page 592). All parameters for the 43A1, 43A2 (devel-
opment, improved alkane dihedrals), 45A3, 53AS, and 53A6 parameter sets are included. All standard building
blocks are included and topologies can be built automatically by pdb2gmx (page 241).

The GROMOS-96 force field is a further development of the GROMOS-87 force field. It has improvements
over the GROMOS-87 force field for proteins and small molecules. Note that the sugar parameters present in
53A6 do correspond to those published in 2004770 (page 593), which are different from those present in 45A4,
which is not included in GROMACS at this time. The 45A4 parameter set corresponds to a later revision of these
parameters. The GROMOS-96 force field is not, however, recommended for use with long alkanes and lipids. The
GROMOS-96 force field differs from the GROMOS-87 force field in a few respects:

* the force field parameters

* the parameters for the bonded interactions are not linked to atom types

* afourth power bond stretching potential (Fourth power potential (page 419))

* an angle potential based on the cosine of the angle (Cosine based angle potential (page 421))

There are two differences in implementation between GROMACS and GROMOS-96 which can lead to slightly
different results when simulating the same system with both packages:

* in GROMOS-96 neighbor searching for solvents is performed on the first atom of the solvent molecule.
This is not implemented in GROMACS, but the difference with searching by centers of charge groups is
very small

¢ the virial in GROMOS-96 is molecule-based. This is not implemented in GROMACS, which uses atomic
virials

The GROMOS-96 force field wa